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The Capacity Region of the Degraded Finite-State
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Abstract— We consider the discrete, time-varying broadcast
channel with memory under the assumption that the channel
states belong to a set of finite cardinality. We first define thephys-
ically degraded finite-state broadcast channel for which we derive
the capacity region. We then define thestochastically degraded
finite-state broadcast channel and derive the capacity region for
this scenario as well. In both scenarios we consider the non-
indecomposable finite-state channel as well as the indecomposable
one.

I. I NTRODUCTION

The broadcast channel (BC) was introduced by Cover in
1972. In this scenario a single sender transmits three messages,
one common and two private, to two receivers over a channel
defined by

{

X , p(y, z|x),Y × Z
}

. Here, X is the channel
input from the transmitter,Y is the channel output at Rx1
andZ is the channel output at Rx2. In the years following its
introduction the study of the BC focused on memoryless sce-
narios, i.e., when the probability of a block ofn transmissions
is given byp(yn, zn|xn) =

∏n

i=1 p(yi, zi|xi). In recent years,
models of time-varying broadcast channels with memory have
attracted a lot of attention, especially Gaussian BCs. Thiswas
motivated by the proliferation of mobile communications, for
which the channel is subject to time-varying correlated fading.
The correlation of the fading process introduces memory in the
BC. The fading BC is one instance of the general BC with
channel states. While fading BCs have received considerable
attention, discrete, time-varying BCs with channel stateshave
not been well studied. A notable exception is the degraded
arbitrarily varying BC (DAVBC) considered in [2] and [3].
In [2] DAVBCs with causal and non-causal side information
at the transmitter were considered. The states are assumed
i.i.d. and the channel is memoryless:p(yn, zn|xn, sn) =
∏n

i=1 p(yi, zi|xi, si). In [3], the capacity region for DAVBCs
with causal side information at the transmitter and non-causal
side information at the good receiver was derived. In [3] the
state distribution is general and is not subject to the i.i.d.
restriction, but the channel outputs, given the states and the
channel inputs are again memoryless. The general, discrete
BC with i.i.d. states non-causally known at the transmitter
was considered in [4].

The arbitrarily varying channel (AVC) is one model for
a time-varying channel with states. It models a memoryless
channel whose law varies in time in an arbitrary manner. The
state transitions are independent of the channel inputs and
outputs. In this work we study the discrete time-varying BC
with memory in the framework of finite-state channels (FSCs).
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In contrast to the AVC, in the FSC both the channel output
and the current state depend on both the channel input and the
previous state.

The finite-state channel model was used to model point-to-
point channel variations as early as 1953 [1]. This channel is
characterized by the distributionp(y, s|x, s′) whereS is the
current state andS′ is the previous state. For a block ofn
transmissions, the p.m.f. at thei’th symbol time satisfies

p(yi, si|x
i, si−1, yi−1, s0) = p(yi, si|xi, si−1), (1)

wheres0 is the state of the channel when transmission began.
Equation (1) implies thatSi−1 contains all the history infor-
mation for time i. Recently, the finite-state multiple-access
channel was studied in [6]. This scenario is characterized by
the channel distributionp(y, s|x1, x2, s

′), and the work in [6]
also considered the effect of feedback on the rates.

In the present work we study the finite-state broadcast
channel (FSBC). Here, the channel from the transmitter to
the receivers is governed by a state sequence that depends on
the channel inputs, outputs and previous states. The way these
symbols interact with each other is captured by the transition
function p(y, z, s|x, s′).

Main Contributions and Organization

In this paper we consider for the first time the capacity
of the FSBC. Here, there is a unique aspect not encountered
in the point-to-point and the MAC counterparts, namely the
application of superposition coding to the FSC. We initially
define the physically degraded FSBC and find the capacity
region of this scenario. We then define the stochastically de-
graded FSBC and give examples of communication scenarios
represented by this model. We derive the capacity region for
this channel as well.

The rest of this paper is organized as follows: Section II
introduces the channel model. Section III presents a summary
of the results together with a discussion. Lastly, Section IV
outlines the proof of the capacity region for the physically
degraded FSBC.

II. CHANNEL MODEL AND DEFINITIONS

First, a word about notation. In the following we denote
random variables with upper case letters, e.g.X , Y , and their
realizations with lower case lettersx, y. A random variable
(RV) X takes values in a setX . We use||X || to denote the
cardinality of a finite, discrete setX , Xn to denote then-fold
Cartesian product ofX , andpX(x) to denote the probability
mass function (p.m.f.) of a discrete RVX on X . For brevity
we may omit the subscriptX when it is obvious from the
context. We usepX|Y (x|y) to denote the conditional p.m.f. of
X givenY . We denote vectors with boldface letters, e.g.x, y;
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the i’th element of a vectorx is denoted withxi and we use
x
j
i wherei < j to denote the vector(xi, xi+1, ..., xj−1, xj);

xj is short form notation forxj
1, and x ≡ xn. A vector

of n random variables is denoted byXn, and similarly we
define X

j
i , (Xi, Xi+1, ..., Xj−1, Xj) for i < j. We use

H(·) to denote the entropy of a discrete random variable and
I(·; ·) to denote the mutual information between two random
variables, as defined in [7, Chapter 2].I(·; ·)q denotes the
mutual information evaluated with a p.m.f.q on the random
variables. Finally,co R denotes the convex hull of the setR.

Definition 1: Thediscrete, finite-state broadcast channelis
defined by the triplet

{

X×S, p(y, z, s|x, s′),Y×Z×S
}

where
X is the input symbol,Y andZ are the output symbols,S′

is the state of the channel at the end of the previous symbol
transmission andS is the state of the channel at the end of
the current symbol transmission.S, X , Y andZ are discrete
alphabets of finite cardinalities. The p.m.f of a block ofn

transmissions is
p(yn, zn, sn, xn|s0)

=
n
∏

i=1

p(yi, zi, si, xi|y
i−1, zi−1, si−1, xi−1, s0)

=

n
∏

i=1

p(xi|x
i−1)p(yi, zi, si|y

i−1, zi−1, si−1, xi, s0)

(a)
= p(xn)

n
∏

i=1

p(yi, zi, si|xi, si−1), (2)

wheres0 is the initial channel state. Here (a) captures the fact
that givenSi−1, the symbols at timei are independent of the
past.

Definition 2: The FSBC is calledphysically degradedif its
p.m.f. satisfies

p(yi|x
i, yi−1, zi−1, s0) = p(yi|x

i, yi−1, s0), (3a)

p(zi|x
i, yi, zi−1, s0) = p(zi|y

i, zi−1, s0). (3b)

Condition (3a) captures the intuitive notion of degradedness,
namely thatZi−1 is a degraded version ofY i−1, thus it does
not add information whenY i−1 is given. Note that in the
memoryless case this condition is not necessary as, givenXi,
Yi is independent of the history. Condition (3b) follows from
the standard notion of degradedness.

Using conditions (3a) and (3b) we obtain (when
p(yn, xn|s0) > 0)

p(zn|yn, xn, s0)

=
p(zn, yn, xn|s0)

p(yn, xn|s0)

=

∏n

i=1 p(zi, yi, xi|z
i−1, yi−1, xi−1, s0)

∏n

i=1 p(yi, xi|yi−1, xi−1, s0)

=

∏n

i=1p(xi|z
i−1, yi−1, xi−1)

∏n

i=1 p(zi, yi|z
i−1,yi−1,xi,s0)

∏n

i=1 p(xi|yi−1, xi−1)
∏n

i=1 p(yi|y
i−1, xi, s0)

(a)
=

∏n

i=1 p(xi|x
i−1)

∏n

i=1 p(zi, yi|z
i−1, yi−1, xi, s0)

∏n

i=1 p(xi|xi−1)
∏n

i=1 p(yi|y
i−1, xi, s0)

(b)
=

∏n

i=1 p(yi|y
i−1, xi, s0)

∏n

i=1 p(zi|z
i−1, yi, xi, s0)

∏n

i=1 p(yi|y
i−1, xi, s0)

(c)
=

n
∏

i=1

p(zi|z
i−1, yi, s0), (4)

where (a) is because there is no feedback, (b) follows from
(3a) and (c) follows from (3b). We conclude that when (3)
holds,p(zn|yn, xn, s0) = p(zn|yn, s0). Hence,

p(yn, zn|xn, s0) = p(yn|xn, s0)p(z
n|yn, s0). (5)

Note that (4) shows how to obtainp(zn|yn, xn, s0) in a
causal manner. Also note thatZn is a degraded version of
Y n but still depends on the state sequence (i.e. degraded-
ness does not eliminate the memory). A special case of the
physically degraded FSBC occurs when in (3b) it holds that
p(zi|x

i, yi, zi−1, s0) = p(zi|yi). Hence,

p(zn|yn, xn, s0) = p(zn|yn) =

n
∏

i=1

p(zi|yi). (6)

Equation (6) is similar to the definition of degradedness for
the DAVBC used in [2].

Definition 3: The FSBC is calledstochastically degradedif
there exists a p.m.f.̃p(z|y) such that

p(z, s|x, s′) =
∑

Y

p(y, s|x, s′)p(z|y, s, x, s′)

=
∑

Y

p(y, s|x, s′)p̃(z|y). (7)

Note that when (7) holds then

p(zn|xn, s0) =
∑

Sn

p(zn, sn|xn, s0)

(a)
=

∑

Sn

n
∏

i=1

p(zi, si|xi, si−1)

=
∑

Sn

n
∏

i=1

∑

yi∈Y

p(yi, si|xi, si−1)p̃(zi|yi)

=
∑

Sn

∑

Yn

n
∏

i=1

p(yi, si|xi, si−1)p̃(zi|yi)

(b)
=

∑

Sn

∑

Yn

p(yn, sn|xn, s0)

n
∏

i=1

p̃(zi|yi)

=
∑

Yn

p(yn|xn, s0)
n
∏

i=1

p̃(zi|yi), (8)

where (a) and (b) follow from (2).
Definition 3 does not constitute only a mathematical con-

venience, but represents a physical scenario. For example,
consider a scenario in which a base station transmits to two
mobile units, located approximately on the same line-of-sight
from the base station (BS), as indicated by the dashed line
in Figure 1. Let the BS transmit a BPSK signal and let
the received signals be subject to additive Gaussian thermal
noise due to the receivers’ front-ends. When decoding at
the receivers takes place after a hard threshold at zero, the
resulting scenario is the binary symmetric broadcast channel
(BSBC). Denote the situation where there is no traffic on the
road between the BS and the mobiles as stateA. Let the
channel BS–Rx1 have a crossover probabilityǫ1(A) = 0.1
and the channel BS–Rx2 have a crossover probabilityǫ2(A) =
0.15. This can be represented as a stochastically degraded BC
with a degrading channel whose crossover probability is

ǫ12(A) =
ǫ2 − ǫ1

1− 2ǫ1
= 0.0625.



Assume that on occasions, a car passes on the road between the
BS and the mobiles. This causes attenuation in both channels
simultaneously. Call this stateB and let ǫ1(B) = 0.18 and
ǫ2(B) = 0.22. Again we haveǫ12(B) = 0.06251. Hence, the
degrading channel is the same for both states, irrespectiveof
the state sequence (in this example the state sequence repre-
sents the traffic pattern, and is not an independent sequence).
This satisfies condition (8).

Mobile
1 Mobile

2

Base
Station

Fig. 1. A degraded FSBC scenario: the mobile units are located on the same
line-of-sight from the base-station (indicated by the dashed line). Passing cars
affect the channels to both mobile units simultaneously.

More generally, we can define a set of states for this
scenario, e.g.S = {1, 2, ...,K}, with Y = Z = {0, 1} and

p(zi, si|yi, si−1) = p(si|si−1)p(zi|yi, si)

p(z|y, s = k) =

{

ǫ12(k) , z = 1− y

1− ǫ12(k) , z = y
,

ǫ12(k) ∈ (0, 0.5), k ∈ S. This results in a collection of
physically degraded BSBCs that can give more flexibility in
modeling the scenario of Figure 1, as the degrading channel
may depend on the state. However, for this reason, this model
does not satisfy our definition of stochastic degradedness in
Definition 3.

Definition 4: (see [5, Section 4.6]) The FSBC is called
indecomposableif for every ǫ > 0 there existsN0(ǫ) such
that for alln > N0(ǫ), |p(sn|x, s0)− p(sn|x, s

′
0)| < ǫ, for all

sn, x, and initial statess0 ands′0.
Definition 5: An (R0, R1, R2, n) deterministic codefor the

FSBC consists of three message sets,M0 =
{

1, 2, ..., 2nR0

}

,
M1 =

{

1, 2, ..., 2nR1

}

andM2 =
{

1, 2, ..., 2nR2

}

, and three
mappings(f, gy, gz) such that

f : M0 ×M1 ×M2 7→ Xn (9)
is the encoder and

gy : Yn 7→ M0 ×M1,

gz : Zn 7→ M0 ×M2,

are the decoders. Here,M0 is the set of common messages
andM1 andM2 are the sets of private messages to Rx1 and
Rx2 respectively.

1 The scenario parameters assumed in this example are: Two-ray propa-
gation model, Rx decoding scheme is maximum-likelihood, Base station Tx
power = 30 dBm, Base station antenna gain =10 dBi, Rx antenna gain =
0 dBi, Rx noise floor =−90 dBm, Base station antenna height =10 m, Rx
antenna height =1.5 m, BS–Rx1 distance =7.2 Km and BS–Rx2 distance =
8 Km. We also assume a passing car increases the path attenuation by 3 dB.

Note that we assumeno knowledge of the states at the
transmitter and receivers.

Definition 6: Theaverage probability of errorof a code for
the FSBC is given byP (n)

e = maxs0∈S P
(n)
e (s0), where,

P (n)
e (s0)=Pr

(

gy(Y
n) 6=(M0,M1) or

gz(Z
n) 6=(M0,M2)|s0

)

,

where each of the messagesM0 ∈ M0, M1 ∈ M1 andM2 ∈
M2 is selected independently and uniformly.

Definition 7: A rate triplet (R0, R1, R2) is called achiev-
able for the FSBC if for everyǫ > 0 andδ > 0 there exists an
n(ǫ, δ) such that for alln > n(ǫ, δ) an (R0 − δ, R1 − δ, R2 −

δ, n) code withP (n)
e ≤ ǫ can be constructed.

Definition 8: The capacity regionof the FSBC is the con-
vex hull of all achievable rate triplets.

III. M AIN RESULTS AND DISCUSSION

Define first

R1,n(p, s0) ,
1

n
I(Xn;Y n|Un, s0)p −

log2 ||S||

n

R2,n(p, s0) ,
1

n
I(Un;Zn|s0)p −

log2 ||S||

n
.

The main result is stated in the following theorem, whose
proof is outlined in Section IV:

Theorem 1: LetQn be the set of all joint distributions on
(×n

i=1Ui,X
n) such that the cardinality of the random vector

Un is bounded by|| ×n
i=1 Ui|| ≤ min {||X ||, ||Y||, ||Z||}

n.
For the physically degraded FSBC of Definition 2, define the
regionRn(s0) as

Rn(s0) = co
⋃

qn∈Qn

{

(R0, R1, R2) : R0 ≥ 0, R1 ≥ 0, R2 ≥ 0,

R1 ≤ R1,n(qn, s0), R0 + R2 ≤ R2,n(qn, s0)

}

.(10)

The capacity region of the physically degraded FSBC is given
by

Cpd = lim
n→∞

⋂

s0∈S

Rn(s0), (11)

and the limit exists.
Since the capacity of the broadcast channel depends only on

the conditional marginalsp(yn|xn, s0) and p(zn|xn, s0) (see
[7, Chapter 14.6]) then the capacity region of the stochastically
degraded FSBC is the same as the corresponding physically
degraded FSBC:

Corollary 1: For the stochastically degraded FSBC of Def-
inition 3, the capacity region is given by Theorem 1 where
p(z|s, y, x, s′) is replaced bỹp(z|y) that satisfies equation(7).

When the FSBC is indecomposable, then the effect of the
initial state fades away asn increases. Therefore we have the
following corollary:

Corollary 2: For the indecomposable physically degraded
FSBC, the capacity region is given by Theorem 1. For the
indecomposable stochastically degraded FSBC, the capacity
region is obtained from Corollary 1. In both cases the param-
eter s0 in R1,n(qn, s0) andR2,n(qn, s0) and the intersection
overS in the expression forCpd are omitted.



Proof outline: Loosely speaking, the corollary is true since
for n large enough the effect of the initial state fades away.
Therefore, for asymptotically largen the maximum over all
initial statess0 ∈ S equals the minimum.

Discussion

First, note that iflimn→∞ Rn(s0) exists for alls0 ∈ S then
the capacity region (11) can be written as

Cpd = lim
n→∞

⋂

s0∈S

Rn(s0)
(a)
=

⋂

s0∈S

lim
n→∞

Rn(s0).

Here, (a) is permitted becauseS is finite. Thus, the capacity
region can be viewed as the intersection of all the capacity
regions obtained when the initial state is known at the receivers
(but not at the transmitter). We also note the following
conclusions:

1) Since the limit of the region exists, then asn increases,
optimizing the code will result in better performance (which
is not guaranteed when the limits cannot be shown to exist,
consider for example a non-stationary channel with noise that
oscillates with time).

2) The codebook structure that achieves capacity is a
superposition codebook. This introduces a structural constraint
when optimizing the codebook for achieving the maximum
rate triplets.

3) The auxiliary RVUn introduces difficulties mainly in
places where we need to rely on the its cardinality. This is
because we cannot translate the bound on the cardinality of
Un into a bound on the cardinality of a subset ofUn. In
particular, we cannot use the cardinality ofUn when deriving
the capacity region for the indecomposable FSBC. Moreover,
letting n = m1 +m2, then from Equation (1) we have that

p(zm1, ym1 , sm1 |xn, s0) = p(zm1, ym1 , sm1 |xm1 , s0).

But becausep(xm1 |un) 6= p(xm1 |um1) then

p(zm1, ym1 , sm1 |un, s0) 6= p(zm1, ym1 , sm1 |um1 , s0).

This is a major difference from the point-to-point and the MAC
channels. Consider, for example, the expression

max
p(un,xn)

{

max
s0∈S

1

n
I(Un;Zn|s0)+λmax

s′
0
∈S

1

n
I(Xn;Y n|Un, s′0)

}

.

(12)
While in the MAC and the point-to-point channels the corre-
sponding expressions converge for all channels, for the FSBC
(12) can be shown to converge only for the indecomposable
case. Therefore, using superposition coding, the channel be-
tweenUn and (Y n, Zn) is fundamentally different from the
channel betweenXn and (Y n, Zn). This is in contrast also
to the discrete, memoryless BC.

IV. PROOF OUTLINE

In the derivation we focus on the physically degraded FSBC.
The derivation requires only that condition (5) holds. In the
derivation we shall consider only the two private messages
case as the common message can be incorporated by splitting
the rate to Rx2 into private and common rates, as in [7,
Theorem 14.6.4].

R1

R
2

sA

=1

=1

=0

=0

Achievable
Region sB

Fig. 2. Lines bounding the achievable regions for the FSBC for initial states
sA andsB , and the resulting region of positive error exponents.

A. Achievability Theorem
Due to space limitations we omit the details of the achiev-

ability proof and give only the conclusion. For complete details
see [8]. Define first

Fn(λ) = max
p(un,xn)

{

min
s0∈S

R2,n(p, s0) + λ min
s′
0
∈S

R1,n(p, s
′
0)

}

.

Following [9, Section 2], the boundary of the region of positive
error exponents for a givenn can be written as

Rn
2 (R

n
1 )= inf

0≤λ≤1

{

Fn(λ)− λR1

}

. (13)

This characterization is illustrated in Figure 2.
In the achievability proof we show that for a given

p(un, xn), when transmitting at thepositive rate pair
(

mins′
0
∈S R1,n(p, s

′
0),mins0∈S R2,n(p, s0)

)

, then the error
exponent is positive and bounded away from zero. Hence, the
probability of error can be made less than any arbitraryǫ > 0
by taking a block lengthKn with a large enough integerK.

Furthermore, in section IV-D we show that the largest region
is obtained by taking the limit

R2(R1) = inf
0≤λ≤1

{

lim
n→∞

Fn(λ) − λR1

}

, (14)

and that this limit exists and is finite. The fact that the limit
exists and is finite implies that we can approach the rates of
Theorem 1 arbitrarily close by takingn large enough, thus by
Definition 7 these rates are achievable.

Before considering the converse we discuss the cardinality
of the auxiliary RVUn, as the evaluation ofRn

2 (R
n
1 ) of (13)

depends on the existence of such a bound.

B. Cardinality Bounds

From the derivation in [9], it follows that maximizing the
region Rn(s0) of Equation (10) over all joint distributions
p(un, xn), can be carried out while the cardinality of the
auxiliary random variableUn is bounded by

|| ×n
i=1 Ui|| ≤ min {||X ||, ||Y||, ||Z||}

n
. (15)

Now note that from (11), the achievable region for a fixed
n is given by the intersection

⋂

s0∈S Rn(s0). As for each
Rn(s0), s0 ∈ S we have the same cardinality bound, then
this bound also holds for maximizing the intersection of the
regionsRn(s0), s0 ∈ S.



C. Converse

Lemma 1: If for someǫ > 0, λ ≥ 0,

R2 + λR1 > lim
n→∞

Fn(λ) + ǫ,

then there exists a pair of initial statess0 and s′0 such that

P
(n)
e2 (s0)R2+λ

(

P
(n)
e1 (s′0)R1

)

> ǫ−
1

n
(1+λ)(1 + log2 ||S||).

The implication of this inequality, as explained in [9, Section
3], is that for n large enough the probability of errorP (n)

e

cannot be made arbitrarily small outside the region (14).
Proof: From Fano’s inequality we have that

H(M2|Z
n, s0) ≤ P

(n)
e2 (s0)nR2 + 1 (16a)

H(M1|Y
n, s0) ≤ P

(n)
e1 (s0)nR1 + 1. (16b)

Next write
min
s0∈S

I(M2;Z
n|s0) = nR2 −max

s0∈S
H(M2|Z

n, s0) (17)

min
s′
0
∈S

I(M1;Y
n|M2, s

′
0) = nR1−max

s′
0
∈S

H(M1|Y
n,M2, s

′
0)

≥ nR1 −max
s′
0
∈S

H(M1|Y
n, s′0). (18)

Now note that
I(M2;Z

n|s0) = H(Zn|s0)−H(Zn|M2, s0)

= I(Un;Zn|s0), (19)

whereUi = M2, i = 1, 2, ..., n. We also have

I(M1;Y
n|M2, s

′
0) = H(Y n|M2, s

′
0)−H(Y n|M1,M2, s

′
0)

≤ H(Y n|Un, s′0)−H(Y n|Xn, Un, s′0)

= I(Xn;Y n|Un, s′0), (20)
where the definition ofUn satisfies the Markov relationship
Un|s′0 − Xn|s′0 − Y n|s′0. Combining (19) and (20) we have
that for this choice ofUn:

min
s0∈S

I(M2;Z
n|s0) + λ min

s′
0
∈S

I(M1;Y
n|M2, s

′
0)

≤ min
s0∈S

I(Un;Zn|s0) + λ min
s′
0
∈S

I(Xn;Y n|Un, s′0)

≤ nFn(λ) + (1 + λ) log2 ||S||, (21)
sinceFn(λ) is obtained by maximizing over all joint distribu-
tionsp(un, xn) subject to the cardinality constraint (15), which
is also satisfied by our choice ofUn. Let s0,n and s′0,n be
the maximizing states forH(M2|Z

n, s0) andH(M1|Y
n, s′0)

respectively.
Plugging (17) and (18) into (21) yields
nR2 −H(M2|Z

n, s0,n) + λ(nR1 −H(M1|Y
n, s′0,n))

−(1 + λ) log2 ||S|| ≤ nFn(λ).

Thus, H(M2|Z
n, s0,n) + λH(M1|Y

n, s′0,n) +
(1 + λ) log2 ||S|| ≥ n (R2 + λR1 − Fn(λ)) ≥
n (R2 + λR1 − limn→∞ Fn(λ)) > nǫ. Combined with
(16), this completes the proof of the lemma.

D. Convergence
In this subsection we show thatlimn→∞ Fn(λ) exists and is
finite for the channel under consideration, whenλ∈ [0, 1].

The proof of convergence extends the arguments in [5,
Appendix 4A] to the FSBC. The main difficulty here is the
introduction of the auxiliary RVUn and its interaction with
the other RVs,Sn, Xn, Y n andZn . We actually show that

lim
n→∞

Fn(λ) = sup
n

Fn(λ)

which implies that the limit exists. Due to its length, the full
proof is omitted and only the main points are highlighted.

Let s0 = sz0(l) minimize 1
l
I(U l;Z l|s0) and

s′0 = s
y
0(l) minimize 1

l
I(X l;Y l|U l, s′0), for the triplet

(

q1(u
l, xl), sz0(l), s

y
0(l)

)

that achieves the max-min solution
for Fl(λ), and let (q2(um, xm), sz0(m), sy0(m)) achieve the
max-min solutionFm(λ). Finally, let sz0(n) andsy0(n) be the
states that achieve the max-min solution forFn(λ). We show
thatFn(λ) is sup-additive, i.e., for every integerm, l ∈ [0, n]
with n = m+ l we have

nFn(λ) ≥ lFl(λ) +mFm(λ).

Sup-additivity is verified by breaking the lengthn expres-
sions into expressions of lengthl and expressions of length
m. The critical part here is to consider the lengthm sequence
from l+1 to n. Here we use the fact that given the initial state
the channel is stationary, sop(Zn

l+1, Y
n
l+1|x

n
l+1, sl = s0) =

p(Zm
1 , Y m

1 |xm
1 = xn

l+1, s0). This, combined with the fact the
cardinality bound depends only on the length of the sequence,
leads to the conclusion that the joint distributionq2(um

1 , xm
1 )

that maximizesFm(λ) will maximize the segment froml+1
to n (i.e. is the maximizing distribution for(Un

l+1, X
n
l+1), with

the same initial state).
Additionally, both 1

n
I(Un;Zn|s0) and 1

n
I(Xn;Y n|Un, s′0)

are bounded from above, independent ofn:

1

n
I(Un;Zn|s0) ≤ log2 ||Z||,

since all theZi’s are defined over the same alphabetZi ≡
Z, and similarly 1

n
I(Xn;Y n|Un, s′0) ≤ log2 ||X ||. Thus,

Fn(λ) ≤ log2 ||Z|| + λ log2 ||X || < ∞ for any λ ∈ [0, 1].
The fact thatFn(λ) is bounded from above independent of
n and is also sup-additive implies thatlimn→∞ Fn(λ) exists
and is finite.

Combining the fact that the limit exists with sections IV-A,
IV-B and IV-C gives the capacity of the FSBC of Theorem 1.
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