ITW2002, Bangalore, India Oct. 20-25, 2002

Rate-distortion optimized tree based coding algorithms

Rahul Shukla!, Pier Luigi Dragotti, Minh N. Do, and Martin Vetterli
Dept. Communication Systems, EPFL, CH-1015 Lausanne, Switzerland

email: {rahul.shukla, pierluigi.dragotti, minh.do, martin.vetterli}@epfl.ch

Abstract — This paper addresses the problem of
efficient coding of a simple class of signals, namely
piecewise polynomials. For this signal class, we de-
velop a coding algorithm, which achieves oracle like
rate-distortion (R-D) behavior in the high bit rate
regime and with a reasonable computational complex-
ity. For the 1-D case, our scheme is based on the
binary tree segmentation of the signal and an opti-
mal bit allocation strategy among the different sig-
nal segments. The scheme further encodes the sim-
ilar neighbors jointly to achieve the right exponen-
tially decaying R-D behavior (D(R) ~co2_clR). We
have also shown that the computational cost of the
scheme is of the order O (Nlog N). We then show that
the scheme can be easily extended to the 2-D case,
as the quad tree based coding scheme, with the simi-
lar R-D behavior and computational cost. Finally, we
will conclude with some numerical results.

I. INTRODUCTION

Recently, there has been a growing interest in the study of
piecewise polynomial functions as an approximation to piece-
wise smooth functions. Wavelets have long been considered
ideal candidates for piecewise smooth function due to their
vanishing moment properties [5]. It was shown in [1, 6] that for
piecewise polynomial signals, the distortion of wavelet based
coder decays as D (R) ~ dov/R2~4“ VR, However, since such
a signal can be precisely described by a finite number of pa-
rameters, it is not difficult to realize that R-D behavior of the
oracle based method decays as

D(R) ~ ¢o2 % (1)

In [6], this R-D behavior has been realized with a poly-
nomial computational cost using dynamic programming. At
low rates, such an algorithm works well for piecewise smooth
signals too. The basic ingredient is to precisely model sin-
gularities, which can also be done in a wavelet scheme using
footprints [4]. The dynamic segmentation algorithm in [6]
achieves the right R-D characteristic, but its computational
cost is high (O (N3)). Moreover, this algorithm cannot be
generalized to the 2-D case.

In this paper, we are interested in a coding scheme, which
achieves oracle like asymptotic R-D behavior with polynomial
complexity for 1-D as well as 2-D signals. In particular, for
the 1-D case we present a coding scheme which utilizes binary
tree segmentation with optimal bit allocation among different
segments. Investigation of the algorithm reveals the inherent
weakness in the initial coding scheme, leading to a subopti-

mal performance (D (R) ~ 02\/}_22_03‘/§). This leads us to
develop an improved coding scheme, which encodes the simi-

lar neighbors jointly. In doing so the improved coding scheme
achieves the desired R-D behavior given by (1).
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More importantly, the optimal binary tree scheme in the
1-D case can be easily extended to the 2-D case as an optimal
quadtree scheme with the similar computational complexity.
The proposed optimal quadtree scheme also achieves the or-
acle like R-D performance for some simple classes of images
whereas for the 2-D case there is no known algorithm, which
achieves the right R-D behavior with a reasonable computa-
tional cost. The rest of the paper is organized as follows:
first, we will present the classical binary tree algorithm along
with the improved binary tree algorithm which achieves the
optimal R-D behaviour. Then, we show the extension of 1-D
scheme to 2-D using the quadtree based scheme and conclude
with some experimental results.

II. 1-D SCENARIO: BINARY TREE ALGORITHMS

Our goal is to implement a coding scheme based on the mod-
eling assumption that signals are piecewise smooth functions.
In this case, if we segment the signal into smaller pieces, then
each sub-signal can be well represented by a simpler signal
(e.g. polynomial) model. For instance, we can choose a simple
polynomial model of degree one. Our signal-class of interest
can be defined as follows:

Piecewise polynomial signal(PPS): Let f (t) be a piece-
wise polynomial function defined over the interval [0,T]. As-
sume that f (t) contains N; internal transition points (singu-
larities). Suppose that the function f () is bounded by A and
the maximum degree of a polynomial piece is P.

A. The classical binary tree algorithm

The classical tree algorithm utilizes R-D framework with in-
dependent coding of the nodes of the tree and an MSE distor-
tion metric. Our scheme employs a binary tree segmentation
followed by a coding scheme on each signal block in an op-
erational R-D optimal sense. We employ an operational R-D
optimization that is similar to the approach used in [8] in find-
ing the best wavelet packet bases. A decision strategy based
on optimizing R-D performance for each signal block is de-
signed so that the coder can decide if a signal block is worth
to be further divided and coded with some appropriate quan-
tization level. The algorithm can be summarized as follows
[8]:

1. Segmentation of the input signal: a binary tree segmenta-
tion scheme is employed.

2. Generation of the optimal R-D curve for each sub-signal
assuming the polynomial model.

3. Optimization of this representation to achieve the best
reconstructed signal for a given bit rate constraint and distor-
tion measure (MSE). Optimally allocate the bits among the
tree leaves using the Lagrangian cost based pruning method
for an optimal quality factor(X) [9].

B. R-D analysis of the classical binary tree scheme

In this section, we will derive an asymptotic R-D behavior of
the classical coding algorithm for the piecewise polynomial sig-
nal(PPS). Since there are only IV, transition points so at most
N; nodes will have a transition point and rest will be simply



represented by a polynomial piece without any discontinuity.
The optimal tree is obtained via recursively dividing nodes
with transition (switch) points. Essentially the binary tree
grows only in the region where the algorithm finds transition
points. That means the binary tree segmentation algorithm
acts like a singularity detector. Suppose that the tree decom-
position depth is J, which will be large in the high rate regime.
Therefore the total number of terminal-nodes (leaves) in the
classical binary tree is bounded as follows:

Ny < Nja+M
=N; < (J+1)N
N; ~ JNg, as J is large enough. (2)

Therefore the number of leaves to be coded grows linearly
w.r.t. the decomposition depth J. In the pruned tree, every
tree level will have at most 2Ny nodes. Therefore the total
number of nodes My of the pruned tree is bounded as follows

M; < 2JN;+1
=>M; ~ 2JN; (3)

Since there are only V; transition points, so at most N; leaves
will have a transition point and the remaining JN; leaves (
eq. (2)) will be simply represented by a polynomial piece with-
out any discontinuity. If we simply don’t encode the singular
leaves, then their distortion will be bounded by A?T277. Let
us allocate % J bits to each of the remaining simple leaves.
This will make sure that the distortion of every simple leaf
(leaf without a singularity) is bounded by A2T (P +1)?277
[6]. Therefore both the simple leaves and singular leaves have
the distortion of the order O (277).
Therefore the net distortion is bounded as follows

Dr < NAT2™ + INAT (P +1)°277

Dy ~ A’TN,(P+1)*J277 (4)
The bit rate needed for coding the leaves is Rrpeaves =
JNt@J. The binary tree split-merge decision vari-
able will consume bits equal to the total number of nodes

(Mj ~ 2JNy; from (3)) in the optimal binary tree. Hence the
total bit rate is
Rr = Rrree + Rreaves ~ 2J Ny + JNy————=

w(ﬁ, as J is large enough. (5)

Combining (4) and (5) provides

#RTQ_V (P+21)Ni RT_

(P+1)N,

(P+1)
5

= Rr

Dy ~ A’TN; (P +1)°

This results into the following theorem.

Theorem 1 The classical binary tree coding algorithm, which
employs the R-D optimization using the parent children prun-
ing, results into the suboptimal asymptotic R-D behavior

D (R) ~ coVR2™1VE (6)

where Co :AZTNt (P+1)21/m and C1 = —1/ﬁ,

for the piecewise polynomials.

Investigation of the suboptimality: Since the binary tree
segmentation acts like a singularity detector, so when the tree
grows to capture a singularity in a region, it divides the same
polynomial piece repeatedly. The classical coding scheme en-
codes these subdivided pieces of the same polynomial sepa-
rately. This independent coding of dependent nodes results in
a suboptimal R-D behavior.

C. An improved binary tree coding algorithm

Investigation in the earlier subsection suggests that the inter
node dependency should be exploited to achieve the optimal
R-D performance. To ensure this, the improved coding scheme
employs the same previous classical binary tree coding scheme
followed by the neighbor joint coding algorithm, which, in fact,
decides whether incoming leaf should be jointly coded with its
neighbor or not. Figure 1 illustrates how the improved scheme
outperforms the full as well as the classical tree schemes for
the piecewise polynomial signal class.

(a) Full binary
tree.

(b) The classical
binary tree.

(c) The improved
binary tree.

Figure 1: Comparative study of different tree schemes.
D. Neighbor joint coding algorithm

The neighbor joint coding algorithm is as follows:

1. As soon as the neighbor joint coding algorithm receives
the leaf information, the algorithm looks for the leaf’s spatial
neighbor which has already been encountered by the algo-
rithm. Suppose n] represents the 4" node at the i** level of

the binary tree, then its neighbors (n{g) at the level ip are
Left neighbor : j& = 2009

Right neighbor : i

J—1
= 20079 (j+1);

In the above formulation, nd is assumed to be the root node.
2. If the algorithm finds a transmitted neighbor, then it will
compare both the leaves using a suitable comparison metric. It
has been shown that for R-D optimality, all signal elements (or
leaves of the tree) must operate at a constant slope point A on
their R-D curves. This means that the two neighbors will be
joined if the sum of the Lagrangian costs(L(A) = D + AR) of
the neighbors is greater than or equal to the Lagrangian cost of
the joint block, i.e., if (Dn; + ARn; )+ (Dny + ARny) > Dy, +
AR, ;. If neighbors are jointly coded then the neighbor joint
coding variable will be set to one, otherwise the neighbor joint
coding variable will be set to zero and the leaf information will
be sent. We need only one bit for the neighbor joint coding
variable as the structure of the binary tree always ensures
that the number of the immediate neighbors to the incoming
leaf is one, so we only have to indicate whether neighbors are
encoded jointly or not.

3. If the neighbor joint coding algorithm does not find any
transmitted neighbor, then the neighbor joint coding variable
will be set to zero and the leaf information will be sent.

E. R-D analysis of the improved binary tree scheme

Lemma 1 The improved binary tree algorithm, which jointly
encodes the similar neighbors, reduces the effective number of
the leaves to be encoded to Ny + 1, where N is the number of
the internal transition points in a piecewise polynomial signal.

Proof: The improved binary tree algorithm employs the
neighbor joint coding scheme to encode the similar neighbors
jointly. The Lagrangian pruning will join the two neighbor-
ing blocks if the joint block does not have the singularity. So
there will be at most IV; singular leaves at the decomposition
depth J. If J is large enough, then each singularity will lie in
a different dyadic leaf. Let us assume that " singularity lies
in the interval [K;T277, (K; +1)T27 7], where i =1,... ,N;



and K]s are the integers such that —1 = Ko < K; < ... <
Kn, < Kny41 =27,

If we traverse the binary tree such that we move from left
to right in the spatial domain, then all the leaves to the left
of the first singularity node ([KlTZ_J,(Kl +1) T2_J]) at
depth J will be joined(pruned) to form the first joint block.
Similarly, all the leaves to the right of the first singularity
block to the beginning of the second singularity node will be
combined to form the second joint block. We can continue
this process of joining all the simple leaves (without singular-
ity) between two consecutive singular leaves till we reach the
end of the signal. In this way, all the leaves lying in the in-
terval [(K;_1 +1)T277, K;T27”] will be sequentially joined
to form one joint leaf. Therefore, the improved tree algorithm
results in Ny + 1 joint blocks(leaves) and V¢ singular leaves .
Since the leaves containing the singularity will not be encoded,
the number of the encoded leaves becomes Ny + 1. Therefore
the number of leaves to be coded remains fixed w.r.t. .J.

The high rate analysis done in Lemma 1 ensures that all the
leaves lying in the interval [(K;—1 + 1) 7277, K;T277] will be
sequentially joined to form one joint leaf. Now let us allo-
cate (ZLI)J bits to each joint block, so that their distortion
is bounded by A2T (P +1)*27” [6]. Therefore the bit rate

required for coding the leaves is Rrecaves = (V¢ + 1) @J .

In the improved coding scheme, the side information con-
sists of two parts: 1. Bits required to encode the optimal bi-
nary tree. 2. Bits required to encode the leaf joint coding tree.
The binary tree split-merge decision variable will consume bits
equal to the total number of nodes (M ~ 2JNy; from (3))
whereas the joint coding decision variable will consume bits
equal to the total number of leaves (N; ~ JN;; from (2)) in
the optimal binary tree. Hence the side information costs are:
Rrree ~ 2JNy and RycavesiointCoding ~ JIVt. Hence the total
bit rate can be written as follows

Rr = Rrree+ RLeavesJointCoding + RrLeaves
(Ve (P+7) 4+ (P+1))

= Rr 2

J; as J is large. (7)

The net distortion is bounded as follows

Dr = NAT277 + (N, +1) AT (P+1)°277
=Dr = (Ne+(Ne+1)(P+ 1)2) A’T27!
Let ez = (Ny+(Ny+1)(P+1)°) AT
= Dr ~ 2 EEFEFE AT, from (7).

Therefore the improved tree algorithm achieves the right
asymptotic R-D behavior, which decays ezponentially. This
result can be stated as Theorem 2.

Theorem 2 The improved binary tree algorithm, which
jointly encodes the similar neighbors, achieves the oracle like
exponentially decaying asymptotic R-D behavior

D (R) ~ 22 3% (8)

where_ co = (Ny+ (Ne +1)(P+1)?) A’T and c3 =
m, for the piecewise polynomials.

F. Computational complexity

Let the size of the signal be N. The classical algorithm has
essentially 3 parts:

1. Generation of the R-D curves for all the nodes of the full
binary tree. Suppose that we are utilizing Rqg different quan-
tizers for R — D function generation. The number of nodes is
of the order O (V). Suppose we allow for a tree depth equal to
log N, then every level (i = 0,...,log N) of the tree contains
N pixels, which are divided among 2* nodes, on which R-D

analysis has been done. Hence the average length of nodes is
of the O (log N). Since R-D computation is proportional to
the signal segment length, therefore R-D generation has the
computational cost of the order O (NRg log N).

2. Pruning algorithm requires the computation of the min-
imum Lagrangian cost at each node for the chosen qual-
ity factor A. This results in a computational cost of order
O (Nlog Rg). The algorithm also performs split merge deci-
sion at the nodes which results in a computational complexity
of O (N). Hence the pruning algorithm has the computational
cost of the order O (N log Rq).

3. Iterative search algorithm for an optimal quality factor
A* calls the pruning algorithm for every quality factor (A)
chosen. Suppose we arrive at optimal quality factor (\*)
in M iterations and in our bisection search algorithm ([8])
M ~ O (log N). Therefore the search algorithm, for arriving
at an optimal quality factor, requires computational complex-
ity of the order O (N log Rg log N).

Therefore the overall computational complexity(C4) is

Ca = O(NRglogN)+ O (NlogRglogN)
Ca = O(N(Rg+logRg)logN)~O(NRglogN).

Since an optimal binary tree has the number of leaves of the
order O(log N) , so the computational complexity of the neigh-
bor joint coding algorithm will be O (NRglog N). Hence
the overall computational complexity of the improved coding
scheme is also similar to that of the classical coding scheme
(O (NRglog N)).

III. NUMERICAL RESULTS: 1-D CASE

Numerical experiments are performed for the piecewise poly-
nomial signals defined over the interval [—1,1]. In the exper-
imentation, polynomial coefficients are generated randomly
using the uniform distribution on the range [—1, 1]. Similarly
switch points are also generated randomly using the uniform
distribution on the range [—1,1].

R-D performance com-
parison is given for the piece-
wise polynomial signal class
with the following charac-
teristics: number of inter-
nal switch points N; = 32,
signal support is T = 2,
discretization of the signal
support T is done using 2'7
points, maximum degree of
a polynomial piece is two.
16 different quantizers are
chosen for the single poly-
nomial coefficient, with total
bit rate of a polynomial piece linearly dependent on its degree.
Simulation results shown for the piecewise polynomial signals
in Figure 2 also confirm the theoretical R-D behaviors.

R-D func. of BT algorithm for PPS of max Degree 2.

T
Figure 2: Theoretical and nu-
merical R-D curves for the classi-
cal and improved binary tree al-

gorithms.

IV. EXTENSION TO 2-D: QUAD TREE ALGORITHMS

Although the situation is much more open and complex in two
dimensions (2-D), yet it is not hard to visualize the extension
of the proposed 1-D coding scheme to the 2-D coding scheme.
Since all the sub-algorithms developed for the 1-D scheme have
a very nice equivalent in the 2-D world, e.g. the binary tree
segmentation can be replaced by the quadtree segmentation
and polynomial model can be replaced by the 2-D geometrical
model consisting of two 2-D polynomials separated by a poly-
nomial boundary. The Lagrangian optimization algorithm re-
mains the same. The neighbor joint coding algorithm is a bit
more involved but can be implemented efficiently. Therefore
we can have an efficient quadtree based coding scheme for 2-D



signals with a reasonable computational complexity.
The classical quadtree algorithm: Our algorithm employs
a quadtree segmentation followed by a coding algorithm on
each image block in an operational R-D optimal sense. We
employ an operational R-D optimization that is similar to the
approach used in [8] in finding the best wavelet packet bases.
The classical quadtree algorithm also exhibits the suboptimal
performance due to the independent coding of the dependent
nodes. For correcting the suboptimal behavior, we propose
the improved quadtree algorithm.
The improved quadtree algorithm: The improved coding
scheme employs the same previous classical quadtree coding
scheme followed by the neighbor joint coding algorithm which,
in fact, decides whether neighbors should be coded jointly or
separately. The neighbor joint coding algorithm can be devel-
oped in a similar way as it was developed for the 1-D case.
R-D performance: It can be easily shown that for
some simple image models, e.g. Polygonal model in
which a polygonal boundary separates two polynomials,
the improved quadtree coding scheme achieves the oracle
performance(D(R) ~ co27°*®) whereas the classical quadtree
scheme performs suboptimally (D(R) ~ 2_0‘/ﬁ) [3, 10].
The experimental
. results shown for the
' Polygonal image class
1 in Figure 3 also con-
firm the theoretical R-
D behaviors. Figure
. 4 present examples of
. = reconstructed images
B\ = by the classical and
) improved quadtree al-
gorithms. The com-
putational complexity
can be shown to be of
the order O (N log N),
where N = n? for a
n X n image.

RD behavior of QT algorithm for B/W PPI with 6 vertices.

== Classical Quad Tiee
— Classical Quad Tree Theorelf
~ - Improved Quad Tree

—— improved Quad Tree Theoret

MSE Distortion (dB)

o 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
Bit-Rate (bpp)

Figure 3: Theoretical(solid) and nu-
merical(dotted) R-D curves for classical
and improved quadtree algorithms for
the B/W Polygonal image class.

Optimal Segmentation-Tree Optimal Modified Segmentation-Tree (B/W)
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(b) Improved quadtree
segmentation.

(a) Classical quadtree
segmentation.

Figure 4: Examples of the quadtree representation.

V. DISCUSSION AND FURTHER WORK

Numerical results indicate that the proposed binary tree based
coding scheme represents a nice way to model and approx-
imate the piecewise polynomial signals or, more generally,
piecewise smooth signals. Similar R-D results can also be
achieved by the dynamic segmentation algorithm proposed
in [6] with a large computational cost (O (N®)) whereas
our improved binary tree compression scheme achieves the
desired R-D behavior with much lower computational cost
(O (Nlog N)). While dynamic programming methods do not
work for 2-D problems, our binary tree based coding scheme
can be easily extended to 2-D problems in the form of quadtree
based coding scheme with a reasonable computational cost.

R-D behaviors for CAMERAMAN

+ Casmarotpo 1]
& -0~ Improved QUAD TRE}
)\ & JPEG 2000

MSE Distortion (dB)
P

02 om 03 om  0i ok
Bit-Rate (bpp)

(a) Improved quad-tree
(0.11 bpp).

(b) R-D performance.

Figure 5: Comparison of operational R-D curves using a wavelet
coder (JPEG-2000) and quadtree coders for Cameraman image.

We have also derived the asymptotic R-D behavior of our
tree based coding schemes for the piecewise polynomial func-
tions. Numerical simulations (Figure 3) confirm that these al-
gorithms achieve optimal performance if the input image fits
the model exactly. In addition, preliminary simulations show
that our quad-tree algorithm outperforms JPEG2000 also in
the case of compression of real life images such as Cameraman
(Figure 5). Our aim is to improve such a performance further
by better compressing the texture present in images. Another
issue is to understand whether the proposed quad-tree scheme
provides an efficient and fast tool to detect and compress con-
tours in object oriented multimedia applications. We would
also like to explore the other application areas, e.g. image
denoising and stereo image coding.
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