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Signal Codes
Ofir Shalvi, Naftali Sommer, Senior Member, IEEE, and Meir Feder, Fellow, IEEE

Abstract— Motivated by signal processing, we present a new
class of channel codes, called signal codes, for continuous-
alphabet channels. Signal codes are lattice codes whose encoding
is done by convolving an integer information sequence with
a fixed filter pattern. Decoding is based on the bidirectional
sequential stack decoder, which can be implemented efficiently
using the heap data structure. Error analysis and simulation
results indicate that signal codes can achieve low error rate at
approximately 1dB from channel capacity.

I. INTRODUCTION

In this paper we present “signal codes”, a new approach
to channel coding for bandwidth-limited, continuous-alphabet
channels such as the band-limited additive white Gaussian
noise (AWGN) channel. The common approach to signaling
for reliable communication over continuous-alphabet chan-
nels is based on incorporating coding and modulation, as in
trellis coding, to generate points (codewords) in the signal
space that belong to a subset (codebook) of the set of all
possible modulated values. From a geometric point of view,
the transmitted codewords can be considered as constellation
points of some high dimensional constellation. In many cases
these coding and modulation techniques are based on finite-
alphabet codes. The set of codewords form a sub-constellation
of a denser constellation, where the sub-constellation points
satisfy additional constraints induced by the finite-alphabet
codewords.

The approach suggested in this paper is somewhat different,
as the high dimensional, high coding gain constellation is
designed directly in the Euclidean space, without the help
of a finite-alphabet code. We begin with an uncoded signal
whose values are drawn from a conventional PAM/QAM
constellation. The uncoded signal then passes via a properly
chosen linear filter that improves the distance spectrum be-
tween the different possible signals. To preserve power, a
shaping operation projects the filtered signal points into a
constrained shaping domain such that the power does not
increase, where the shaping operation is based on known pre-
coding algorithms.

Linear filtering has been employed in the context of coding
in Partial Response Signaling (PRS) and in Faster Than
Nyquist (FTN) signaling. See [1] for an overview of these
techniques. Both techniques obtain bandwidth efficiency by
introducing a certain amount of intentional inter symbol inter-
ference (ISI). In PRS, the purpose of the ISI is narrowing the
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power spectrum of the transmitted signal without degrading
error probability. In FTN, the purpose is increased data rate.
This is done by using a signaling rate which is above the
Nyquist rate of the channel, and handling the unavoidable
ISI at the receiver. Signal codes differ than these two tech-
niques, as neither the signaling rate, nor the bandwidth are
affected: encoding simply transforms discrete valued symbols
to continuous valued symbols in a way that improves the error
probability without changing the power spectrum of the signal.

In fact, signal codes are a special class of lattice codes.
In a lattice code, every codeword is of the form c = Gb,
where G, the generator matrix of the lattice, is a real matrix
with independent columns and b is a vector of integers.
For signal codes, the lattice generator matrix has a Toeplitz
form. Lattice codes are known to be capable of achieving the
AWGN channel capacity ([2] – [7]), and can be interpreted as
the Euclidean space analogue of linear binary codes. In this
regard, signal codes can be interpreted as the Euclidean space
analogue of binary convolutional codes. Note that another
family of practical, high coding gain lattice codes are the
recently-introduced Low-Density Lattice Codes (LDLC) [11],
which are defined as lattice codes whose generator matrix has
a sparse inverse. In [11], these codes were shown to work
as close as 0.6dB to channel capacity with block length of
100,000 symbols. LDLC can be regarded as the Euclidean
space analogue of binary Low-Density, Parity-Check (LDPC)
codes.

Decoding of signal codes is an equalization problem, and
can be done by the Maximum Likelihood Sequence Detector
(MLSD) equalization algorithm [22]. However, the compu-
tational complexity of this algorithm is exponential in the
number of states and becomes prohibitively large for signal
codes with high coding gain. We will show that signal codes
can approach the AWGN channel cutoff rate with simple
sequential decoders, and can also achieve low error rates at
approximately 1dB from the AWGN channel capacity, using
more elaborate bidirectional stack sequential decoders, whose
efficient implementation is based on the heap data structure.

The outline of this paper is as follows. First, signal codes
are defined and presented in Section II. Then, several shaping
algorithms that can be combined with the encoding operation
of signal codes are presented in Section III. Error spectrum
analysis and methods to choose the parameters of the code
are described in Section IV, followed by a description of
computationally efficient decoders in Section V. Then, some
extensions to the basic signal coding scheme are discussed in
Section VI. Simulation results are finally presented in Section
VII.
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II. DEFINITION OF SIGNAL CODES

We shall first define Pulse Amplitude Modulation (PAM)
and Quadrature Amplitude Modulation (QAM) constellations
as follows. An M -PAM constellation is defined as the set
{−(M − 1),−(M − 3), ...,−3,−1, 1, 3, ...,M − 3,M − 1}.
An M2-QAM constellation is defined as the set of complex
numbers whose real and imaginary parts belong to an M -
PAM constellation. A PAM symbol is an integer that belongs
to an M -PAM constellation, where a QAM symbol is a
complex integer that belongs to an M2-QAM constellation.
It can be easily seen that the average energy of an M -PAM
constellation is (M2−1)/3, where the average energy of M2-
QAM constellation is 2(M2 − 1)/3.

The motivation for using signal codes comes from consid-
ering the effect of linear filtering on the minimum distance
of a QAM symbol sequence. Let {an}, n = 0, 1, ...N − 1
be a random sequence of zero-mean, independent, identi-
cally distributed (i.i.d.) QAM symbols. Suppose that {an}
is filtered with a monic causal filter with transfer function
F (z) = 1 +

∑L
l=1 flz

−l, yielding the sequence {xn}, n =
0, 1, ...N + L − 1. Denote by d2

a the minimum squared
Euclidean distance between two possible {an} sequences, and
by d2

x the minimum squared Euclidean distance between two
possible {xn} sequences. The minimum squared Euclidean
distances are then related by:

1 ≤ d2
x

d2
a

≤ E{|xn|2}
E{|an|2}

(1)

In order to see it, we shall first show that 1 ≤ d2
x/d

2
a. Let x1(n)

and x2(n) be two filtered sequences whose relative distance
is the minimum distance d2

x, and let a1(n) and a2(n) be the
corresponding input sequences. Let m be the smallest index
for which a1(m) 6= a2(m). Since F (z) is monic and causal,
x1(m)− x2(m) = a1(m)− a2(m), and thus:

d2
x =

∑
n

|x1(n)− x2(n)|2 ≥ |x1(m)− x2(m)|2 = (2)

= |a1(m)− a2(m)|2 ≥ d2
a.

Turning to the second inequality, let a1(n) and a2(n) be two
input sequences such that a1(n) = a2(n)+daδ(n), where δ(n)
is a Kronecker delta function. Then, the corresponding filter
outputs x1(n) and x2(n) satisfy x1(n) − x2(n) = daf(n),
so d2

x ≤
∑
n |x1(n) − x2(n)|2 = d2

a

∑
n |f(n)|2. On the

other hand, due to the i.i.d. assumption on a(n), we have
E{|xn|2} = E{|an|2}

∑
n |f(n)|2, and the inequality follows.

As a consequence, monic linear filtering always improves
the minimum distance of an uncoded i.i.d. QAM sequence, but
never enough to justify the power increase due to the filtering
operation. Therefore, as long as we solve the power increase
problem, we have found a way to generate sequences with
improved minimum distance, which is a desirable property
for coding. This leads to the definition of signal codes. In
signal codes, a sequence of QAM symbols an is encoded by
convolving its elements with a fixed monic minimum phase

filter with transfer function F (z) = 1 +
∑L
l=1 flz

−l:

xn = an +
L∑
l=1

flan−l (3)

for n = 0, 1, ..., N +L− 1, where an is assumed zero outside
the range 0 to N − 1. In order to solve the energy increase
problem, the an sequence has to be modified prior to the
filtering operation. This modification will be discussed later.

We shall now show that a signal code is a lattice code.
An n dimensional lattice in Rm is defined as the set of all
linear combinations of a given basis of n linearly independent
vectors in Rm with integer coefficients. An n dimensional
complex lattice in Cm is similarly defined as the set of all
linear combinations of a given basis of n linearly independent
vectors in Cm with complex integer coefficients. The matrix
G, whose columns are the basis vectors, is called a generator
matrix of the lattice. A lattice code of dimension n is defined
by a (possibly shifted) lattice G and a shaping region B,
where the codewords are all the lattice points that lie within
the shaping region B.

According to the above definition, a signal code is a lattice
code with the following (N + L)×N generator matrix:

G =



1 0 0 · · · 0 0 0
f1 1 0 · · · 0 0 0
f2 f1 1 · · · 0 0 0
...

...
...

...
...

...
...

fL fL−1 fL−2 · · · 0 0 0
0 fL fL−1 · · · 0 0 0
0 0 fL · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · 1 0 0
0 0 0 · · · f1 1 0
0 0 0 · · · f2 f1 1
...

...
...

...
...

...
...

0 0 0 · · · fL fL−1 fL−2

0 0 0 · · · 0 fL fL−1

0 0 0 · · · 0 0 fL



(4)

where the encoding operation is equivalent to x = Ga (The
shaping domain B will be defined later). Note that using QAM
symbols instead of arbitrary integers is equivalent to shifting
and scaling the lattice.

We have shown in (1) that the signal code lattice has
a better minimum distance than the rectangular lattice of
uncoded QAM symbols. However, we still have to show that
the density of the signal code lattice points is at least the
same as the density of the uncoded symbols lattice. Otherwise,
if we have increased the minimal distance at the cost of
reducing the lattice density, it is equivalent to scaling the
uncoded integers lattice without any coding gain. In order
to calculate the density of the lattice points, we shall use
the definition of the Voronoi cell of a lattice point, which
is defined as the set of all points that are closer to this
point than to any other lattice point. The Voronoi cells of all
lattice points are congruent. The volume of the Voronoi cell
of a lattice with square generator matrix G is det(G), where
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for a general m × n generator matrix G with m ≥ n the
volume is

√
det(G′G). Therefore, in order for the signal code

lattice to have the same density as the uncoded QAM symbols
lattice, we need to scale it by

[
det(G′G)

] 1
2N . Considering

the signal code lattice generator matrix (4), which has a ’1’
on the main diagonal of its upper N × N submatrix, and
additional L rows below this submatrix, it can be easily seen
that for N >> L we have

[
det(G′G)

] 1
2N → 1. Therefore, no

scaling is required. For large N , G is a volume preserving
transformation, and the signal code lattice points have the
same density as a rectangular grid of uncoded QAM symbols.
As a result, the improved minimal distance of the signal
codes lattice is achieved with the same lattice density as the
uncoded symbols lattice, so it has a potential to generate real
coding gain. Though it is well known that trying to achieve
good minimum distance is not necessarily the best way to
design capacity approaching codes [13], we shall use minimum
distance as the design criterion, and then test the resulting
codes for their probability of error.

We have found an infinite lattice which is good for coding,
but encoding by simple convolution results in power increase,
as described above. We can solve the power increase problem
in the following way: encoding will not be done by direct
convolution with the information sequence, but by mapping the
information sequence to a lattice point, such that only lattice
points that belong to a shaping region will be chosen. This
is essentially the shaping region B that was mentioned in the
definition of a lattice code above. If the average energy of
these selected lattice points is smaller or equal to the average
energy of uncoded symbols, then the power increase problem
is solved. Therefore, instead of mapping the information vector
a to the lattice point Ga, it should be mapped to some other
lattice point Gb, such that the lattice points that are used as
codewords belong to B. The operation of mapping the integer
vector a to the integer vector b is called “shaping”.

Shaping for signal codes is illustrated in Figure 1. The top
part shows how the filtering operation transforms the data
sequence from a point on a Cartesian lattice, corresponding
to the uncoded signal, to a point on a “filtered lattice”. On the
other hand, the filtering transforms the (−M,M)N hypercube
that contains all the possible N -dimensional input vectors into
a less power-efficient (N+L)-dimensional polytope, and thus
increases the signal power. The shaping operation maps the
integer information sequence to another sequence such that
the output lattice point will be placed inside a shaping region.
This shaping region may be, for example, a hypercube or
a hypersphere, as shown in the bottom part of Figure 1. In
the case of a hypercube, the coded signal will have the same
power as the uncoded signal, but with improved packing in the
Euclidean space (e.g. larger minimum distance). In the case
of a spherical shaping region, in addition to improving the
packing, the coded signal’s power will be decreased, with a
potential shaping gain of 1.53dB relative to the uncoded signal
[13].

In the next section we shall describe practical shaping
algorithms that can be incorporated with the signal code
encoding operation.

a x
Signal

Coder
Uncoded

Sequence

Coded

Sequence

or

a x
Filter

F
Filtered

Sequence
Input

Sequence

Fig. 1. The shaping operation of signal codes

III. SHAPING

A. Tomlinson-Harashima Shaping

The first shaping method that we shall consider uses a
hypercube shaping domain, such that every element xn of the
encoded sequence has real and imaginary parts that belong to
the interval [−M,M). Assume that the information sequence
an is a sequence of i.i.d. M2-QAM symbols. The shaping
operation maps the symbol sequence into a sequence of
extended constellation symbols bn, such that

bn = an − 2Mkn (5)

where kn is a sequence of complex integers. The codeword
xn is then generated by:

xn = bn +
L∑
l=1

flbn−l (6)

where F (z) = 1+
∑L
l=1 flz

−l is the signal code filter pattern
of length L+ 1.

Note that as bn is drawn from the same grid as an (the grid
of odd integers), the codeword Gb will also be a lattice point
from the same (shifted) lattice as Ga, so this shaping operation
preserves the minimal distance and coding gain properties of
the lattice G. Also, the decoder can recover the information
an from bn by a simple modulu 2M operation.

We still have to choose kn such that the real and imaginary
components of xn are in [−M,M). We have

xn = bn +
L∑
l=1

flbn−l = an +
L∑
l=1

flbn−l − 2Mkn.

Therefore, the desired result will be achieved by choosing kn
such that:

kn =

⌊
1

2M

(
an +

L∑
l=1

flbn−l

)⌉
, (7)

where bxe denotes the complex integer closest to x. The
resulting encoder is shown in Figure 2.

Obviously, this approach maps the data into the set of
filtered sequences within a hypercube. This mapping has
a close relation with precoding and pre-equalization tech-
niques for inter-symbol interference (ISI) channels. In pre-
equalization, the transmitter filters the symbols with the inverse
channel response, such that after the channel, the signal will
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Fig. 2. The Tomlinson-based signal encoder

have no ISI. However, in order to avoid large transmitted
power due to this filtering, precoding is required, and the
data symbols are modified as in (5) such that transmission
power will be preserved. We recognize (5)-(7) as essentially
a Tomlinson-Harashima pre-coder [14], attempting to pre-
equalize a phantom linear channel F−1(z). It is well known
[15] that except for some special cases (including for example
the case of F (z) ≈ 1), the output of a Tomlinson-Harashima
pre-coder is a spectrally white sequence uniformly distributed
over [−M,M), for both real and imaginary parts, so its power
is 2

3M
2. Since the power of uncoded M2-QAM symbols is

2
3 (M2−1), the power of xn is almost the same as the uncoded
signal power, albeit higher by a factor of M2/(M2−1) which
is negligible for large M .

The signal encoding and shaping operations of (5)-(7) also
resemble commonly used random number generation algo-
rithms. In accordance with Shannon’s random coding point
of view, signal encoding can be regarded as a transformation
of the input data into a pseudo-random sequence.

Note also that the recursive loop of the Tomlinson shaping
scheme will be stable (i.e. bn does not increase without bound)
only if the filter F (z) is minimum phase.

B. Flexible Shaping

The Tomlinson-Harashima shaping scheme exploited the
equivalence between shaping for signal codes with a hyper-
cube shaping domain, and precoding for a phantom channel
F−1(z). In the same manner, any other precoding scheme can
be used as well. In this section we shall use flexible precoding
[16] for signal code shaping.

For this technique, the shaping operation is:

bn = an − 2kn (8)

followed by the standard encoding:

xn = bn +
L∑
l=1

flbn−l. (9)

As for Tomlinson shaping, bn is drawn from the same grid
as an (the grid of odd integers), so the codeword Gb will
also be a lattice point from the same (shifted) lattice as Ga.
The flexible shaping operation therefore preserves the minimal
distance and coding gain properties of the lattice G.

The complex integer sequence kn is now chosen such that
the real and imaginary parts of xn−an, the difference between
the coded and uncoded sequences, will belong to the interval
[−1, 1). This can be achieved by choosing:

kn =

⌊
1
2

(
L∑
l=1

flbn−l

)⌉
(10)

With flexible shaping, the coded signal equals the uncoded
signal plus an additive “dither” signal, whose real and imag-
inary parts have magnitude less than 1. Surprisingly, such a
small dither signal can yield substantial coding gains, as will
be shown in the sequel. Following the same arguments that
were used for Tomlinson shaping, this dither would generally
be uniformly distributed and uncorrelated with the input se-
quence. Therefore, the coded signal’s real and imaginary parts
are uniformly distributed in [−M,M). Also, the information
an can be recovered from a noiseless codeword by simply
slicing (quantizing) the values of xn, so in this sense this
coding scheme can be regarded as “systematic”. In the same
manner, the decoder can recover an from bn by generating the
codeword elements xn using (9), and then slicing xn to get
an.

As the coded signal’s real and imaginary parts are uniformly
distributed in [−M,M), the same M2/(M2 − 1) power in-
crease factor of Tomlinson shaping exists also here. However,
unlike Tomlinson shaping, where the coded signal is always
mapped to a hypercube, flexible shaping can be combined
with standard constellation shaping algorithms, such as trellis
shaping [17] or shell mapping [18], such that additional
shaping gain of 1.53dB can be potentially obtained. This can
be done by applying a constellation shaping algorithm to the
uncoded sequence an prior to flexible shaping and signal
encoding. The signal encoding and flexible shaping do not
alter the shaping properties of the input signal significantly,
since they are equivalent to adding a small dither.

C. Nested Lattice Shaping

The basic Tomlinson and flexible shaping algorithms result
in a hypercube shaping domain. As discussed above, it is
beneficial to use a spherical shaping domain, since additional
1.53dB of shaping gain can be achieved. However, mapping
to a hypersphere is complex, and it is desirable to find simple
ways to approximate it.

Consider the Tomlinson shaping operation bn = an−2Mkn.
Suppose that instead of setting kn in a memoryless manner as
in (7), we choose a sequence {kn} that minimizes the energy
of the resulting codeword

∑
n |xn|2, where xn is defined in

(6). Using vector notations, we have

b = a− 2Mk. (11)

Denote the non-shaped lattice point by x′ = Ga. From (11),
we then have x = Gb = x′ − 2MGk. Choosing k that
minimizes ‖x‖2 is essentially finding the nearest lattice point
of the scaled lattice 2MG to the non-shaped lattice point
x′, where the chosen codeword x is the difference vector
between the non-shaped lattice point x′ and the nearest lattice
point 2MGk. Therefore, the codewords will be uniformly
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distributed along the Voronoi cell of the coarse lattice 2MG.
This is equivalent to a shaping operation with a shaping
domain that has the same shape as the Voronoi cell of
the lattice, appropriately scaled. It is reasonable to assume
that a capacity approaching lattice has a Voronoi cell which
resembles a hypersphere, at least from a shaping point of
view, so this scheme may attain close-to-optimal shaping gain
(compared to uncoded transmission of the original symbols).
The resulting shaping scheme is equivalent to nested lattice
coding [7], where the shaping domain of a lattice code is
chosen as the Voronoi region of a different, “coarse” lattice,
usually chosen as a scaled version of the coding lattice.

Finding the closest coarse lattice point 2MGk to x′ is
equivalent to finding the closest fine lattice point G · k to the
vector x′/(2M). The complexity of finding the nearest lattice
point is the same as the complexity of maximum likelihood
decoding in the presence of AWGN. Decoding methods for
signal codes will be described in Section V. However, unlike
decoding, for shaping applications it is not critical to find the
exact nearest lattice point, as the result will only be a slight
penalty in signal power. Therefore, approximate algorithms
may be considered. As shown in section VII, close-to-optimal
shaping gains can be attained by nested lattice shaping us-
ing simple sub-optimal sequential decoders such as the M-
algorithm [25]. This algorithm works sequentially on the input
symbols of the block, and at each stage stores the M sequences
that were found so far with minimum energy. For symbol n,
each of the M entries is extended with all possible values for
kn. Only a finite range of kn values should be checked, as
outside this range the energy of symbol n alone will be large
enough such that this path can be truncated immediately. All
the extended sequences are sorted, and the M sequences which
result in smallest energy are kept as input to the next stage. The
value of M determines both the storage and the computational
complexity of the shaper. Note that for an M-algorithm with
M=1, nested lattice shaping reduces to Tomlinson-Harashima
shaping. Nested lattice shaping is illustrated in Figure 3.

We note that the criterion for choosing kn can be gen-
eralized to meet the needs of communications systems. For
instance, the algorithm can combine power optimization with
peak magnitude optimization or with short-time power opti-
mization.

D. Terminating the Shaping Operation

It comes out that all the shaping methods that were pre-
sented so far have no natural way to terminate the encoding

operation. Even if an has finite length and the encoder is fed
with zero symbols from a certain point, bn may continue to
be nonzero for a long time. However, the convolution “tail”
is necessary if we want to maintain the reliability of the last
transmitted symbols. Therefore, if we want to partition the data
to finite-length blocks, and simply stop the shaping operation
abruptly at the end of each block, this convolution tail will
have large energy and the resulting codeword will be outside
the required shaping domain. A practical solution is to use the
shaper and the encoder in a continuous manner (i.e. encode
an infinite sequence an), but at the end of each data block
simply transmit the last L values of bn. For the decoder,
having this information is equivalent to smooth termination
of the encoding. These bn’s should be transmitted such that
the probability of error in detecting them should be negligible,
compared with regular data transmission. For example, the
bn’s can be transmitted using a smaller QAM constellation
or a different coding scheme. Transmitting the bn’s results in
some overhead, but its impact on code rate becomes negligible
as block size increases.

IV. ERROR SPECTRUM ANALYSIS FOR SIGNAL CODES

A. The Error Spectrum and the Union Bound

Since signal codes are linear codes, a linear combination of
several codewords is itself a codeword. The error performance
can then be characterized by the set of all possible error
sequences. Note that when the shaping operation is considered,
the code is no longer linear. However, the shaping operation
chooses a finite subset of the infinite number of possible
codewords of a linear code. Therefore, it does not degrade
its error performance, so it is sufficient to analyze the error
performance of the infinite linear code.

Each possible error sequence is a convolution of a complex
integer error-symbol sequence {en}, whose real and imagi-
nary parts are even integers (including zero), with the filter
pattern of the signal code {fn}. The Euclidean weight that
corresponds to an error-symbol sequence {en} is defined as
the squared Euclidean norm of the resulting error sequence:

d2(e) =
∥∥e ∗ f

∥∥2 =
∑
n

|en +
L∑
l=1

flen−l|2 (12)

The minimal distance error sequence is the error sequence
with at least one nonzero error symbol that has the smallest
Euclidean weight. The error spectrum of the code is defined
as the sequence of the Euclidean weights of all the possible
error symbol sequences.

Suppose that an optimal Maximum Likelihood (ML) de-
coder is used for the AWGN channel with complex noise
variance σ2. Denote by EER (Event Error Rate) the probability
that a decoding error starts at a given symbol. The EER can
be bounded from above by the union bound [13]:

EER ≤
∑

e

Q

(√
d2(e)
2σ2

)
(13)

where the summation in (13) is over all possible error-symbol
sequences e and Q is the Gaussian error function. Note that for
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a lattice code, it is enough to sum only over error sequences
that correspond to Voronoi-relevant vectors of the lattice,
where a Voronoi-relevant vector is a vector that defines a facet
of the Voronoi region. See [21] for methods to check if a lattice
point corresponds to a Voronoi-relevant vector or not.

The union bound (13) requires summation over a “prac-
tically infinite” number of error events. At high SNR, the
Gaussian Q function decays rapidly as d2(e) increases, and
thus the union bound can be approximated by taking into
account only the low distance error events whose distances
fall near the minimum distance. In the sequel, we shall present
an algorithm for calculating the low distance error events of
signal codes. Its results could therefore be used to evaluate the
code performance using the union bound.

Approximating the union bound using the low distance error
events does not give a real upper bound or a lower bound to the
error probability of the code, but gives only an approximation
to an upper bound. Also, it is well known that the union bound
may be useless beyond the cutoff rate of the channel [13].
Therefore, we shall use the approximated union bound as a
criterion for choosing the code parameters, but further check
is needed to verify the actual code performance.

B. An algorithm for Calculating the Error Spectrum

We shall now present an algorithm that finds all the error
sequences whose Euclidean weight is below a given d2

Search,
where the length of the appropriate error-symbol sequence is
smaller than Nmax symbols. The algorithm develops a tree
of all possible error sequences, and truncates tree branches as
soon as it can identify that all the error events on them will
have distances above d2

Search. The tree is searched in a Depth
First Search (DFS) manner, which can be easily implemented
using recursion techniques. The detailed algorithm is presented
in Appendix I.

In fact, This algorithm finds all the lattice points inside a
sphere with radius dSearch. Therefore, it is equivalent to a
sphere decoder [21], which transforms the lattice generator
matrix G to an upper or lower triangular form and then
performs a sequential search of the resulting tree. However,
the special convolutional structure of the signal code lattice
results in an algorithm with reduced computational complexity.
Specifically, for signal codes we can eliminate the prepro-
cessing stage of the sphere decoder, which transforms G to
a lower or upper triangular form, as the matrix G of (4) is
already in an appropriate form for sequential search. Also, the
shift invariance and symmetry properties of the convolution
operation, as well as the band-Toeplitz structure of G, are used
to dilute unnecessary tree branches, as described in Appendix
I. We also note that the search algorithm is similar to Aulin’s
algorithm, as presented in [20].

Finding the minimal distance of a lattice code is equivalent
to solving the “nearest lattice point” problem, which is known
to be NP-complete [21]. However, it comes out that finding the
low-distance error events for practical signal code lattices is
feasible with the above algorithm. In any case, we can expect
the complexity of the algorithm to increase exponentially with
d2
Search.

C. Filter Patterns with High Coding Gain

We shall now use the algorithm of Section IV-B to find Filter
patterns that generate signal code lattices with large minimum
Euclidean distance. In a previous work [19] it was observed
that the best (and worst) linear channels, in terms of optimizing
the minimum Euclidean distance under a power constraint, are
achieved when all the zeros of the system’s Z-transform are on
the unit circle of the Z-plane. Motivated by these results, we
have performed distance spectrum analysis for filter patterns
that have deep spectral nulls, focusing on filter patterns with
length L + 1 that have L zeros at z = z0, i.e. filters of the
form:

F (z) = (1− z0z
−1)L (14)

where 0 < |z0| < 1. This choice is not necessarily optimal,
but the experimental results in the sequel indicate that it can
lead to lattices with good coding gain.

In principle, we could have real-valued codewords, using
PAM information symbols and filters with real coefficients.
However, it turns out that it is better to use QAM symbols
and complex valued filter coefficients, as real-valued filters
have a drawback that is illustrated by the following example.

Example 1 (a 2-tap filter): Consider a 2-tap filter F (z) =
1 − f1z

−1 with f1 real. In order for F (z) to be minimum-
phase we need |f1| < 1. It can be easily seen that the minimal
distance of the resulting signal code lattice is 4(1 + f2

1 ).
Therefore, the asymptotic coding gain is 10 log10(1+f2

1 ), and
it approaches 3dB as |f1| → 1. Consider the case f1 = 0.99,
i.e. F (z) = 1 − 0.99z−1. This is a high-pass filter with a
notch in its frequency response, centered at 0Hz. Assume that
a long sequence of symbols with constant value is filtered
with this filter. As a constant-valued sequence has most of
its energy located at 0Hz, it will be strongly attenuated by the
notch of the filter, resulting in a low-energy output. Therefore,
extending a given error-symbol sequence by duplicating its
last symbol several times will generate an error event with
only slightly higher weight than the one that corresponds
to the original sequence. As a result, the error spectrum of
this code will contain a large number of low-distance error
events, with weight which is close to the minimal distance.
It comes out that the improvement of dmin is 2.97dB, but
there are more than 20,000 error events within 1dB of the
minimal distance error event. This is certainly undesirable,
and resembles the phenomenon of catastrophic error events in
binary convolutional codes.

This problem can be avoided by choosing complex-valued
f1 with a nonzero complex phase, e.g. π/4, and an amplitude
that is a bit smaller than 1. This choice yields the expected 3
dB gain, but this time without the above singularity.

As a result, we shall focus on signal codes with complex
coefficients. The error spectrum calculation algorithm was
then used to find the minimum Euclidean distance for various
values of the magnitude and phase of the complex zero z0

of (14), and the filters with the largest minimum distance
gain that were found are shown in Table I. For each filter,
the second column of the table shows the minimum squared
Euclidean distance, and the third column shows Nmin, the
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TABLE I
HIGH CODING GAIN FILTER PATTERNS

F (z) d2
min Nmin

[symbols]
d2
min

improvement
[dB]

(1 + 0.90ejπ/8z−1)2 14.81 3 5.7dB
(1 + 0.98ejπ/8z−1)2 17.33 3 6.4dB
(1 + 0.95ejπ/8z−1)3 20.53 10 7.1dB
(1 + 0.98ej0.09πz−1)3 23.59 5 7.7dB
(1 + 0.95ej0.08πz−1)4 31.27 12 8.9dB

length of the minimum distance error event in symbols. The
last column shows the amount of increase in d2

min, relative
to an uncoded QAM signal, measured in dB (recall that the
minimum distance for an uncoded QAM signal is 4). It can
be seen that even a short filter with only L = 2 zeros can
achieve considerable improvement of over 5 dB in d2

min.
Also, the improvement in d2

min grows as the spectral null of
the encoder’s filter becomes deeper, either by increasing the
number of zeros L or by letting the zero z0 approach the unit
circle more closely.

The gap between uncoded transmission and channel ca-
pacity is about 9dB for bit error rate of 10−6, where 1.5dB
correspond to shaping gain [13]. The gap between channel
capacity and channel cutoff rate is approximately 1.7dB for
high SNR. Therefore, the required coding gain for reaching
the channel cutoff rate is 9-1.5-1.7 = 5.8dB. As the d2

min

improvement of all the codes in Table I is 5.7dB and above, the
approximated union bound of Section IV-A indicates that these
codes can reach the channel cutoff rate and have a potential
to work beyond it. Indeed, the simulation results of Section
VII demonstrate operation of the code that corresponds to
the fourth row of Table I at approximately 1dB from channel
capacity.

It is interesting to note that for all the patterns of Table I, the
minimal-distance error-symbol sequence emin, whose length
is denoted by Nmin, satisfied emin(t) = emin(Nmin − t),
for 1 ≤ t ≤ Nmin/2, up to a possible complex conjugate
operation and rotation by 0, 90, 180, or 270 degrees (where
the conjugate and rotation operations are independent of t).

D. Properties of the Error Spectrum

The algorithm of Figure 12 was run for the signal code
lattice based on the fourth filter pattern of Table I, with
Nmax = 1000 and d2

Search = 42. As explained above,
the complexity of the distance spectrum algorithm increases
exponentially with d2

Search. Indeed, in order to generate the
error spectrum for the above conditions, 500 billion tree nodes
had to be examined.

Figure 4 shows a histogram of the squared Euclidean
distance of the error events, where each bar corresponds to
an interval of length 1 and shows how many error events
had weight within this interval. Note that shifts and complex
rotations by an integer multiple of 90 degrees of error events
are not counted separately.

The leftmost bar corresponds to the minimum-distance error
event whose weight is 23.59. It can be seen that the first several
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Fig. 4. Error spectrum histogram for a signal code lattice. The dashed line
shows a least square fit to an exponential model.

low-distance error events (weights 23-29) are discrete events,
and there is no “flood” of error events above the minimal
distance. For higher weights (30 and above), the number of
error events grows exponentially with the Euclidean weight,
as seem from the least square fit of the histogram to the
exponential model N(d) = αdβ , which is plotted in the figure
with a dashed line.

From a first glance, the exponential behavior is surprising.
We expect the number of error events with weight lower
than d2

Search to be proportional to the total number of lattice
points within a hypersphere of radius dSearch. This number
is approximately proportional to the volume of the hyper-
sphere, which is polynomial in dSearch. Therefore, we should
expect polynomial behavior from the error spectrum, and
not exponential behavior. However, we have used a lattice
dimension which is much higher than the search radius. As
a result, all error events have most of their error symbols
equal zero (note that the minimum weight of an error event
whose symbols are all nonzeros is 4Nmax = 4000 which is
much larger than dSearch =

√
42). For this situation, when

the search radius is further increased, new events can be
generated by using sequences with more nonzero symbols (e.g.
by extending existing sequences with another symbol), and
this explains why their number grows exponentially. For large
search radius, however, all the symbols of the error sequences
are nonzero, so as the distance increases, it is not possible
to add nonzero symbols, but the existing symbols have to be
increased, resulting in polynomial behavior.

See Appendix II for an analytic calculation of the error
spectrum for the simple Cartesian lattice with infinite dimen-
sion, which demonstrates the exponential nature of the error
spectrum which was described above.

E. The Narrow band Nature of the Shaped Symbols bn
For signal codes, the codeword xn is generated by convolv-

ing the shaped symbols bn with the filter pattern fn. Therefore,
the shaped symbols bn can be regarded as the output of the
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filter 1/F (z) whose input is the transmitted sequence xn.
It was shown in Section IV-C that good filter patterns have
deep spectral nulls. Therefore, the filter 1/F (z) is a narrow
band bandpass filter, whose passband frequencies depend on
the phase of the zeros of F (z). For Tomlinson shaping and
flexible shaping, xn is approximately an i.i.d sequence with
a flat power spectrum. Therefore, bn will be a narrow band
signal, whose energy depends on the gain of the narrow band
filter 1/F (z), which in turn depends on the depth of the notch
of the filter pattern F (z).

If the gain of 1/F (z) is large, the dynamic range of the
bn’s will be also large, and many bits will be needed to store
them. When data is transmitted in blocks with finite length,
the L last bn’s of each block should be transmitted at the end
of the block (See Section III-D). Therefore, it is desirable that
the bn’s will be stored in less bits. The narrow band nature of
the sequence bn can be used to achieve it, as described in the
sequel.

As an example, consider the filter pattern of the fourth line
of Table I: F (z) = (1 + 0.98ej0.09πz−1)3. For this filter
pattern, it comes out that when the information symbols an
belong to a 64-QAM constellation, and Tomlinson shaping is
used, the real and imaginary parts of the bn’s have a dynamic
range of 17 bits (each). Therefore, 17 × 2 × 3 = 102 bits
are required to store the last 3 bn’s of each block. However,
as the bn’s are the output of a narrow band filter, they can
be easily “compressed”. Instead of transmitting b1, b2, b3 we
can transmit b′1, b

′
2, b
′
3 where b′1 = b1, b′2 is the prediction

error of predicting b2 from b1 using the prediction error filter
(1 + 0.98ej0.09πz−1), i.e. b′2 = b2 + 0.98ej0.09πb1, and b′3 is
the prediction error of predicting b3 from b1, b2 using the
prediction error filter (1 + 0.98ej0.09πz−1)2. The dynamic
range of b′1 is still 17 bits, but the dynamic range of b′2 and
b′3 is now 12 and 7 bits, respectively. Therefore, the total
number of bits required to store 3 consecutive bn’s is now
only (17 + 12 + 7)× 2 = 72 bits.

V. COMPUTATIONALLY EFFICIENT DECODERS

A. Reduced Complexity Maximum-Likelihood Decoding

Let the transmitted codeword be xn of (6), and consider the
additive white Gaussian noise (AWGN) channel yn = xn+wn,
where wn is a sequence of zero-mean, i.i.d complex Gaussian
random variables with variance σ2. The optimal ML decoder
should maximize

L(y|a) = −
∑
n

∣∣∣∣∣yn −
L∑
l=0

flb
a
n−l

∣∣∣∣∣
2

(15)

where ban is the sequence of shaped symbols that correspond
to a.

However, it is not simple to take the non-linear shaping
operation into account in the decoding process. We therefore
propose to use “lattice decoding” [7]. In lattice decoding, the
decoder ignores the shaping operation and decodes to the
infinite lattice, i.e. it finds the nearest lattice point to the
received noisy codeword. With proper coding and decoding
schemes, channel capacity can still be approached although
lattice decoding is used [7].

Therefore, we shall refer to the bn’s as free variables and
look for the “Quasi Maximum Likelihood” (QML) sequence
bQML that maximizes (15) over all values of the bn’s:

bQML = arg max
b
L(y|b) (16)

where

L(y|b) = −
∑
n

∣∣∣∣∣yn −
L∑
l=0

flbn−l

∣∣∣∣∣
2

(17)

The data sequence an is then estimated by performing
the inverse shaping operation on the detected bQML. For the
Tomlinson and nested lattice shaping algorithms, the inverse
shaping is simply taking the modulo 2M value of bQML.
For flexible shaping, the inverse shaping operation first re-
generates the codeword x from bQML, and then quantizes to
the nearest QAM symbol, as described in Section III.

When we apply lattice decoding to signal codes, we essen-
tially face an equalization problem: a QAM symbol sequence
bn was convolved with a filter pattern, and has to be detected
from the noisy convolution output. As shown in [22], this
can be implemented by a Viterbi Algorithm (VA) whose state
is (bn−1, ..., bn−L)T . The number of trellis branches of the
proposed VA is equal to the constellation size of bn, raised
to the power of L. Therefore, the VA is practical only if L
and M are small, and if the constellation expansion is not
prohibitively high. The constellation size of bn is at least M2

(the constellation size of an), but it may be much larger,
depending on F (z) and on the shaping algorithm. It comes
out that good codes generate large bn values. In general, a
straightforward VA may be too complex, and it is beneficial
to find a reduced-complexity VA decoder.

Reduced complexity Viterbi decoding can follow the well-
known techniques used in the context of convolutional codes
and maximum likelihood channel equalization. One class of
such techniques is sequential decoding, e.g., the Fano [23] and
stack [24] algorithms. Another class includes list algorithms
such as the M-algorithm [25] and the T-algorithm [26]. A
third class is Reduced States Sequence Detection (RSSD)
algorithms (e.g. [27]).

All these methods try to reduce complexity by searching
only a part of the full tree which is spanned by the Viterbi
decoder. As a result, these algorithms suffer from Correct Path
Loss (CPL) events, in which the true trellis path is excluded
from the “short list” of paths that the algorithm maintains.
These events are characterized by long (sometimes very long)
error bursts. However, if the data is partitioned to finite-length
blocks such that decoding can start again for every block, and
if the main performance measure is frame error rate and not
bit error rate (i.e. if a block has errors, it does not matter how
many), then this effect is not a problem.

However, the reduced complexity decoding algorithms have
a more severe problem. In a classical paper [28], Jacobs and
Berlekamp have shown that the computational complexity of
sequential decoding of any tree code obeys a Pareto distri-
bution. Such a distribution results in the computational cutoff
effect, where for a given information rate, complexity increases
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abruptly below some cutoff SNR, where the variance and/or
the mean of the number of computations becomes infinite.
Therefore, all the above reduced-complexity decoders are
expected to be effective only above the cutoff SNR, which is
known to be approximately 1.7dB above the Shannon capacity
for the high SNR regime of the AWGN channel [13].

On the other hand, even when the mean or the variance of
the number of computations becomes infinite, the probability
that this number will exceed a pre-defined threshold is still fi-
nite. Therefore, if a target finite error rate is defined, sequential
decoders can achieve this error rate with finite (and probably
large) complexity even beyond the cutoff rate. In Section VII
we shall show that the sequential stack decoder can be used
for simple and effective decoding of signal codes close to the
cutoff rate. We shall also use bidirectional sequential decoders
with large complexity to demonstrate that small finite error rate
can be achieved even 0.5dB beyond the cutoff rate, with large
(but still finite) computational resources.

We shall now turn to describe the stack decoder and its
application to signal codes, and then show how it can be used
in a bidirectional decoding scheme.

B. The Heap-based Stack Decoder

The stack decoder [24] is a simple and effective algorithm
to decode tree codes. A stack of previously explored paths is
initialized with the root of the tree code. At each step, the path
with best score in the stack is extended to all its successors,
and then deleted from the stack. The successors then enter
the stack. For a finite block with known termination state,
the algorithm terminates when a path in the stack reaches the
termination state at the end of the block.

In principle, an infinite stack is required, as the number of
paths continuously increases. Practically, a finite stack must be
used, so whenever the stack is full, the path with worst score
is thrown away. Therefore, a practical stack decoder should
find at each step the paths with best score and worst score in
the stack.

We propose an efficient implementation of the stack algo-
rithm using the heap data structure [33]. This implementation
is suitable for any use of the stack decoder, not necessarily
for signal codes. A heap is a data structure that stores the
data in a semi-sorted manner (See an example in Figure 5).
Specifically, data is arranged in a binary complete tree (i.e.
all the levels of the tree are populated, except for the lowest
level, whose populated elements are located consecutively at
the leftmost locations). The value of each node is larger or
equal to the value of its successors. Practically, the heap is
stored in a linearly-addressed array, without any overhead (i.e.
the root of the tree is stored in location 0 of the array, the two
elements of the second level are stored in locations 1 and 2,
the four elements of the third level at locations 3,4,5,6 and
so on). The parent node of the element at location i of the
array is stored at location

⌊
i−1

2

⌋
, and its two children are at

locations 2i + 1 and 2i + 2, where bxc denotes the largest
integer smaller than x.

In order to insert a new element to the stack, the element is
initially inserted at the lowest level of the tree, adjacent to the

15 7 3

33

420

Fig. 5. An example of the heap data structure.

rightmost current element. Then, the new element is moved up
the path toward the root, by successively exchanging its value
with the value in the node above. The operation continues until
the value reaches a position where it is less than or equal to
its parent, or, failing that, until it reaches the root node.

Extracting the maximum element is simple, as the maximum
is always at the root of the heap. However, in order to maintain
a complete tree, the following procedure is used to delete the
maximal element from the stack. First, the root element is
deleted and replaced by the rightmost element of the bottom
level of the tree. Then, its value is moved down the tree by
successively exchanging it with the larger of its two children.
The operation continues until the value reaches a position
where it is larger than or equal to both its children, or, failing
that, until it reaches a leaf.

It can be easily seen that for a stack of size n, extracting
the minimum or inserting a new element requires O(log2 n)
operations. As noted above, a practical implementation of
the stack algorithm requires to efficiently extract both the
minimal and the maximal elements at each step. The deap
[34] or min-max heap [35] are modified versions that allow to
extract either the maximum or the minimum with O(log2 n)
operations. These data structures are therefore suitable to hold
the stack; otherwise, at least O(n) operations may be required
to extract the minimum or the maximum, which may dominate
the computational load of the algorithm.

Note that for the Tomlinson-Harashima and flexible shaping
methods, we can reduce the computational complexity of
the stack algorithm by incorporating shaping information to
the decoding (In this sense, it is no longer lattice decoding,
as defined in Section V-A). Specifically, for these shaping
algorithms we know that the codeword elements are bounded,
since |xn| < M . Therefore, for every path of length n in
the stack, we can calculate the resulting symbol xn, and
if |xn| > M we can immediately truncate this path. This
technique is very effective for complexity reduction, and will
be referred to as “x-range testing”.

For decoding of signal codes, each entry in the stack should
include a score (by which the heap is organized) and a list
of bn symbols that define the path in the code tree. As the
codeword may be long (e.g. 1000 symbols), storing the path
elements requires a large amount of memory. However, this
amount can be reduced as follows. In general, a path in the
stack starts in the root of the code tree. Then, it follows the
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correct path for several symbols, and diverges from it at a
certain point. As a path diverges from the correct path, it
begins to accumulate score at a much higher average rate
than the correct path. Therefore, paths that diverged from the
correct path for many symbols will have much worse score
than the correct path, and will be thrown away from the stack
with high probability. As a result, most of the paths in the stack
will have a common start, which equals the first symbols of the
correct path, and will differ only at the last few symbols. This
observation also holds for Viterbi decoding of convolutional or
trellis codes, where in principle, a decision for a data symbol
can be taken only after the decoder reached the end of the
frame. Practically, decisions are taken by back-tracking the
best path for a finite number of symbols to the past, where
all the paths are assumed to converge. The same can be done
here, where each entry in the stack will only hold the several
last symbols of the path, and decision is taken for the older
symbols. The stored length should be chosen such that the
additional error probability due to these early decisions will
be negligible.

However, this method is still not optimal, as most of the
paths diverged from the correct path for a small number of
symbols, but equal storage is allocated for all paths according
to the worst case paths that might have diverged for a larger
period. This can be improved as follows. Instead of storing a
separate path for each stack entry, all the paths are stored
together in a “symbol memory”, using linked lists of data
symbols. Each entry of the symbol memory stores a data
symbol bn and a link to another entry. It also stores the number
of entries that are linked to this entry. Each score entry in the
stack is linked to the last (newest) symbol of the corresponding
path, which is stored in the symbol memory. This symbol is
linked to the previous symbol in the path, and so on. The path
of each stack entry can be simply followed by back-tracking
the links until the root. In order to maintain this database,
whenever a path enters the stack after deletion of its parent,
a new data symbol is added to the symbol memory, storing
the last data symbol of the new path, and a link to the last
symbol of the path of its parent entry (which is not deleted
from the symbol memory when the parent node is deleted from
the stack). A symbol is deleted from the symbol memory only
when no other symbol is linked to it. This way, the minimal
number of symbols is stored at each point, and memory
usage is optimized. Similarly to the previous approach, storage
should be allocated to the symbol memory such that the
additional error probability due to symbol memory overflow
is negligible.

We have still not addressed the problem of assigning scores
to the paths in the stack. Naturally, we would assign scores
to the paths in the stack according to their likelihood (17).
However, the stack contains paths of different lengths. If we
use (17), shorter paths will get higher score, as less negative
terms are accumulated. This is not desired, since we want to
extend the path which coincides with the correct path, even
if it is much longer than other incorrect paths in the stack.
Therefore, the path scores should be defined such that the
effect of path length is eliminated. This problem is addressed
in the next subsection.

C. The Fano Metric

For sequential decoding of binary convolutional codes, Fano
suggested to subtract a bias term from each increment of the
natural likelihood score, where the bias equals the code rate
R. Massey [29] has shown that the score assignment problem
is equivalent to decoding of a code with variable length
codewords, and that the Fano metric is indeed the correct
choice for stack and Fano decoding of binary convolutional
codes, in the sense that the most likely path is extended in
each step.

Massey’s derivation can be extended to the Euclidean case,
as done in [30] for the general case of lattice decoding. Here,
we follow the lines of [30] and develop the Fano metric for
signal codes with Tomlinson-Harashima shaping. It comes out
that similarly to convolutional codes, in order to extend the
most likely path in each step, a bias term has to be subtracted
from the score increments of (17):

L(y|b) = −
∑
n

∣∣∣∣∣yn −
L∑
l=0

flbn−l

∣∣∣∣∣
2

−B

 (18)

where:

B ≈ σ2 · log
4
πσ2

(19)

See Appendix III for the derivation of (18) and (19).
We can make an interesting observation from (19). In order

for the stack algorithm (as well as the Fano algorithm) to work,
the expected value of the correct path must increase along the
search tree, where it must decrease for the incorrect paths [23].

For the correct path, we have E{
∣∣∣yn −∑L

l=0 flbn−l

∣∣∣2} = σ2.
Therefore, in order for the expected value of the path score
to increase along the tree, we need to have B > σ2 in (18).
From (19), we then have log

(
4
πσ2

)
> 1, resulting in σ2 < 4

πe .
Now, when using a lattice code for the real-valued AWGN

channel with power limit P and noise variance σ2, the
maximal information rate is limited by the capacity 1

2 log2(1+
P
σ2 ). Poltyrev [12] considered the AWGN channel without
restrictions. If there is no power restriction, code rate is
a meaningless measure, since it can be increased without
limit. Instead, it was suggested in [12] to use the measure of
constellation density, leading to a generalized definition of the
capacity as the maximal possible codeword density that can
be recovered reliably. When applied to lattices, the generalized
capacity implies that there exists a lattice G of high enough
dimension n that enables transmission with arbitrary small

error probability, if and only if σ2 <
n
√
|det(G)|2

2πe . A lattice
that achieves the generalized capacity of the AWGN channel
without restrictions, also achieves the channel capacity of the
power constrained AWGN channel, with a properly chosen
spherical shaping region (see also [7]).

As the signal code lattice is a volume preserving trans-
formation of the rectangular lattice, and our basic M -PAM
constellation spacing is 2, we have n

√
|det(G)|2 = 4, and the

Poltyrev capacity condition for real lattices becomes σ2 < 2
πe ,

where for complex lattices it is σ2 < 4
πe . Interestingly, this is
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exactly the necessary condition that was developed above for
the stack decoder to converge to the correct path. As this is
a necessary but not sufficient condition, the stack decoder is
not guaranteed to converge above capacity. Indeed, it is well
known that sequential decoders can converge only above the
cutoff SNR, which is approximately 1.7dB above capacity for
the high SNR regime [13].

See [31] for another example of using the Fano metric for
lattice decoding.

D. Bidirectional Sequential Decoding
After developing the Fano metric for the stack (or Fano)

algorithms, we shall now turn to develop a bidirectional
decoding scheme for signal codes. It is well known that
sequential decoding is sensitive to noise bursts [28]. In [32],
a bidirectional decoding algorithm was proposed in order to
reduce the complexity of decoding through a noise burst. Two
stack decoders are working, where one works from the start
of the block forward and the other moves from the end of the
block backward. The algorithm stops when the two decoders
meet at the same point. For a strong noise burst, each decoder
will only have to face half the length of the burst. Assuming
exponential complexity increase along the burst (since for
strong noise, the entire tree has to be examined) the resulting
complexity will be the square root of the complexity of a single
decoder.

Note that in order to enable bidirectional decoding, the data
must be partitioned to finite-length blocks, with known initial
and final state. However, this is anyway the case for all the
practical shaping algorithms that were presented in Section III,
as explained in Section III-D. The block length should be made
as large as possible, such that the overhead of terminating the
encoding in a known state will cause minimal degradation to
information rate. However, increasing the block size introduces
delay to the system. In addition, the probability to have two or
more distinct strong noise bursts that appear in the same block
increases. In such a case, each of the two decoders will have
to face a strong noise burst alone, and bidirectional decoding
will no longer be effective.

Unlike general lattice codes, bidirectional decoding is pos-
sible for signal codes due to the band-Toeplitz structure of
the lattice generator matrix. However, decoding backward for
signal codes is not straightforward, as reversing the time axis
causes the minimum phase filter pattern to become maximum
phase (i.e. all its zeros are outside the Z-plane unit circle).
Extending the paths of the stack has an effect similar to
filtering with an autoregressive filter with non-stable poles,
resulting in choosing extension symbols that grow without
bound. This can be easily solved by allpass filtering: if we
filter the codeword (in the forward direction) with the allpass
filter A(z) = F∗(1/z∗)

F (z) , then we have transformed the signal
code to a code with a maximum-phase filter pattern. Decoding
backward will now obey a stable recursion. Note that the
allpass filtering does not change the power spectrum of the
additive noise. See Section VI-A for other applications of
allpass filtering to signal codes.

Bidirectional decoding is implemented using two stack
decoders. Each stack decoder holds a stack of previously

explored paths, where each path is assigned a score according
to the Fano metric, as described above. Both decoders work
simultaneously. At each step, the path with best score in the
stack is extended to all its successors and then deleted from
the stack. The successors then enter the stack. Before deletion,
the deleted path is compared to all the paths of the stack of the
other decoder to look for a merge. A merge is declared when a
path in the other decoder’s stack is found with the same state at
the same time point in the data block as the current decoder,
i.e. last L symbols of the forward decoder match the time-
reversed last L symbols of the backward decoder. In order to
reduce the probability of false merge indications, a match of
more than L symbols can be used. However, as the number of
bits in each extended constellation symbol bn is usually large
(e.g. 17 bits for the real and imaginary parts for the example
of Section IV-E), the probability of false indication is usually
low enough for a match of L symbols.

A straightforward search for a merge will require a full
pass on the whole stack every symbol. In order to avoid it,
each stack entry can be assigned a hash value according to
its last L symbols. For each possible hash value, a linked
list is maintained with all the stack entries that are assigned
this value. Then, each decoder calculates the hash value that
corresponds to its last L symbols, and searches only the
linked list of the other decoder that corresponds to this value,
resulting in a much smaller search complexity.

VI. GENERALIZATIONS OF THE BASIC SIGNAL CODING
SCHEME

A. Non Minimum-Phase Filter Patterns
Until now we have assumed that the filter pattern of the

signal code is a minimum-phase filter. This assumption is
essential for the recursive loops of the various shaping methods
to be stable. We shall now show how to extend the concept
of signal codes to non minimum-phase filters.

Denote a general invertible filter pattern by F (z) =
Fi(z)Fo(z), where Fi(z) is a monic minimum phase filter and
Fo(z) is a monic maximum phase filter. We can deploy signal
coding with the filter pattern FMP (z) = Fi(z)F ∗o (1/z∗),
which is a minimum phase filter, and then apply an allpass
filter A(z) = F (z)/FMP (z) to the encoded signal. The allpass
filter does not change the signal power level or its power
spectrum. Therefore, this scheme generates a lattice which
is based on the filter pattern F (z), which is not minimum-
phase. As the recursive loops of the various shaping and
encoding schemes work with the filter pattern FMP (z), which
is minimum-phase, stability is ensured.

Note that both filters F (z) and FMP (z) have the same
frequency response magnitude and differ only in the frequency
response phase. The following claim relates the error spectrum
of the codes that relate to two filters with this property.

Claim 1: Assume that F1(z) = 1 +
∑
i f1(i)z−i and

F2(z) = 1 +
∑
i f2(i)z−i are two filter patterns which are

related by F2(z) = F1(z)A(z), where A(z) is an allpass filter.
Then, every error-symbol sequence has the same Euclidean
weight for the two signal codes that result from F1(z) and
F2(z). In particular, the two codes have the same error
spectrum.
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Proof: Assume that e(n) is an error-symbol sequence
with Z-transform E(z). From (12), its weight is d2

1(e) =∑
n |e(n) +

∑
k f1(k)e(n− k)|2. Using Parseval’s rule, we

have:

d2
1(e) =

1
2π

∫ 2π

0

∣∣F1(ejw)
∣∣2 ∣∣E(ejw)

∣∣2 dw.
Calculating the weight of the same error-symbol sequence, but
now for the filter pattern F2(z), we get:

d2
2(e) =

∑
n

∣∣∣∣∣e(n) +
∑
k

f2(k)e(n− k)

∣∣∣∣∣
2

=

=
1
2π

∫ 2π

0

∣∣F2(ejw)
∣∣2 ∣∣E(ejw)

∣∣2 dw =

=
1
2π

∫ 2π

0

∣∣F1(ejw)
∣∣2 ∣∣A(ejw)

∣∣2 ∣∣E(ejw)
∣∣2 dw =

=
1
2π

∫ 2π

0

∣∣F1(ejw)
∣∣2 ∣∣E(ejw)

∣∣2 dw = d2
1(e).

Therefore, every error-symbol sequence generates the same
weight for both F1(z) and F2(z).

Note that convolving the filter pattern of a signal code with
an allpass filter is equivalent to multiplying a lattice generator
matrix by an orthonormal matrix. Such a multiplication is
equivalent to rotation and reflection of the lattice in Euclidean
space, which do not change the error spectrum of the corre-
sponding lattice code.

Claim 1 shows that non-minimum-phase filter patterns have
no advantage over their minimum-phase equivalents when the
AWGN is considered. However, in non AWGN channels, such
as in fading channels and in impulse noise channels, mixed-
phase channels may be advantageous since their impulse
response may be longer, thus allowing better time-diversity.

B. Auto-Regressive, Moving-Average (ARMA) Filter Patterns
Thus far, we have described signal codes which employ

FIR filter patterns, but the signal code concept can be easily
extended to ARMA filter patterns. Suppose that we want to
design a signal code with an ARMA filter pattern F (z) =
G(z)/H(z), where G(z) = 1 +

∑L
l=1 glz

−l and H(z) = 1 +∑K
k=1 hkz

−k are monic invertible minimum phase filters. The
encoding operation will then be:

x(n) = b(n) +
L∑
l=1

glbn−l −
K∑
k=1

hkxn−k (20)

For Tomlinson-Harashima shaping, the shaping operation is:

bn = an − 2Mkn.

It can be easily seen that choosing

kn =

⌊
1

2M

(
an +

L∑
l=1

glbn−l −
K∑
k=1

hkxn−k

)⌉
results in |x(n)| ≤M . The other shaping methods of Section
III can be extended in a similar manner. ARMA filter patterns
can be particularly useful when signal coding is combined with
channel pre-equalization, as described in the next subsection.
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Fig. 6. Combining signal coding with pre-equalization

C. Combining Signal Coding with Pre-Equalization

Assume that coding should be used for transmission through
a communications channel which introduces inter-symbol in-
terference (ISI). Signal coding can be seamlessly combined
with channel pre-equalization, by designing the encoder’s filter
so that its convolution with the channel impulse response will
be the desired signal code filter pattern, possibly up to a gain
factor. However, this would work only if the channel is a
minimum phase filter, since otherwise the encoder’s filter is
non-minimum phase and the recursive loops of its algorithms
become unstable. In order to avoid this problem, we apply
an all-pass filter to the transmitted signal, that converts the
channel into a minimum phase system (this is a common
procedure in equalization of digital communications channels
[13]). Let the channel be H(z) = gHi(z)Ho(z), where g
is a gain factor, Hi(z) is a monic minimum phase filter,
and Ho(z) is a monic maximum phase filter. Assume further
that H(z) is stable and invertible. In order to transform the
channel into its minimum phase equivalent, we apply the filter
A(z) = H∗o (1/z

∗)/Ho(z) to the channel input, transforming
the combined channel A(z)H(z) into a minimum phase sys-
tem. Since A(z) is an allpass filter, i.e. |A(ejw)| = 1, it does
not affect the transmitted signal’s power or power spectrum.
We then apply the shaping and encoding operations using the
monic minimum phase encoder filter F ′(z) = F (z)

A(z)Hi(z)Ho(z) ,
where F (z) is the desired signal code filter pattern. The
resulting scheme is illustrated in Figure 6. It can be easily
seen that the linear system that relates b(n) to the channel
output, F ′(z)A(z)H(z), folds into the desired pattern F (z),
multiplied by the channel gain g. Therefore, the receiver can
employ a detector that is optimized for an ideal (non-ISI)
channel, and the error performance will be the same as in
an ideal channel with a gain of |g|.

VII. SIMULATION RESULTS

We shall now demonstrate the performance of signal codes
using simulations. All the simulations are for 6 bits per
(complex) symbol (equivalent to uncoded 64-QAM). Unless
otherwise stated, the simulations use the filter pattern F (z) =
(1 + 0.98ej0.09πz−1)3 (the fourth filter pattern of Table I),
combined with Tomlinson-Harashima shaping (Section III-A).
Data is framed to finite-length blocks, where block size is 2000
symbols. The total number of blocks that were simulated for
each result is 20,000.
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As explained in Section III-D, for a filter pattern of length
L + 1, the last L values of bn should be transmitted at the
end of each block. As shown in Section IV-E, 72 bits are
required to store L = 3 consecutive bn’s for this specific filter
pattern. In order to protect the bn’s, 8-QAM modulation is
used for their transmission. This way, the bn’s are protected
by approximately 9dB relative to uncoded 64-QAM. Since
the gap to capacity for uncoded transmission at bit error rate
(BER) of 10−6 is approximately 9dB [13], the uncoded bn’s
will be more protected than the coded data, so the error rate
due to badly detected bn’s is negligible.

Transmitting the 72 bits of the bn’s using 8-QAM requires
24 symbols. Therefore, the actual information rate is not 6
bits/symbol but 6 × 2000

2000+24 = 5.93 bits/symbol. To achieve
unconstrained channel capacity of 6 bits/symbol, the required
SNR is 18dB, where for 5.93 bits/symbol, the required SNR
is 17.8dB. Therefore, data framing results in a loss of 0.2dB.
This loss is essentially an implementation loss and is not
related to the coding properties of the signal code lattice.
Note also that this implementation loss can be made negligible
by increasing block length, or by using a more efficient
coding scheme for transmitting the bn tail symbols. Since our
main intention is to demonstrate the coding properties of the
signal code lattice, and not the performance of the specific
decoders, we shall ignore the framing loss and compare our
results to channel capacity and cutoff rate for transmission
of 6 bits/symbol. For the same reason, we shall use ideal
path memories for the stack decoder (i.e. remember the full
symbol path for each stack entry, and not use the more
efficient methods of Section V-B), in order to avoid the related
implementation loss due to path memory truncation.

Since we use the Tomlinson-Harashima shaping scheme,
the transmitted signal will be uniformly distributed. For 6
bits/symbol under uniform input distribution constraint, chan-
nel capacity is at SNR of 19.1dB, where the cutoff rate is
at 20.9dB. As the unconstrained capacity for 6 bits/symbol
is 18dB, the capacity loss due to the uniform distribution
constraint is 1.1dB. It can be seen that at these SNRs, the
gap between the unconstrained capacity and the uniform
distribution capacity has not reached yet its asymptotic value
of 1.53dB. The cutoff SNR is 1.8dB away from capacity, in
accordance with the approximate 1.7dB gap mentioned in [13].

Figure 7 shows the frame error rate (FER) vs. SNR using the
stack and the bidirectional stack decoders. For each decoder,
the FER is shown for various maximal stack lengths. The chan-
nel capacity and computational cutoff rate for 6 bits/symbol
with uniform channel input distribution are also shown in the
figure. The same results are also presented in Figure 8, where
for each maximal stack length, the figure shows the required
SNR for achieving frame error rate of 10−3. Note that this FER
value is certainly a practical value for many applications, e.g.
wireless networks.

It can be seen that increasing the maximal stack length im-
proves the performance for both the stack and the bidirectional
stack decoders. This can be explained as follows. When a noise
burst is present, incorrect paths in the stack will temporarily
have better score than the correct path. If the number of such
incorrect paths exceeds the stack length, the correct path will
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be thrown out of the stack. This was defined in Section V-A
above as a CPL event, which will result with a decoding error.
Figures 7 and 8 show that for FER of 10−3 and stack length
which is smaller than 106, most of the errors result from CPL
events and not from decoding to a wrong codeword that was
closer to the observation in the Euclidean space, so increasing
the stack length improves the FER.

It can be seen that with a very large stack length of 106, and
for frame error rate of 10−3, the stack decoder can work as
close as 1.6dB from channel capacity, which is 0.2dB beyond
the channel cutoff rate. The bidirectional stack decoder can
work as close as 1dB from channel capacity, which is 0.8dB
beyond the cutoff rate. This is certainly a strong indication
that the signal code lattice is indeed a capacity approaching
lattice. The fact that sequential decoders can work beyond the
cutoff rate under these conditions should not be surprising:
As explained in section V-A, for a fixed and finite frame error
rate, sequential decoders can work beyond the cutoff rate with
a finite (and probably large) computational complexity.

Turning to complexity, we shall now examine the com-
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putational and storage requirements of the decoders. The
storage is determined by the maximal stack length, where
the computational complexity can be defined by the average
and maximal number of computations per symbol. For this
purpose, a computation is defined as the processing of a single
stack entry. The number of computations per a specific symbol
is calculated by dividing the total number of computations for
the block that contains this symbol, by the number of symbols
in the block. The maximum and average over all the 20,000
blocks of each simulation are defined as the maximal and
average number of computations per symbol, respectively.

Figure 9 shows the average and maximal number of compu-
tations for the stack decoder, where Figure 10 shows it for the
bidirectional stack decoder, for various maximal stack lengths.
Combining the results from Figures 8 and 10, we can see that
in order for the bidirectional stack algorithm to work at FER
of 10−3 at 1dB from capacity, we need a stack of size 106.
The average number of computations is 80 computations per
symbol, which is certainly a practical number (similar to a
64-states Viterbi decoder, or to an LDPC code with average
node degree of 10 that performs 8 iterations). However, the
maximal number of computations per symbol is 15,000 - more
than two orders of magnitude than the average. Therefore,
such a decoder can be implemented with reasonable average
complexity, but from time to time it will have large and
unpredictable delays for the worst-case blocks.

A more practical scheme might be a bidirectional stack
decoder with maximal stack length of 104. FER of 10−3

can be achieved for SNR of 20.8dB (1.7dB from capacity).
The average number of computations per symbol is only
3 computations/symbol, where the maximum is 120. This
is certainly a practical scheme, where the effect of non-
predictable decoding delays still exists, but it is much less
severe.

Note that the the phenomenon of computational peaks also
exists in modern iterative decoders, such as LDPC codes or
turbo codes. For these codes, it is common to have a “stopping
criterion”, which stops decoding when the detected data is a
valid codeword. In this case, most of the time the decoder
performs a small number of iterations (e.g. 1-2), and from time
to time it needs to perform more iterations (e.g. 8-16). This
will result in non-uniform processing complexity. However,
the “peak-to-average” of the number of computations is still
significantly larger for the proposed sequential decoders.

All the results so far were presented for Tomlinson-
Harashima shaping. With this scheme, the codeword elements
are uniformly distributed, so no shaping gain can be attained
relative to uncoded QAM. However, such shaping gain can
be achieved using nested lattice shaping, as explained in
Section III-C. In order to understand the potential shaping
gain of nested lattice shaping, Figure 11 shows the average
energy of the nested lattice shaper output, compared to the
energy of uncoded QAM symbols. Nested lattice shaping
was implemented using the M-algorithm [25], as described
in Section III-C. For M = 1, nested lattice shaping reduces
to Tomlinson-Harashima shaping. As explained in Section III-
A, the Tomlinson-Harashima scheme has an energy penalty of
M2/(M2 − 1) relative to uncoded M2-QAM. For 64-QAM,
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this penalty is 0.07dB, where for 4-QAM it is 1.25dB. This
explains the values of both curves of Figure 11 for M = 1. As
M increases, the shaping gain increases, and reaches 1.4dB
for 64-QAM, which is close to the theoretical limit. For 4-
QAM, the energy penalty of the Tomlinson-Harashima scheme
is completely compensated, with additional gain of 0.2dB.
Note that most of the shaping gain can be achieved with a
practical M value of 100 (1.25dB gain for 64-QAM and 0dB
for 4-QAM).

Note that the computational complexity of the stack and
the bidirectional stack decoders is much larger when nested
lattice shaping is used, compared to the case where Tomlinson-
Harashima shaping is used. The reason is that for the
Tomlinson-Harashima scheme, “x-range testing” can be used
to dilute the stack, as described in Section V-B. Therefore,
in addition to the increased complexity at the encoder side,
nested lattice shaping has also a complexity penalty at the
decoder side. This is a topic for further study.



15

100 101 102 103 104-1.5

-1

-0.5

0

0.5

1

1.5

list size (M) of M-algorithm

sh
ap

in
g 

ga
in

 [d
B

]
shaping gain (compared to uncoded QAM)

64-QAM

4-QAM

Fig. 11. Nested lattice shaping gain for 64-QAM and 4-QAM constellations.

VIII. SUMMARY

A novel lattice coding scheme was introduced. Signal codes
are based on projecting the conventional PAM/QAM signal
points into filtered lattices that have better distance spectra.
Error analysis and simulation results indicate that the signal
code lattice is capacity approaching. Low complexity schemes
based on Signal codes were demonstrated to attain the cutoff
rate of the AWGN channel, where higher complexity schemes
were demonstrated to work approximately 1dB from channel
capacity.
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APPENDIX I
DETAILED DESCRIPTION OF THE ALGORITHM FOR

CALCULATING THE ERROR SPECTRUM

Consider a signal code with a given filter pattern F (z). The
filter’s impulse response sequence f(0), f(1), ..., f(L) will be
denoted by f . We shall now present an algorithm that finds all
the error sequences whose Euclidean weight is below a given
d2
Search, where the length of the appropriate error-symbol

sequence e is smaller than Nmax symbols. The flowchart of
the algorithm is shown in Figure 12. Basically, it develops a
tree of all possible error sequences, and truncates tree branches
as soon as it can identify that all the error events on them will
have distances above d2

Search. The tree is searched in a Depth
First Search (DFS) manner, which can be easily implemented
using recursion techniques.

The basic step of the algorithm is as follows. Assume that
we have built so far an error-symbol sequence of n+1 symbols
e(0), e(1), ..., e(n). Denote this sequence by e. We want to
extend this sequence with another symbol e(n+ 1) such that
the Euclidean weight of the resulting error sequence (and its
possible extensions) can still be lower than d2

Search. During the
extension process, we would like to record all the error-symbol
sequences for which the Euclidean weight of the resulting error
sequence is actually smaller than d2

Search.

Generate
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Fig. 12. Algorithm for calculating the error spectrum of signal codes

We start by calculating the convolution of e with the filter
pattern, c = e ∗ f (the length of c is n + L). Then, if the
Euclidean norm of c is smaller than d2

Search, e is recorded
as an error event, after verifying that the last symbol e(n) is
nonzero (otherwise, each sequence will be recorded multiple
times with zero padding). Then, we calculate the Euclidean
norm of the first n + 1 elements of c, d2

n(e) =
∑n
i=0 |c(i)|

2.
This term will be part of the Euclidean weight of any error
sequence that starts with e(0), e(1), ..., e(n), and since F (z)
is a casual filter, it is independent of e(n+k) for all k > 0. As
the filter F (z) is monic, the next convolution element equals
c(n + 1) + e(n + 1). A necessary condition for the resulting
error sequence to have Euclidean weight less than d2

Search is
therefore:

d2
n(e) + |c(n+ 1) + e(n+ 1)|2 < d2

Search. (21)

A candidate list is built for e(n + 1) which includes all the
values of e(n+ 1) that satisfy (21).

The computational complexity of the algorithm can be
further improved by using a modified bound d̃2

Search in (21),
where d̃2

Search = d2
Search−4 |fL|2. The term 4 |fL|2 is a lower

bound on the Euclidean weight of the convolution tail, since
this will be the weight of the last tail symbol in case that we
already reached the last nonzero symbol of the error sequence
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and its magnitude is the smallest possible symbol magnitude
(i.e. 2). As the test of (21) uses the Euclidean weight of
the error sequence without encountering the convolution tail,
and as the weight of the convolution tail is lower bounded
by this term, we can truncate branches whose weight has
exceeded d̃2

Search instead of d2
Search, thus reducing the tree

search complexity.
The candidate list for the first error symbol e(0) is built

in a different manner than for the other error symbols. For
e(0), the candidate list contains all possible complex integers
with even real and imaginary parts whose squared magnitude
is smaller than d̃2

Search. In order to make the algorithm more
efficient, specific properties of the signal code lattice can be
used to dilute this list. First, the convolution operation is
shift invariant, so every error event will appear in the error
spectrum with all its possible shifted versions. Therefore, we
can eliminate the zero symbol from the candidate list for e(0),
such that shifted versions of the same error event will not be
encountered. Also, using symmetry, if a complex integer c is
in the candidate list for e(0), we can dilute from the list the
values −c, jc and −jc, where j =

√
−1, since these will

result in the same error events, up to multiplication by the
constants −1, j, −j, respectively.

We can now describe the flow of the algorithm, as shown in
Figure 12. The algorithm starts by building a candidate list for
the first error symbol e(0). Starting with n = 0, the algorithm
passes at each tree node over the candidate list elements for
the next symbol e(n), one by one. For each element, it first
checks if the resulting e sequence ends with L zeros, in which
case it skips to the next element in the list. This is a non-
interesting error event as it is simply the concatenation of
two non-overlapping error events. Then, a candidate list is
constructed for the next symbol e(n + 1), while appropriate
error-symbol sequences are recorded, using the basic step of
the algorithm, as explained above. If the sequence length has
not yet exceeded the maximum allowed length Nmax, the
algorithm repeats this procedure for the next tree node. When
the candidate list for e(n) is exhausted, the algorithm goes
back one step in the tree and continues with the candidate list
that was previously prepared for e(n−1). When the candidate
list for e(0) is finally exhausted, the algorithm terminates.

Note that instead of calculating the convolution c = e∗f and
the partial weight d2

n(e) at each tree node, a simple recursive
update can be applied to the results of the calculations at the
parent tree node, thus reducing the computational complexity.
Also, instead of actually storing the candidate lists for the error
symbols, the appropriate candidate can be calculated at each
node where only an index needs to be stored.

Note also that if only the minimal distance of the code needs
to be found, the computational complexity of the algorithm
can be reduced by dynamically updating d2

Search: it can be
initialized to infinity, and whenever an error sequence with
Euclidean weight smaller than d2

Search is recorded, d2
Search is

updated to the weight of this sequence.
We finally note that the complexity of the error spectrum

search algorithm of Figure 12 can be further improved by
using a “backward-forward” approach. With this approach,
the algorithm first builds a tails-database, which stores all

the possible tail sequences whose Euclidean distance is lower
than d2

Tail. This can be done by applying the algorithm of
Figure 12 backwards in time. The algorithm then develops the
error tree forward in time, but the condition for keeping an
error sequence in the tree is that either its Euclidean weight is
smaller than d2

Search − d2
Tail, or that the last L− 1 elements

of the error sequence coincide with the first L − 1 elements
of an error sequence from the tails database, in which case
their concatenation may yield an error event whose distance
is below d2

Search. This way, the effective search radius of
the forward search is d2

Search − d2
Tail instead of d2

Search,
which may result in significant complexity reduction even for
relatively small values of d2

Tail.

APPENDIX II
THE ERROR SPECTRUM OF THE CARTESIAN LATTICE

We shall now find the error spectrum of a simple lattice - the
Cartesian lattice, whose generator matrix is the identity matrix,
and can be interpreted as a signal code with F (z) = 1. The
error spectrum of such a lattice will include sequences whose
elements are complex integers with even real and imaginary
parts. Consider the set of infinite sequences of this form whose
Euclidean weight is finite, and whose elements are restricted
to be nonzeros. It can be easily seen that the Euclidean weight
of such sequences must be an integral multiple of 4. Denote by
a(k) the number of such sequences whose Euclidean weight
equals 4k. Denote by b(k) the number of such sequences
whose Euclidean weight equals 4k and are further restricted
to contain a single nonzero symbol.

Claim 2: a(k) and b(k) are related by the following recur-
sion:

a(k) = b(k) +
k−1∑
i=1

a(i)b(k − i) (22)

Proof: Adding a single nonzero symbol increases the
Euclidean weight of a sequence by at least 4. Therefore, if
we remove a single symbol from a sequence with weight 4k,
then the resulting weight will be at most 4(k−1). As a result,
every sequence of weight 4k is a concatenation of a sequence
with weight smaller or equal to 4(k−1) and a single symbol,
and the recursion (22) follows.

The values of b(n) are simple to calculate manually. It can
be easily seen that the first 13 values are {4, 4, 0, 4, 8, 0,
0, 4, 4, 8, 0, 0, 8}. Starting with a(1) = 4 and using (22),
we get that the first 10 values of a(n) are {4, 20, 96, 468,
2280, 11104, 54080, 263380, 1282724, 6247176}. It can be
seen that the error spectrum increases exponentially with the
Euclidean weight. Note that this is a lower bound on the error
spectrum, as we have ignored sequences which may contain
zero symbols.

APPENDIX III
DERIVATION OF THE FANO METRIC FOR SIGNAL CODES

Consider the following transmission model through a
discrete, memoryless channel whose input and output are
complex numbers in C. The transmission uses a variable
length code whose codewords {x1,x2, ...,xM} have lengths



17

{n1, n2, ..., nM}, respectively. Let xm,i denote the i-th coor-
dinate of xM . Let Si = ∪m {xm,i} be the set of all possible
complex values for the coordinate xm,i. Let |Si| denote the
cardinal number of Si, and let N ≥ maxm(nm). To each
codeword xm = [xm,0xm,1 · · ·xm,nm−1], having probability
Pm, a random tail tm = [tm,nm · · · tm,N−1] is appended,
where tm,j ∈ Sj , producing the word z = [z0z1 · · · zN−1] =
[xm,0xm,1 · · ·xm,nm−1tm,nm · · · tm,N−1], which is sent over
the channel. It is assumed that tm,j are independent of each
other and of xm, for nm ≤ j ≤ N − 1. Let pj(·) denote
the probability distribution function of tm,j . As explained in
[29], this decoding problem is essentially the same problem
of choosing the best path in each step of the stack algorithm,
where the stack contains paths of different lengths.

By independence, Pr(tm|xm) = Pr(tm) =∏N−1
k=nm

pk(tm,k). Let y = (y0, y1, y2, ..., yN−1) ∈ CN
denote the received word. The joint probability distribution
of appending a tail tm to a codeword xm and receiving y is:

f(xm, tm,y) = PmPr(tm|xm)f(y|xm, tm) = (23)

= PmPr(tm)f(y|xm, tm) =

= Pm

N−1∏
k=nm

pk(tk)
nm−1∏
k=0

f(yk|xm,k)
N−1∏
k=nm

f(yk|tm,k).

Summing over all random tails gives the marginal distribution

f(xm,y) = Pm

nm−1∏
k=0

f(yk|xm,k)
N−1∏
k=nm

fk(yk), (24)

where:

fk(yk) =
∑
w∈Sk

f(yk|w)pk(w). (25)

Given y, the maximum a posteriori decoding rule is to choose
xm which maximizes Pr(xm|y). Equivalently,

f(xm,y)/
N−1∏
i=0

fk(yk)

can be maximized, as the denominator is independent of xm.
Taking logarithms, the final statistic to be maximized by the
optimum decoder is

L(xm,y) =
nm−1∑
i=0

[
log
(
f(yi|xm,i)
fi(yi)

)
+

1
nm

log(Pm)
]
(26)

Interestingly, the statistic for each codeword depends only
on that portion of the received word y having the same length
as the codeword.

We can now derive the Fano metric for the decoding of
signal codes in the AWGN channel with noise variance σ2.
For simplicity, we shall start with real valued signal codes,
and then extend the results to the complex case. Assume that
the data symbols {an} are M -PAM symbols. There are M

possible symbols, so the a-priori probability of a codeword of
length nm is:

Pm =
1

Mnm
= M−nm (27)

The numerator of the left term inside the sum of (26) is:

f(yi|xm,i) =
1√

2πσ2
e−(yi−xm,i)2/2σ2

(28)

In order to calculate the denominator, we shall assume that
Tomlinson-Harashima shaping is used. In this case, the set Si,
as defined above, is a finite set of values, uniformly spread in
the interval (-M , M ]. We shall assume that |Si| is large, such
that we can approximate the sum of (25) by an integral:

fi(yi) =
∑
w∈Si

f(yi|w)pi(w) ≈ (29)

≈
∫ M

−M

1√
2πσ2

e−(yi−w)2/2σ2 1
2M

dw =

=
1

2M

∫ M−yi
σ

−M−yi
σ

1√
2π
e−z

2/2dz =

=
1

2M

[
Q

(
−M − yi

σ

)
−Q

(
M − yi
σ

)]
where Q(x) ∆= 1√

2π

∫∞
x
e−z

2/2dz. Note that the integral
of (29) is a convolution between a rectangular pulse and a
Gaussian. Assuming σ2 << M (high SNR), the Gaussian is
much narrower than the rectangular pulse, so the convolution
result can be approximated by a rectangular pulse with height

1
2M , except for values of yi that are relatively close to the
edges of the pulse at ±M . We can then simply approximate
(29) by the constant 1

2M , assuming that the probability of yi
being near the edges can be neglected. We then get:

fi(yi) ≈
1

2M
. (30)

Substituting (27), (28) and (30) in (26) and organizing terms,
we finally get:

L(xm,y) =
nm−1∑
i=0

[
−(yi − xm,i)2 +B

]
(31)

where

B
∆= σ2 · log

2
πσ2

(32)

The extension of these results to complex signal codes
with M2-QAM input constellation and complex noise variance
of σ2 is straightforward. Instead of (27), (28) and (30) we
have Pm = M−2nm , f(yi|xm,i) = 1

πσ2 e
−(yi−xm,i)2/σ2

and
fi(yi) ≈ 1

4M2 , respectively (where we have assumed that the
Tomlinson-Harashima precoding causes the real and imaginary
parts to be independent of each other). Substituting in (26),
we get again expression (31), where now we have:

B
∆= σ2 · log

4
πσ2

(33)
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