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Absrract — We apply the idea of space-time coding devised
for multiple-antenna systems to the preblem of communications
over wircless relay networks. A two-stage protocol is used, where
in one stage the transmitter sends information and in the other,
the relay nodes encode their received signals into a “distributed”
linear dispersion code, and then transmit the coded signals to the
receiver. We show that for high SNR the proposed system has a
diversity of order ag min{T, R}, with T" the coherence intcrval,
R the number of relay nodes, and o the solution to the equation
q+ioEe — ]—"lgo:’%, where P is the tota] transmit power in the

log P
network. In particular, we show that the pairwise error probability

(PEP) decays no slower than (%ﬂ)m'n{T'R}. Thus, apart from
the log P factor and assuming T > R, the system has the same
diversity as a multiple-antenna system with R transmit antennas
and one receive antenna, which is the same as assuming that the
A relay nodes can fully cooperate and have full knowledge of the
transmit signal. We further show that for a fixed total transmit
power across the entire network, the optimal power allocation is
for the transmitter to expend half the power and for the relays to
collectively expend the other half. We also show that at low and
high SNR, the coding gain is the same as that of multiple-antenna
systems. However, at intermediate SNR, it can be quite different.
We discuss some of the ramifications of using different space-time
codes and finally verify our amalysis through the simulation of
randomly generated distributed space-time codes.

[. INTRODUCTION

It is koown that multiple antennas can greatly increase the capacity
and reliability of a wireless communication lnk in a fading environ-
ment using space-time codes [1, 2, 3, 4]. Recently, with the increasing
interests in ad hoc networks, researchers have been looking for meth-
ods to exploit spatial diversity using the antennas of different users in
the network [3, 6, 7, 8, 91. In (81, the authors exploit spatial diversity
using the repetition and space-time algorithms. The mutual informa-
tion and outage probability of the network are analyzed. However, in
their model, the relay nodes need to decode their received signals. [n
[9], a network with a single relay under different protocols is analyzed
and second order spatial diversity is achieved. In [10], the authors use
space-time codes based on Hurwitz-Radon matrices and conjecture a
diversity factor around R/2 from their simulations. Also, the simula-
tions in [11] show that the use of Khatri-Rao codes lowers the average
bit error rate. In this paper, we consider a relay network with fading
and apply a linear dispersion space-time code [12] among the relays.
The problem we are interested in is: “Can we increase the reliabil-
ity of a wireless network by using space-time codes among the relay
nodes?”

A key feature of our work is that we do not require the relay nodes
to decode. This has two main benefits: first, the operations at the
relay nodes are considerably simplified, and second, we can avoid
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imposing bottlenecks on the rate by requiring some relay nodes to
decode (see e.g., [13]).

The wireless relay network model we use is similar to those in
[14, 15]. In [14], the authors show that the capacity of the wireless
relay network with n nodes behaves like logn. In [15], a power
efficiency that behaves like /n is obtained. Both results are based
on the assumption that every relay node knows its local channels so
that they can work coherently. Therefore, for the results of [14] and
[15] to hold, the system should be synchronized at the carrier level.
In this paper, we assume that the relay nodes do not know the channel
information. All we need is a much more reasonable assumption that
the system is synchronized at the symbol level.

First, we focuses on the basic results on cooperative diversity
gain achieved using simple linear dispersion codes among the dis-
tributed relay nodes. Our work shows that using linear dispersion
space-time codes among the relay nodes can achieve a diversity of
min{T, R} (1 - 1_:%)1;%_1:)' When T > R, the transmit diversity is
linear in the number of relays (size of the network) and is a fonction of
the average total transmit power. When P is very large, the diversity
is approximately R. The coding gain for very large P (P ¥ log £)
is det (S — 557 (S: — S;). where S; and S; are codewords in the
distributed space-time code. Therefore, at asymptoticaily high SNR,
the same transmit diversity and coding gain are obtained as in the
multiple-antenna case, which means that the system works as if the
relays can fully cooperate and have full knowledge of the signal.

Then, we slightly improve the diversity gain achieved and prove
the optimality of the result. We also consider a more general type
of linear dispersion codes which includes Alamouti’s scheme as a
special case. The same diversity gains are achieved using this more
general type of linear dispersion codes. However, the coding gain
can be improved, We also simulate the performance of wireless relay
networks using distributed space-time codes and compare with that
of multiple-antenna systems using the same space-time codes.

II. WIRELESS RELAY NETWORK

Consider a wireless network with R + 2 nodes which are placed ran-
domly and independently according to some distribution. There is
one transmit node and one receive node. All the other R nodes work
as relays. Every node huas one antenna and antennas at relay nodes
can be used for both transmission and reception. Denote the channel
from the transmitter to the 4th relay as f;, and the channel from the
ith relay to the receiver as g;. Assume that f; and g; are independent
complex Gaussian with zero-mean and unit-variance, If the fading
coefficients f; and g; are known to relay i, it is proved in {14] and
[15] that the capacity behaves like log R and a power efficiency that
behaves like +/R can be obtained. However, these results rely on the
assumption that the relay nodes know their local connections, which
requires the system to be synchronized at the carrier level. in this
paper, we make the much more practical assumption that the relay
nodes are only coherent at the symbol level. In our relay network,
we assurne that the relay nodes kaow only the statistical distribution
of the channels. However, we make the assumption that the receiver
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knows all the fading coefficients f; and g;. Its knowledge of the chan-
nels can be obtained by sending training signals from the relays and
the transmitter. Qur main question is what gains can be obtained?
There are two types of gains: improvement in the outage capacity
and improvement in the PER. In this paper, we focus on the latter.

relays
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Figure 1: Wireless relay network

Assume that the transmitter wants to send the signat s =
[s2:- -+ .57} in the codebook {s1, -+ s} to the receiver, where
L is the cardinality of the codebook. 3 is normalized as

Es's=1. [€))]

s' and 5™ indicates the transpose and conjugate transpose of s, respec-
tively. The transmission is accomplished by the following two-step
strategy. which is also shown in Fig 1. From time 1 to T, the trans-
mitter sends signals P T s:,--- , vV AT sr toeach relay. Based on
(1), the average total transmit power of the 7" transmissions is P, 7.
The received signal at the ith relay at time 7 is denoted as r; -, which
is corrupted by the noise v; -. From time 7' + 1 to 27T, the ith relay
node transmits &;,;, - - - , ;7 to the receiver based on its received sig-
nals. We denote the received signal at the receiver at time 7 + 7 by
v, and the noise at the receiver at time 7 + 7' by w-. Assume that
the noises are complex Gaussian with zero-mean and unit-variance,
that is, the distribution of v;,, @, are CA/(0, 1). Define

Ti,1 i1 wh

B

, Ti= c =], W= , and x=

Vi,T Ti,T, i:,T, wT, T

If fi and g; keep constant for T transinissions, clearly

R
r;i = VP T fis + vi, and x=Zg¢t1—+w.

i=1

111. DISTRIBUTED SPACE-TIME CODING

From the above description, it is clear that if the transmission rate is
sufficiently low, then all the relay nodes can decode the transmitted
message. In this case, the relay nodes can act as a multiple-antenna
system with R transmit antennas and one receive antenna and there-
fore communicatjons from the relay nodes to the receiver can achieve
diversity R. This approach, however, will require a substantial reduc-
tion of the rate and we will not consider it. We will instead focus on
the diversity achievable without requiring the relay nodes to decode.'

In this paper, we use the idea of the linear dispersion space-time
code [12] for multiple-antenna systems by designing the transmitted

LA combination of requiring some retay nodes to decode and others to not.
may also considered. However, in the interest of space, we shall not do so
¥y
here.

signal at every relay node as a Tinear function of its received signal.t
that is,

ti =4/ P)/(P[ + 1)Airl, (2)

where A; is a T x T matrix, While within the framework of lin-
ear dispersion codes, the T' x T' matrices A; can be guite arbitrary
(apart from a Frobenius norm constraint), to have a protocol that is
equitable among different users and among different time instants, we
shall henceforth assume that the A; are unitary. This also simplifies
the analysis considerably. With the normalization in (2), the average
transmit power at every relay node is P per transmission,
The received signal can therefore be written as,

PRT/(PL+ 1)SH+ W, (3)
where we have defined

S:[A;s ARS],

H = [ Hhor - frgn ]t,

and

R
W=P/(Pr+ 1) gidivi +w.
=1

(3) shows that the T x R matrix 5§ works like the space-time code
in muitiple-antenna systems. We call it the distributed space-time
code to emphasize that it has been generated in a distributed way by
the relay nodes, without having access to s. i, which is R x 1, is the
equivalent channel matrix and W, which is T' x 1, is the equivalent
noise. W is clearly influenced by the choice of the space-time code.

When both f; and g, are known to the receiver, it can be calcu-
lated that x|s; is Gaussian with mean /PLBT/ (P + 1)5:H and

variance (1 + P/(Pr+1) Z;il |g,‘|2) I7. Therefore,

&

v 2
5 R - 3 — jl,#r-s,-u
2 R 2
P N = 1 2 l_2 Lokt 2,5 8

N R S e

from which the ML decoding can be written as
2
arg min ”x — VPRI P+ I)S,-H“ , @
8

where || - || indicates the Frobenius norm. Since 5; is linear in s;, (4)
is equivalent to the decoding of a linear system and sphere decoding,
can be used [18, 19].

Theorem 1 (Chernoff bound on the PEP). Wirth the ML decoding
in (4), the PEP. averaged over the channel coefficients, of misiaking
s; by s, has the following Chernoff bound.

Pe<Edet ! tIg+ PIP"TR ;5
9 4(1+P1 + P Et:l |glt2)
where M = (S — 8;)*(8i — ;). G = diag {i;1[*, -+ , l9rl*},

and det indicates the determinant.

We omit the proof due to the lack of space.® Let’s compare {5)
with the Chernoif bound on the PEP of a multi-antenna system with

®Note that the conjugate of r;, 71, does not appear in (2). The case with 77
will be discussed later in Section VIL
*For proofs of all the theorems and Corollary, see [16] and {171,
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R transmit antennas and one receive antenna (the receiver knows the
channel) [4, 20]:

Pe < det [IR + = M]

The dilference is that now we need to do the expectations over g;.
Before that, similar to the multiple-antenna case, the “full diversity”
condition can be obtained from (5). It is easy to see that if S; — 8
drops rank, the upper bound in (5) increases. Therefore, the Cher-
noff bound is minimized when S; — S5 is full-rank, or equivalently,
det M # 0.

I[V. POWER ALLOCATION

Now let’s discuss the optimum power allocation between the trans-
mitter and relays that minimizes the PEP. Because of the expecta-
Lions over g;, this is easier said than done. We shall therefore do this
approximately. Note that g = il lgi|? has the Gamma distribu-
tion whose mean and variance are both B. Thus, by the taw of large
numbers, almost surely %g — | when @ — co. It is therefore rea-
sonable to approximate g by its mean, i.e., g = R, especially for
large R. Therefore, (5) becomes

PRT

I ——
R+4(1+P1+PQR)

Pe S Fdet™! MG| . (6)
9

We can see that the upper bound in (6) is minimized when
PiRAT/A(1 + Py + P2 R) is maximized,

Assume that the total power consumed is PT for transmissions of

T symbols, Since the powers used at the transmitter and every relay

are P and P» for each transmission, ” = P; 4+ RF,. Therefore, for
P>1,

P PT < Pir L T (7)
41+ P+ RR ~16R(L+ P) ~ 16R
with equality when
r P
P = — = —, 8
1= and % B (8)

Therefore, the optimum power allocation is such that the transmitter
uses half the total power and the relays share the other half fairly. For
large R, the relays spend only a very small amount of power to help
the transmitter. With this optimum power allocation, for P 3> 1, (5)
becomes

Pe X Edet™ MG| . )
2

e PT
Rt
8(R+ 3L, o)

V. BAsIC DIVERSITY RESULTS

As mentioned earlier, to obtain the diversity we need to compute the
expectation in (5). We shall do this rigorously later. However, since
the calculations are detailed and give litte insight, we begin by giving
a simple approximate derivation which leads to the same diversity
resull. As discussed in the previous section, when R is large, g = R
with high probability. We use this approximation first to simplify the
derivation, We upper bound the PEP using the minimum nonzero

singular value of M, which is denoted as &%, From {5) and (7),

A

E det ~ [ dlag {Zrank ar, U}G]

lﬁR

rank M PTG‘

-1
E i
o H ( T )
_ rank A
/m 1+Ez 1371(117
A 16K

PTO'2 —rank M _ien 16R rank M
- e T Trel B | -—— s
(&) | P

where Bi(x) = [, ~»dt, x < 0 is the exponential integral func-
tion [22]. Also,

Y

)k k
Ei(x) = ¢+ log( x)+2 T

with ¢ the Euler constant and log the natural togarithm. For P >» 1,
1617

_sp
e "Tmin = 1and —Ei (7 165

ﬁ.;g—) = log P. Therefore,

min

Pe 5 )mnk A

(16R/Torn (log P/ P)y™="kM
(16R/T0%,) " M prome M (=557) - (40)

If M is full rank, diversity, min{T, R} (1 - l"—‘fﬁ,ﬁ), is obtained.
Therefore, similar to the multiple-antenna case, there is no point
in having more relays than the coherence interval. Thus, we will
henceforth assume T > R. The transmit diversity is therefore
R (1 - —”%}E—P) (10} also shows that the PEP is smaller for big-

ger coherence interval T. A rigorous result is given in the following
theorem.

Theoremn 2. Design the transmit signal ai the ith relay node as in (2)
and use the power aflocation in (8). For full diversiry of the space-
time code, asswne T > R. Forany z > 0,

2

14, < <SR

et ‘1[1\4’],‘1‘... ik

k
oy Bk . . —;
(1-e7) Z Bri(R-k)z.zld k) [~Ei(—z)]*7,
=0
where
K k—iy k—iy—r—ijoy
Bl = (5)L X
i1=1 ig=1 i;=1
kN R—ii—ee—ija
i1 iy
Ty, z) - Ty, ) AP~ =0
and M, i is the k x k matrix composed by the 61, -+, ixth

rows and columns of M.

Idea of the proof: To upper bound the / integrals in (5), we first
break every integral into two parts: the integration from 0 to z and
the integration from « to o, and then upper bound every one of the
resulting 27 terms. 0
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Corollary 1. {flogP > 1,

Pe det T M i o i
k=0 1€i) <--<ix &R
k
> Brolk~LE)log' P (1D)
=0
fR>»1
1 - (8RN
Pe 3 PR E (",T:) Z det MM, e log® P (12)
k=0 1€ < <ip <R

Proof: Choose z = 1/P. (11} is obtained by ignoring higher
order terms of 1/P. When R 3 1, Ba{0,k) >> Bg{l, k) for all
! > O since Bg(0, k) = RF is the term with the highest order of R.

Therefore, (12} is obtained from (11), A
Thek={= Rtermin (11},
1 8Rlog P R
M ————
det ( TP

R »
- det’lM(%) prR(-1EE5) (13)

has the highest order of P. Therefore, diversity, R (1 -~ l—%-%g-"—;‘,ﬁ),
is obtained.

In multiple-antenna systems with R transmit antennas and one re-
ceive antenna, at high transmit power, the PEP has the upper bound
prdet ~*M (4)". Comparing this with the highest order term
given in (13), we can see the relay network has a performance that is

{3+ 10log,,log P)dB (14)

worse, where log,, indicates the base 10 logarithm, This analysis is
verified by simulations in Section VIIL

Corollary 1 also gives the coding gain for networks with large
number of relay nodes. When P is very large {log P > 1), the dom-
inant term in (12) is (13). The coding gain is therefore det ™" Af,
which is the same as the multiple antenna case. When P is not very
large, the second term (the & = R — | term ) in (12) cannot be
ignored and even the k = 3,4,--- terms have non-negligible con-
tributions. Therefore, we want not only det A to be large but also
det{M];,,....q, tobelarge forall0 < k < R, 1 <4 < +- <ip £
R. Note that

(Mliy o o= (S5)ia, o = Silir e i) (Silins i = [Silin i)

where {Sili,, i, = (Ai8i,o0+, Ai.s¢) is the space-time code
when only the i1, --- ,ixth relay nodes are working. To have a good
performance for not very large transmit power, both Theorem 2 and
Corollary 1 indicate that the distributed space-time code should have
the property that it is “scale-free” in the sense that it is still a good
distributed space-time code when some of the relays are not working.
(f P « 1, with the approximation 3"  1g:|* ~ £ and the power
allocation given in {8), (9) can be calculated to be

2

PT 2
<1-—- tr A
Pe 3 T d + o( P,

where tr indicates the trace. Similar to the multiple-antenna case,
the coding gain is tr M. The design criterion is to maximize tr A1,

V1. IMPROVEMENT IN DIVERSITY

In Corollary 1, we have chosen & = 1/ P, which turns out to not give
the tightest bound. In fact, we can improve the diversity slightly.

Theorem 3. The best diversity that can be obtained using the dis-
tributed space-time code in (2) is ca R. where oo is the solution of

loga

_loglog P
log P~ ’

log P

a-+ (15)

fP>»logPand B3 1,

R k

8R _ e

P> ("T") 7 o det UMy o i PTOOR (16)
k=0 1€ < <SR

There is no closed-form solution for equation (15). The following
theorem gives a region of «p.

Theorem 4. For P > e,

loglog P

- log log P
log P{log P — loglog P)’

log P

log log P

<op <1
oo log P

In terms of diversity, Theorem 4 indicates that the PEP Cher-
noff bound of the distributed space-time codes decreases faster than

R
S e rra T
Loz £}~ TEP—TEToE .
{log 2) . ) . When Pis

(el R and slower than

large (P 3> log P), 1 — 1—9{50-1;]—;‘,3 is a very accurate approXimation of
cp. The improvement in diversity is smail.

Now let’s compare (16) with (12). A slightly better transmit diver-
sity is obtained as discussed above. However, the coding gain in (16)
is smaller. To compare the two, we assume that the singular values
of M take their maximum value, v/2, and R = T. The coding gain
of (16) can be calculated to be 5% The coding gain of (12) is 4~ &,
The upper bound in (12) is 0.97dB better according to coding gain.
Therefore, when P is extremely large, the new upper bound is tighter
than the previous one singe it has a larger diversity. Otherwise, the
previous bound is tighter since it has a larger coding gain.

VII. A MorgE GENERAL TYPE OF DISTRIBUTED
SPACE-TIME CODES

Nete that 77 does not appear in (2). In this section, we work on
a more general type of distributed linear dispersion space-time codes
[12] by designing the transmitted signal at the ith relay node as,

Py

== P=1.2 ...
P1+k 11 bt

t: (A.;l‘,; + Bii-—!'): :Rﬁ (17)
where A;, B; are T x T real matrices. Similar as before, we assume
that A; + B; and A; — B; are orthogonal. By separating the real and

imaginary parts, we can write {17) equivalently as

tire | _ [ Ai + B 0 TiRe

ti,lm P} +1 0 A1, - Bi Yilm
where t; re and t; rm indicate the real and imaginary parts of t;.
The expected total transmit power at the ith relay can therefore be
calculated to be P2 T.

For any T x 1 complex vector x, define the 27" X 1 real vector

-~ XRr
X =

} , (18)

i } . The following system equation can be derived.

XIm
{PLRRT
=V P 1?1{5 + W,

"o
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where the 27" x 2T matrix,

R
H = Z Gi.ge T i imlT A + B; ]
— GitmlIr  girelr 0 Ai— By
fipelr  ~foimir
fitmIr  fimedr |’

is the eguivalent channe! matrix and the 27T x 1 real vector,

w TP [ gindr —giaml
W = Re 2 i,ResT —%iimiT
[ Wim ] + P+l ; GiimIr  girelT
Ai+ B; 0 Vi Re
8 Ay — By Virm |’

is the equivaient noise. Since this system equation is linear in the
unknowns, which are entries of x, sphere decoding can be used.

Using the optimum power allocation in (8), the PEP of mistaking
8; by s; has the following Chernoff upper bound for large P.

R
—i/2 PT '
Pe< Edet ([23 +3 (S 5TNE ;Elgkgk) » 19

where
G = gk, Relr  —girmir A + B 0
k. dm T Gk RedT 0 Ay — By
(8: —85)re  —(8:i —8;)im
(si - Sj)l'm (Si — Sj)Re .

We have not yet been able to explicitly evaluate the expectation in
{19). Our conjecture is that when 7" > R, the same transmit diversity,
R (1 - 1_01%152%_?)_ will be obtained. Here we give an analysis of a
much simpler, but far from trivial, case: for any ¢, either A; = O or
B; = 0. That is, each relay node sends a signal that is either linear
in its received signal or linear in the conjugate of its received signal.
It is clear to see that Alamouti’s scheme is included in this case with

1
R=2,A1:IQ,B1ZU,A2=O,andBQ= 1 U].The
conditions that A; + B; and A; — B; are orthogonal become that A;

is orthogonal if B; = O and B, is orthogonal if A; = 0.

Theorem 5. Design the transmit signal at the ith relay node as in
{17). Use the optimum power allocation in (8). Further assume that
Joranyi = 1,-- | R, either A; = 0or B; = 0. The PEP of
mistaking s; by $; has the following Chernoff upper bound.

PT

Pe<Edet ' |In+ —-—-R—-——-MG , 20)
8(R+ T8, loil?)
where R A R . R
M =(8 - 5;)(8: - 5;)
with
5‘,‘ = [Alsg-}'BlS_i,"' ,AR51+BR§] (21)

a T x R matrix which is the distributed space-time code.

(20) is exactly the same as (9) except that now the distributed
space-time code is S instead of §. Therefore, exact the same trans-
mit diversity is obtained as in Sections V and VI. The coding gain
for very large P (P > log P) is det M. When £ is not very large,
we want not only det M to be large but also all det[M);, ... ;, to be
large. That is, to have good performance for not very large transmit
power, the distributed space-time code should have the property that
it Is “scale-free” in the sense that it is still a good distributed space-
time code when some of the relays are not working.

VIIL. SIMULATION RESULTS

In this section, the performance of LD codes implemented distribu-
tively over wircless relay networks is compared with that of the same
codes in multiple-antenna systems. Since the actual design of LD
codes and their optimality is not an issue, here A; are generated ran-
domly based en the isotropic distribution. The transmit signals at re-
lays are designed as in (2). s, arc designed as independent V*-QAM
signals. The rate of the code is therefore 2 log N.

BER of networks with different T and R

P (08)
Figure 2: BER comparison of networks at different 7" and R

In Fig. 2, we compare the bit error rate (BER) of relay networks
with different cohevence interval T and number of relay nodes R.
From the plot we can see that the bigger R, the faster the BER curve
decreases, which verifies our analysis that the diversity is linear in £
when T" > R. However, the slopes of the BER curves of networks
withT = B =5and T = 10, R = 5 are the same. This verify our
result that the diversity only depends on min{7T, R}, which is always
R in our examples. Increasing T does not improve the diversity.

BER/BLER

P (dB)

Figure 3: Comparison of the relay network with the multiple-
antenna system with T = B = 5 and rate = 2

In Fig. 3, the performance of a relay network with T = R =5 is
compared with a multiple-antenna system with five transmit antennas
and one receive antenna using the same LD code. N = 2. From
the figure we can see that the performance of the multiple-antenna
system is always better than of the relay network at any P. This is
what we expected because in the multiple-antenna system, the trans-
mit antennas of the transmitter can fully cooperate and have perfect
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information of the transmit signal. Also we can see from Fig. 3 that
the BER and BLER (block error rate) of the muitiple-antcnna system
decrease faster than those of the relay network. However, the differ-
ences of the slopes of the curves of the two systems are diminishing
as P increases. Also, at the BER of 1074, the total transmit power
of the relay network is about 37.5dB. Our analysis of {14) indicates
that the performance of the relay network should be 12.36dB worse.
Reading from the plot, we get a 11.5dB difference. This verifies the
correctness and tighiness of our upper bound.

T=10, R=10, rate=

BER/BLER

e [RIAY NRMWAK BER

— = = relay network BLER

e muti-antenna BER

——6-— musti-amanna BLEA H : i 1 |

L] 12 1“4 18 18 20 22 24 o6 28 30
P (dB)

Figure 4: Comparison of the relay network with the multiple-
antenna system with 7' = B = 10 and rate = 2

The next example has T = R = 10 and N = 2. From Fig. 4, the
same phencmenon can be observed.

IX. CONCLUSION
In this paper, the use of linear dispersion space-time codes in wire-
less relay networks 18 proposed. We assume that the transmitier and
relay nodes do not know the channel realizations but only their sta-
tistical distribution. The ML decoding and pairwise error probabil-
ity at the receiver is analyzed. The main result is that the diversity

of the system behaves as min{T, R} (1 - E&LEE—P

that when T > R and the average total transmit power is very high
(P » log P), the relay network has almost the same diversity as a
multiple-antenna system with B transmit antennas and one receive
antenna. It is further shown that, assuming B = T, the leading order

) , which shows

. 3 .
term in the PEP behaves as Tﬁﬁ(—SilTj)l" (5“—"};5) , which com-

pared to ﬁ?t(s,l——s:nﬁ (%)R, the PEP of a space-time code, shows
the loss of performance due to the fact that the code is implemented
distributively and the relay nodes have no knowledge of the trans-
mitied svmbois. We also observe that the high SNR coding gain,
| dex(8; — S;)]72, is the same as that arises in space-lime coding.
The same is true at low SNR where a trace condition comes up.

We then improve the achieved diversity gain slightly (by no more
than O (1%5;7"55‘5)). Furthermore, a more general type of distributed
space-time linear codes is discussed, in which the transmission signal
from each relay node to the receive node is designed as a linear com-
bination of both its received signal and the conjugate of its received
signal. For a special case, which includes the Alamouti’s scheme, ex-
actly the same diversity gain can be obtained. Simulation results on
some randomly generated distributed space-time codes are demon-
strated, which verify our theoretical analysis on both the diversity
and coding gain.
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