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Abstract — We define a notion of ‘sensing capacity’
that characterizes the ability of a sensor network to
successfully distinguish among a discrete set of tar-
gets. Sensing capacity is defined as the maximum ra-
tio of target positions to sensors for which inference of
targets within a certain distortion is achievable. We
demonstrate a lower bound on this capacity. Unlike
previous work on ‘sensor network capacity’, our no-
tion of sensing capacity is defined by the sensing task
itself, as opposed to external resource constraints such
as power, communications, and processing.

I. Introduction

Sensor networks consist of a set of sensors that coopera-
tively sense an environment. Previous research on limits of
performance of such networks concentrated on network chan-
nel capacity, under various resource constraints. In this pa-
per, we consider a target detection problem and prove the
existence of a ‘sensing capacity’ C(D), such that, for a given
tolerable distortion D, if the ratio of target positions to sensors
is smaller than C(D), the maximal average error probability
converges to zero as the number of target positions (and sen-
sors) goes to infinity.

Previous work on ‘sensor network capacity’ seeks to char-
acterize the capacity by exploring the constraints imposed
by power, communications, and computation. [2], [3] ex-
tend the results in [1] to a sensor network scenario and show
communication-based limits on the amount of data that a sen-
sor network can transport. [4] has considered the interaction
between transmission rates and power constraints to obtain
statements of capacity. Interestingly, [5] combines the notion
of transport capacity with knowledge about the nature of the
sensing task, which in his case is to sense an underlying contin-
uous random process to within a given distortion. [6] extends
this work by accounting for compression at each node.

In contrast, we provide a statement of sensing capacity
inherent to the sensing task of detecting discrete targets to
within a given distortion, rather than using external resource
constraints. Section II introduces the sensor network model.
Section III states the main theorem. Illustrative calculations
of the sensing capacity are presented in Section IV, and em-
pirical evaluations of capacity using a belief propagation al-
gorithm are presented in Section V. Section VI extends the
result to more general cases and Section VII concludes the
paper.

II. Sensor Network Model

We denote random variables by upper-case letters and spe-
cific instantiations or constants by lower-case letters. Bold-
font denotes vectors, whose length is clear from context, and
bold-font upper-case letters denote random vectors. log(·) has
base-2.

We consider the problem of detecting discrete targets. An
example of such work includes a target counting protocol for
a sensor network consisting of seismic sensors implemented by
[7]. In another example, a sensor network consisting of mul-
tiple cameras was designed to count the number of people in
a crowd [8]. Chemical sensor arrays, consisting of an array of
semi-selective chemical sensors, can distinguish among a dis-
crete set of substances and represent another application [9].
[10] proposed an abstract sensor network model for discrete
target location. A coding-based approach was demonstrated
to bound the minimum number of sensors required for discrim-
ination, but no notion of sensing capacity was considered.

Our sensor network model is motivated by the following
specific scenarios. In a seismic sensor network, each sensor
can count the number of targets it senses (based on the in-
tensity of vibration). Each sensor is affected by targets in
several locations within a region, randomly distributed due
to variations in soil composition. In a camera-based people-
counting scenario, the view is broken into a target-sized grid,
where each grid square may contain at most one person. In
this scenario, each camera is affected by several grid squares
randomly, due to random occlusions in its view. In a chemical
sensor array scenario, a complex substance can be modeled as
a discrete vector where each bit represents a constituent com-
pound. Each sensor in the array responds to a random subset
of compounds, and the output of the chemical sensor can be
modeled as linear under certain conditions. The output of
such an array can distinguish among different substances. In
large scale image processing to detect sparsely distributed tar-
gets, instead of searching over the entire image, one can break
up the image into a grid and process random combinations
of the grid squares to save computation. Element analysis
provides another scenario of sensor cooperation. Rather than
separately analyzing several substances for a constituent el-
ement, one can view the set of substances as a bit vector,
where ‘1’ indicates the presence of the element. Combinations
of substances can be analyzed (each analysis corresponds to
one sensor) to detect the element.

The model we present here is a first-cut attempt to ab-
stractly characterize the essence of various discrete target de-
tection applications for sensor networks, as motivated by the
above scenarios. Figure 1 shows our sensor network model.
There are k spatial positions that need to be sensed. Each
position may represent an actual region in space, or may have
other interpretations, such as a substance, in the elemental
analysis example. Each position may contain no target or
one target. A k-bit ‘target vector’ v represents the target
configuration in these k positions. The figure shows v =
(0, 0, 1, 0, 1, 1, 1) indicating 4 targets among the 7 positions.
The possible target vectors are denoted vi, i ∈ {1, . . . , 2k}.
We say that ‘a certain v has occurred’ if that vector repre-
sents the true target configuration in the spatial positions.



v  = 0 0 01 1 1 1

x1 = 2 x2 = 1 x3 = 3

y1 = 3 y2 = 1 y3 = 3

Figure 1: Sensor network model with k = 7, n = 3, c = 3.

The sensor network has n identical sensors. Sensor ` is con-
nected to (i.e., senses) exactly c out of the k spatial positions.
Its function is to indicate the number of positions (among the
c positions it senses) x ∈ X = {0, 1, . . . , c} that contain a tar-
get. For example, a seismic sensor can sense the intensity of
vibration to detect the number of targets. Thus, the ‘ideal
output vector’ of the sensor network x depends on the sensor
connections, and on the target vector v that occurs. How-
ever, we assume that each sensor output y ∈ Y is corrupted
by noise, so that the conditional p.m.f. PY |X(y|x) determines
the output. Since the sensors are identical, PY |X is the same
for all the sensors. Further, we assume that the noise is inde-
pendent in the sensors, so that the ‘sensor output vector’ y re-
lates to the ideal output x as PY |X(y|x) =

∏n
`=1 PY |X(y`|x`).

Observing the output y, a decoder (described in detail below)
must determine which of the 2k target vectors vi have actually
occurred.

We define the sensor network S(k, n) as the bipartite graph
showing the connections of the sensors to the k spatial posi-
tions. We assume a simple sensor network model, where each
of the c connections of each sensor is independently made
to a spatial position, chosen equi-probable among the k posi-
tions. Although this model is a simplification of general sensor
networks, it accurately describes the specific sensing scenar-
ios described above. Furthermore, its analysis will, hopefully,
motivate the analysis of more complicated models in the fu-
ture.

III. Sensor Network Capacity Theorem

For such a randomly generated sensor network, the ideal
output x is a function of the sensor network instantiation
s(k, n) and the occurring target vector v. Considering Xi

as the random vector which occurs when vi is the target vec-
tor (i.e., Xi is random because of the random generation of
S(k, n)), we can obtain the p.m.f. of Xi very simply. Since
each sensor counts the number of targets it senses, and its con-
nections are formed independently, PXi(xi) =

∏n
`=1 PXi(xi`).

However, it is important to note that the random vectors Xi

and Xj , associated with a pair of target vectors vi and vj

respectively, are not independent, since the sensor connec-
tions produce a dependency between them. However, the
sensors are independent, given the target vector, so that
PXiXj (xi, xj) =

∏n
`=1 PXiXj (xi`, xj`). Thus, the ‘code-

words’ {Xi, i = 1, 2, . . . , 2k} of the sensor network are non-
identical and dependent on each other, unlike channel codes
in classical information theory.

Given the noise corrupted output y of the sensor network,
we estimate the target vector v which generated this noisy
output by using a decoder g(y). We allow the decoder a
distortion of D ∈ [0, 1]. i.e., if dH(vi, vj) is the Hamming
distance between two target vectors and if we define the tol-
erable distortion region of vi as Di = {j : 1

k
dH(vi, vj) < D},

then given that vi occurred, the probability of error is Pe,i,s =
Pr[error|i, s, xi, y] = Pr[g(y) 6∈ Di|i, s, xi, y]. Averaging this
probability over all sensor networks, we write the average er-
ror probability, given that vi occurred, as Pe,i = E[Pe,i,s]. We
use the maximal average error probability Pe,max = maxi Pe,i

as our error metric.

We define the ‘rate’ of the sensor network as the ratio of tar-
get positions to sensors, R = k

n
. Given a tolerable distortion

D, we call R achievable if the sequence of sensors networks
S(dnRe, n) satisfies Pe,max → 0 as n → ∞. The sensing ca-
pacity of the sensor network is defined as C(D) = max R over
achievable R.

The main result of this paper is to show that the sensing
capacity C(D) of the sensor network is non-zero, and to char-
acterize it as a function of noise PY |X and sensor connections
c. The proof of this result broadly follows the proof of chan-
nel capacity provided by Gallager [11], by analyzing a union
bound of pair-wise error probabilities, averaged over randomly
generated sensor networks. However, it differs from [11] in
several important ways. In our sensor network model, the
distribution of the ‘encoder’ (i.e., sensor network generation)
is fixed. Given the encoder (sensor network), the codewords
are dependent on each other. Further, the ‘codebook’ {xi}
obtained is non-linear, so that techniques used to analyze lin-
ear random codes [12], which use the parity check matrix for
analysis, are not applicable. However, since each sensor in our
network counts the number of targets, our model is symmet-
ric with respect to permutations of the target vector v. This
allows us to use the method of types to group the exponential
number of pair-wise error probability terms into a polynomial
number of (joint) types in order to prove convergence of error
probability.

The statement of the main result requires an explanation
of joint types. Since each sensor counts the number of targets
it observes, and the sensor makes each of its c connections
to the spatial positions independently, therefore for each i,
the distribution of its ideal output Xi depends only on the
type γ = (γ0, γ1) of the ith target vector vi. i.e., only on the
number of 0’s and 1’s in vi. Here, γ0 denotes the fraction of
zeros in vi. Due to this permutation symmetry, PXi(xi) =
P γ,n(xi) =

∏n
`=1 P γ(xi`) for all vi of the same type γ.

Next, we note that the conditional probability PXj |Xi
de-

pends on the joint type of the ith and jth target vectors. i.e.,
Let λ01 be the fraction of positions in vi, vj where vi has bit ‘0’
while vj has bit ‘1’. Similarly, define λ00, λ10, λ11 and define
λ = (λ00, λ01, λ10, λ11). We call λ the ‘joint type’ of vi, vj .
Following the notation introduced in [13], λ ∈ Pk({0, 1}2),
indicating that λ is in the set of joint types of k-bit binary
vector pairs. Again, since each sensor exhibits permutation
symmetry, PXj |Xi

depends only on the joint type λ. i.e.,

PXj |Xi
(xj |xi) = P λ,n(xj |xi) =

∏n
`=1 P λ(xj`|xi`) for all i, j

of the same joint type λ. Since the joint type λ also defines
the type γ of vi, we must have λ00 +λ01 = γ0, λ10 +λ11 = γ1.

To illustrate, Table 1 lists the joint type of 4 vectors vj with
i = 1 (Thus, γ = (5/8, 3/8) here.) As an example, consider
a sensor network where each sensor is connected randomly to



v1 01101000 (5/8,0,0,3/8)
v2 00011110 (2/8,3/8,2/8,1/8)
v3 01000111 (2/8,3/8,2/8,1/8)
v4 00000000 (5/8,0,3/8,0)

Table 1: λ for 4 target vectors vj , with i = 1.

c = 2 spatial positions. Thus, each sensor has an ideal out-
put alphabet X = {0, 1, 2}. Given two target vectors vi, vj of
joint type λ, a sensor will output ‘0’ for both target vectors
only if both its connections are connected to spatial positions
that have a ‘0’ bit in both these target vectors. This hap-
pens with probability (λ00)

2. Table 2 lists the joint p.m.f.
PXiXj (xi, xj) = P γ(xi)P

λ(xj |xi) for all output pairs xi, xj

corresponding to joint type λ.

We specify two probability distributions which we will
utilize in the main theorem. The first is the joint dis-
tribution of the ideal output xi when vi occurs and the
noise corrupted output y caused by it. i.e., PXiY (xi, y) =∏n

`=1 PXiY (xi`, y`) =
∏n

`=1 PXi(xi`)PY |X(y`|xi`). The sec-
ond distribution is the joint distribution of the ideal out-
put xi corresponding to vi and the noise corrupted output
y generated by the occurrence of a different target vector
vj . We can write this joint distribution as Q

(j)
XiY (xi, y) =∏n

`=1 Q
(j)
XiY (xi`, y`) =

∏n
`=1

∑
a∈X PXi(xi`)PXj |Xi

(xj =
a|xi`)PY |X(y`|xj = a). Note that Xi, Y are dependent here,
although Y was produced by Xj because of the dependence
of Xi, Xj .

Since the sensor network exhibits permutation symme-
try, PXiY (xi, y) depends only on the type γ of vi.
Thus, we write PXiY (xi, y) =

∏n
`=1 P γ

XiY (xi`, y`) where

P γ
XiY (xi, y) = P γ(xi)PY |X(y|xi). Similarly, Q

(j)
XiY (xi, y)

depends only on the joint type λ of vi, vj and can
be written as

∏n
`=1 Qλ

XiY (xi`, y`) where Qλ
XiY (xi, y) =∑

a∈X P γ(xi)P
λ(xj = a|xi)PY |X(y|xj = a). We are now

ready to state the main theorem of this paper.

Denoting D(P ||Q) as Kullback-Leibler distance and H(P )
as entropy, the sensing capacity, at distortion D is bounded
as,

Sensing Capacity Theorem.

C(D) ≥ CLB(D) = min
γ

min
λ

λ01+λ10>D
λ00+λ01=γ0
λ10+λ11=γ1

D
(
P γ

XiY ‖Qλ
XiY

)

H(λ)−H(γ)
(1)

where γ = (γ0, γ1) and λ = (λ00, λ01, λ10, λ11) are two arbi-
trary probability mass functions.

From the definition of Qλ
XiY , we notice that if the ‘code-

words’ Xi were independent, the Kullback-Leibler distance in
(1) would reduce to the mutual information between Xi and
its noisy version Y . Further, the denominator in (1) accounts
for the non-identical distribution of the codewords. The min-
imization over the joint type appears, because the closest pair
of codewords dominates the error probability. Thus, the ‘sens-
ing capacity’ is similar to classical channel capacity, with dif-
ferences arising due to non-identical, dependent codeword dis-
tribution.

PXiXj
Xj = 0 Xj = 1 Xj = 2

Xi = 0 (λ00)2 2λ00λ01 (λ01)2

Xi = 1 2λ00λ10 2 (λ10λ01 + λ00λ11) 2λ01λ11

Xi = 2 (λ10)2 2λ10λ11 (λ11)2

Table 2: Joint distribution of Xj and Xi in terms of the
joint type λ of vj and vi. Each sensor makes c = 2
connections.

Proof. We assume a maximum-likelihood decoder gML(y) =
arg maxj PY |X(y|xj). For this decoder, we consider Pe,max =
maxi Pe,i, where Pe,i is averaged over the random sensor net-
work. We seek to bound Pe,i, which we write out below.

Pe,i =
∑

xi∈Xn

∑
y∈Yn

PXi(xi)PY |X(y|xi)Pr[error|i, xi, y] (2)

We bound the expression Pr[error|i, xi, y] by defining events
Aij = {xj : PY |X(y|xj) ≥ PY |X(y|xi) | i, xi, y} and using
the union bound. Since decoding to a j 6∈ Di results in error,

Pr[error|i, xi, y] ≤ P


 ⋃

j 6∈Di

Aij


 ≤

∑

j 6∈Di

P (Aij) (3)

We proceed to bound the probability P (Aij). For any sij ≥ 0:

P (Aij) =
∑

xj∈Aij

PXj |Xi
(xj |xi)

≤
∑

xj∈Xn

PXj |Xi
(xj |xi)

PY |X(y|xj)
sij

PY |X(y|xi)sij
(4)

Using (3) and (4) in (2),

Pe,i ≤
∑

xi∈Xn

∑
y∈Yn

PXi(xi)PY |X(y|xi)·

∑

j 6∈Di

∑
xj∈Xn

PXj |Xi
(xj |xi)

PY |X(y|xj)
sij

PY |X(y|xi)sij
(5)

The bound (5) has an exponential number of terms.
However, it was argued earlier that in our sensor network,
PXi(xi) = P γ,n(x) depends only on the type γ of the ith tar-
get vector, while PXj |Xi

(xj |xi) = P λ,n(xj |xi) depends on

the joint type of the ith and jth target vectors . Thus, we can
rewrite (5) by grouping terms according to their joint type λ.

∑

j 6∈Di

∑
xj∈Xn

PXj |Xi
(xj |xi)

PY |X(y|xj)
sij

PY |X(y|xi)sij
=

∑

λ∈Si(D)

β(i, λ; k)
∑

xj∈Xn

P λ,n(xj |xi)
PY |X(y|xj)

sλ

PY |X(y|xi)sλ
(6)

where

Si(D) = {λ : λ ∈ Pk({0, 1}2), λ01 + λ10 > D,

λ00 + λ01 = γ0, λ10 + λ11 = γ1} (7)

and where we choose sij = sλ for all {i, j} of joint type λ.
Here β(i, λ; k) is the number of vectors vj which have a joint



type λ with respect to vi. This is bounded as,

β(i, λ; k) =

(
k

kλ00,kλ01,kλ10,kλ11

)
(

k
kγ0,kγ1

) ≤ 2k(H(λ)−H(γ)) (8)

Combining equations (5),(6) and (8),

Pe,i ≤
∑

xi∈Xn

∑
y∈Yn

P γ,n(xi)PY |X(y|xi)·

∑

λ∈Si(D)

2k(H(λ)−H(γ)) ·
∑

xj∈Xn

P λ,n(xj |xi)
PY |X(y|xj)

sλ

PY |X(y|xi)sλ

Since we are bounding a probability, the following bound also
holds for ρλ ∈ [0, 1] and sλ = 1

1+ρλ
.

Pe,i ≤
∑

xi∈Xn

∑
y∈Yn

P γ,n(xi)PY |X(y|xi) ·
∑

λ∈Si(D)

(
2k(H(λ)−H(γ))

·
∑

xj∈Xn

P λ,n(xj |xi)
PY |X(y|xj)

1
1+ρλ

PY |X(y|xi)
1

1+ρλ

)ρλ

(9)

Using the independence of the sensor outputs, the joint p.m.f.s
can be simplified as below.

Pe,i ≤
∑

λ∈Si(D)

2ρλk(H(λ)−H(γ))

·
( ∑

ai∈X

∑

b∈Y
P γ(ai)PY |X(b|ai)

1
1+ρλ

·

 ∑

aj∈X
P λ(aj |ai)PY |X(b|aj)

1
1+ρλ




ρλ )n

(10)

We define the following quantity.

E(ρλ, λ) = − log

( ∑
ai∈X

∑

b∈Y
P γ(ai)PY |X(b|ai)

1
1+ρλ

·

 ∑

aj∈X
P λ(aj |ai)PY |X(b|aj)

1
1+ρλ




ρλ )
(11)

Since the number of types of λ is upper bounded by (k + 1)4,
and k = dnRe, implying k < nR + 1, (10) is bounded as,

Pe,i ≤ max
λ∈Si(D)

min
0≤ρλ≤1

2
−n

(−4 log(nR+2)
n

)

· 2−n(−(1+ 1
nR

)ρλR(H(λ)−H(γ))+E(ρλ,λ))

We seek to bound maxi Pe,i. However, Pe,i only depends on
the type γ of vi. Thus, we have the bound,

Pe,max ≤ 2−n(−o1(n)+Er(R,D))

Er(R, D)=min
γ

min
λ∈S(D)

max
0≤ρλ≤1

(E(ρλ, λ)−ρλR(H(λ)−H(γ)))

o1(n) =
4 log(nR + 2)

n
+

1

n
ρλ(H(λ)−H(γ)) (12)

where γ = (γ0, γ1) is over all p.m.f.s, and S(D) is as in (7),
with γ. Note that o1(n) → 0 as n → ∞, so we have not
included it in the error exponent Er(R, D). Observing that
E(0, λ) = 0 ∀ λ, we let ρλ go to zero, rather than optimizing

it, thus resulting in a lower bound on Er(R, D). In the above
expression, this implies that in order for R to be achievable
E(ρλ,λ)

ρλ
−R(H(λ)−H(γ)) must be positive for all γ, λ, even as

ρλ → 0. But this implies that the derivative of E(ρλ, λ) with
respect to ρλ at ρλ = 0 must be greater than R(H(λ)−H(γ)).
We write this derivative below.

∂E(ρλ, λ)

∂ρλ

∣∣∣∣∣
ρλ=0

=
∑

ai∈X

∑

b∈Y
P γ(ai)PY |X(b|ai)

· P γ(ai)PY |X(b|ai)∑
aj∈X P γ(ai)P λ(aj |ai)PY |X(b|aj)

=
∑

ai∈X

∑

b∈Y
P γ

XiY (ai, b)
P γ

XiY (ai, b)

Qλ
XiY (ai, b)

= D(P γ
XiY ‖Qλ

XiY )

Using this derivative in the analysis above, and dropping the
condition λ ∈ Pk({0, 1}2) from the definition (7) of S(D)
(thus, weakening the bound), we see that the sensor network
can achieve any rate R bounded as below.

R ≤ min
γ

min
λ

λ01+λ10>D
λ00+λ01=γ0
λ10+λ11=γ1

D
(
P γ

XiY ‖Qλ
XiY

)

H(λ)−H(γ)
(13)

IV. Capacity bound examples

We compute the capacity bound CLB(D) in (1) for various
distortions, noise levels, and sensor resolutions. The sensor
noise model assumed is that the probability of counting error
decays exponentially with the error magnitude. In the figures,
‘Noise = p’ indicates that for a sensor, P (Y 6= X) = p, with
Y = X assumed. Also, ‘sensor resolution’ in bits is simply
log2(c + 1). In Figure 2, we demonstrate CLB(D) for vari-
ous sensor noise levels and sensor resolutions. In all cases,
CLB(D = 0) = 0, since each sensor only has a fixed number
of connections. Other obvious conclusions about the effect of
noise and resolution can also be drawn.

Figure 3 shows CLB(D) at D = 0.1, as a function of
sensor noise level. This figure demonstrates that the ran-
dom sensor network is more efficient than a strategy of sim-
ple sensor replication, which is a popular practical method
to minimize error probability. For example, for 2-bit sen-
sors, a rate of 0.26 is achievable at noise level 0.2. If in-
stead, each sensor is replicated thrice (thus, requiring three
times as many sensors, while also reducing the noise level to
3× (0.2)2×0.8+(0.2)3 = 0.1 due to majority-decoding), then
the resulting rate falls to 0.26/3 = 0.087. For a noise level of
0.1, CLB(0.1) equals 0.43 for a 2-bit sensor. Thus, the bound
indicates that cooperative sensor strategies are significantly
more efficient than sensor replication.

V. Empirical Evaluation of Capacity

We used the belief propagation algorithm [14] to decode
randomly generated sensor networks in order to empirically
demonstrate a capacity effect. Though this algorithm is sub-
optimal for graphs with cycles such as our sensor network
model, belief propagation has proven effective in decoding
other graphs with cycles, such as the graphs associated with
LDPC codes.



0 0.025 0.05 0.075 0.1 0.125 0.15

0.2

0.4

0.6

0.8

1

1.2

1.4

Distortion      D

R
at

e 
   

 (
  T

ar
ge

t P
os

iti
on

s 
/ S

en
so

rs
  )

Bits: 1 Noise: 0.10
Bits: 2 Noise: 0.10
Bits: 2 Noise: 0.05
Bits: 2 Noise: 0.01
Bits: 3 Noise: 0.10

Figure 2: CLB(D) at various noise levels and resolutions.

Borrowing from [14], we introduce the following notation
in order to describe the belief propagation algorithm for our
sensor network model. We denote the set of targets sensed by
sensor ` by M(`). Analogously, we define L(m) as the set of
sensors that sense the target m. We denote the set M(`) with
target m excluded by M(`)\m, and similarly we denote the
set L(m) with sensor ` excluded by L(m)\`. The algorithm
consists of two parts, where two sets of quantities, qm` and
rm`, are iteratively updated. For v ∈ {0, 1}, the quantity qv

m`

is the probability that the value vm of target m in v has the
value v given the observations of all sensors except sensor `.
The quantity rv

m` corresponds to the probability of sensor `
generating the observed value y` given that target m is fixed at
the value v and the other targets have a separable distribution
given by the probabilities {qm′` : m′ ∈ M(`)\m}. Finally, let
p0

m = P (vm = 0) and p1
m = P (vm = 1) represent the prior

probabilities of the target bits of the target vector. We now
proceed to describe the belief propagation algorithm for our
sensor network model.

We initialize the algorithm by letting q0
m` = p0

m and q1
m` =

p1
m. In the sensor step of the algorithm we compute the rm`

quantities using the following expressions.

r0
m` =

c∑

b=0

PY |X(y`|b)·
∑

v′∈{vm′ :m′∈M(`)\m}
P (x` = b|vm = 0, v′)

∏

m′∈M(`)\m

q
vm′
m′`

r1
m` =

c∑

b=0

PY |X(y`|b)·
∑

v′∈{vm′ :m′∈M(`)\m}
P (x` = b|vm = 1, v′)

∏

m′∈M(`)\m

q
vm′
m′`

The conditional probabilities of the sensor output given the
target bits in the above expressions equal one if the target bits
connected to sensor ` contain b ones, and zero otherwise. The
target step takes the computed rm` values and uses them to
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Figure 3: CLB(D = 0.1) as a function of sensor noise.

compute new qm` values as shown in the expressions below.

q0
m` = αm`p

0
m

∏

`′∈L(m)\`

r0
m`′

q1
m` = αm`p

1
m

∏

`′∈L(m)\`

r1
m`′

where αm` = q0
m` + q1

m`

After a fixed number of iterations one can halt the algorithm
and compute the probabilities of each target bit as shown
below. These probabilities can be used to decode the target
vector.

q0
m = αmp0

m

∏

`∈L(m)

r0
m`

q1
m = αmp1

m

∏

`∈L(m)

r1
m`

where αm = q0
m + q1

m

Using our decoding algorithm we empirically examined sen-
sor network performance as a function of rate. We generated
sensor networks of various rates by setting the number of tar-
gets at 200, and varying the number of sensors. We chose the
number of connections per sensor to be three, the distortion
level to be 0.1, and the noise level to be 0.1 (P (Y 6= X) = 0.1,
with Y = X ). As in the previous section, we assume that the
probability of counting error decays exponentially with error
magnitude. For each possible target vector type, γ, we em-
pirically evaluated the average error rate of a set of randomly
generated sensor networks using belief propagation. We plot-
ted the maximum error rate over all types for each rate value
as shown in Figure 4. In addition, we plotted the average er-
ror rate over a set of randomly generated test vectors without
regard to test vector types. As expected, the average error
converges to zero more quickly than the maximum type error
curve. The capacity value CLB for the model used in this
experiment is 0.434. Since belief propagation is suboptimal,
and given that the error curves converge to zero at rates above
0.434, it appears that our capacity lower bound is not tight.
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Figure 4: Maximum (over all target vector types) and
average empirical error rate of belief propagation based
decoding of sensor networks as a function of rate, and the
corresponding lower bound on sensing capacity.

VI. Extensions of the Sensor Network Model

We consider two straight-forward extensions to our sensor
network model. The first extension considers non-binary tar-
get vectors. Binary target vectors indicate the presence or
absence of targets at the spatial positions. A target vector
over a general finite alphabet may indicate, in addition to the
presence of targets, the class of a target, or the intensity or
concentration of each target. Assuming a target vector over
alphabet A, and a sensor model in which a sensor can indi-
cate either the number of occurrences of each letter of A that
it senses, or the sum of those letters, we obtain the capacity
bound below.

C(D) ≥ CLB(D) = min
γ

min
λ∑

a 6=b λab>D∑
b λab=γa

D
(
P γ

XiY ‖Qλ
XiY

)

H(λ)−H(γ)

where γ = (γa, a ∈ A) and λ = (λab, (a, b) ∈ A2) are two
arbitrary probability mass functions.

The second extension considers the case of heterogenous
sensors, where each class of sensor has a different output al-
phabet Y and noise model PY |X . Let the sensor of class l be
used with a given relative frequency αl. For such a model,

C(D) ≥ CLB(D) = min
γ

min
λ

λ01+λ10>D
λ00+λ01=γ0
λ10+λ11=γ1

∑
l αlD

(
P γ,l

XiY ‖Qλ,l
XiY

)

H(λ)−H(γ)

where γ = (γ0, γ1) and λ = (λ00, λ01, λ10, λ11) are two arbi-
trary probability mass functions.

VII. Conclusions

We introduced a notion of sensing capacity for discrete tar-
get detection. We proved a lower bound to this ‘sensing ca-
pacity’ (as opposed to ‘channel capacity’) and computed the
bound for an illustrative example at various sensor resolu-
tions, noise levels, and tolerable distortions. By examining
this bound, we concluded that under some situations, simple
sensor replication is inefficient compared to sensor coopera-
tion. We derived a belief propagation algorithm for decoding
our sensor network model, and used it to empirically evaluate
capacity in order to compare this quantity to our lower bound.
Future work will concentrate on generalizing the sensor net-
work model and improving the bound.
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