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Abstract—We consider the discrete, time-varying broadcast In contrast to the AVC, in the FSC both the channel output
channel with memory under the assumption that the channel and the current state depend on both the channel input and the
states belong to a set of finite cardinality. We first define theghys- previous state.

ically degraded finite-state broadcast channel for which we derive The finite-state ch | del dt del point-t
the capacity region. We then define thestochastically degraded € Tinite-state channel model was used to model point-to-

finite-state broadcast channel and derive the capacity regn for Point channel variations as early as 1953 [1]. This charmel i
this scenario as well. In both scenarios we consider the non- characterized by the distribution(y, s|z, s") where S is the

indecomposable finite-state channel as well as the indecowgable current state and’ is the previous state. For a block of
one. transmissions, the p.m.f. at thigh symbol time satisfies

I. INTRODUCTION i el el
The b d h | (BC . d d by C . p(yi18i|x , S Y 780) :p(yi7si|xi7si—l)7 (1)

e broadcast channel (BC) was introduced by Cover {6 is the state of the channel when transmission began.
1972. In this scenario a single sender transmits three YEeSSALE 4 ation ) implies thas; , contains all the history infor-

one common and two private, to two receivers over a chanpgliion for time:. Recently, the finite-state multiple-access
defined by{X,p(y,z|x_),y X _Z}' Here, X is the channel .ponh6) was studied in [6]. This scenario is characterized b
input from the transmitter}” is the channel output at RX o channel distributiop(y, s|z1, 2, s'), and the work in [6]

andZ is the channel output at RxIn the years following its 554 considered the effect of feedback on the rates.
introduction the study of the BC focused on memoryless sce-|, he present work we study the finite-state broadcast

narios, i.e., when the probal:r)lility of a blockoftransmissions .,aqnel (FSBC). Here, the channel from the transmitter to
1 H n n n — . . . . .
is given byp(y", 2"[a") = [[;—, p(yi, zi[zi). In recent years, yq receivers is governed by a state sequence that depends on

models of time-varying broadcast channels with memory hayg, channel inputs, outputs and previous states. The wag the
attrgcted a lot of atteqtlon,_espeC|aIIy-Gau35|an B_CS'_ Wais symbols interact with each other is captured by the traorsiti
motivated by the proliferation of mobile communicationsy; f function p(y, 2, sz, s').

which the channel is subject to time-varying correlatedrfgd

The correlation of the fading process introduces memorigén tMain Contributions and Organization

BC. The fading BC is one instance of the general BC with In this paper we consider for the first time the capacity
channel states. While fading BCs have received considerabf the FSBC. Here, there is a unique aspect not encountered
attention, discrete, time-varying BCs with channel sté@ge in the point-to-point and the MAC counterparts, namely the
not been well studied. A notable exception is the degradegplication of superposition coding to the FSC. We iniyiall
arbitrarily varying BC (DAVBC) considered in [2] and [3]. define the physically degraded FSBC and find the capacity
In [2] DAVBCs with causal and non-causal side informationegion of this scenario. We then define the stochastically de
at the transmitter were considered. The states are assumgetied FSBC and give examples of communication scenarios
i.i.d. and the channel is memoryless(y”,z"|z™,s") = represented by this model. We derive the capacity region for
[T, p(yi, zi|@i, ;). In [3], the capacity region for DAVBCs this channel as well.

with causal side information at the transmitter and norseiu  The rest of this paper is organized as follows: Seckidn I
side information at the good receiver was derived. In [3] thatroduces the channel model. Sectian Il presents a supnmar
state distribution is general and is not subject to the.i.i.df the results together with a discussion. Lastly, Sediigh |
restriction, but the channel outputs, given the states had butlines the proof of the capacity region for the physically
channel inputs are again memoryless. The general, discrétgraded FSBC.

BC with i.i.d. states non-causally known at the transmitter
was considered in [4].

The arbitrarily varying channel (AVC) is one model for First, @ word about notation. In the following we denote
a time-varying channel with states. It models a memorylegndom variables with upper case letters, &q.Y’, and their
channel whose law varies in time in an arbitrary manner. Thgalizations with lower case letters y. A random variable
state transitions are independent of the channel inputs {fRY) X takes values in a set'. We use||X|| to denote the
outputs. In this work we study the discrete time-varying B€ardinality of a finite, discrete set, X" to denote the:-fold

with memory in the framework of finite-state channels (FSCs§artesian product of’, andpx (z) to denote the probability
mass function (p.m.f.) of a discrete R¥ on X. For brevity
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the 7’th element of a vectox is denoted withr; and we use where (a) is because there is no feedback, (b) follows from
z] wherei < j to denote the vectofw;, i+1,...,z;-1,7;); (3d) and (c) follows from[(3b). We conclude that whén (3)
2’ is short form notation forz{, and x = z". A vector holds,p(z"|y", 2", so) = p(z"|y", so). Hence,

of n rand_orAn variables is denoted by", apd S|mllarly we p(y™, 2"z, s0) = p(y™ |2, s0)p(2" Y™, s0). (5)
define X} = (X;, X;q1,...,X;-1,X;) for i < j. We use L i
H(-) to denote the entropy of a discrete random variable alpte that [(#) shows how to obtaip(="[y", ", s0) in &

I(-;-) to denote the mutual information between two randor"?f’:lusal manner. Also note that" is a degraded version of
variables, as defined in [7, Chapter 2)(;-), denotes the Y™ but still depends on the state sequence (i.e. degraded-

mutual information evaluated with a p.md.on the random ness_does not eliminate the memory). A special_ case of the

variables. Finallyco R denotes the convex hull of the sgt  Physically degraded FSBC occurs when[in](3b) it holds that
Definition 1: The discrete, finite-state broadcast chaniieel P(3il#"y" 2", s0) = p(zily:). Hence,

defined by the triple{ X xS, p(y, 2, s|lz, '), Yx Zx S} wher/e p(=" Y™, 2", 50) = p(="|y"™) Hp ). (6)

X is the input symbolY and Z are the output symbolsy

is the state of the channel at the end of the previous symgjuation [[6) is similar to the deﬁnmon of degradedness for

transmission and is the state of the channel at the end ofhe DAVBC used in [2].

the current symbol transmissiof, X, Y and Z are discrete  Definition 3: The FSBC is calledtochastically degradeid

alphabets of finite cardinalities. The p.m.f of a blockf there exists a p.m.fi(z|y) such that

transmissions is Z
p(yn Z’ﬂ, S’ﬂ, 7L|SO) Z S|I S p y?S|I S |y7 S?'r S)
) )

n
H y’LvZZaS’LaI’L|yZ 1721-71751-717:61-71780) = Zp y18|‘r S |y) (7)
" . _ . . . Note that whenl]?) holds then
= (E'(E’Lil py',Z',S‘y1717217178171,$1,80
g ( Zl ) (1 % ll ) p(Zn|ZCn Zp n n|x )
n
@ n
= p(x )Hp(yiaziasilxiasi—l)a (2) (a) ZH
. = p(zia Si|'ri7 Sifl)
i=1
wheres is the initial channel state. Here (a) captures the fact ST izl
that givensS;_1, the symbols at time are independent of the ~
pastg i—1 Y p = ZH Z (i, Si|Tiy si—1)D(2i|Yi)
Definition 2: The FSBC is calleghhysically degraded its s yfy
p.m.f. satisfies ) ) o = P(Yi, silwi, si-1)p(2ilyi)
p(yi|$zayl_172l_1750) = p(yi|xlayl_1780)a (33) ;;11;[1
p(zi|xlvyzvzl_1750) = p(zi|yzazz_1750)' (3b) (_b) n nl.n - -
Condition [3&) captures the intuitive notion of degradesne = ;ZP(Q ;8" 2", s0) HP(Zilyz‘)
= yn i—1

namely thatZ~! is a degraded version &f*~!, thus it does .

not add information whert’*~! is given. Note that in the _ Zp e H (zilyi), @)
memoryless case this condition is not necessary as, given
Y; is independent of the history. Conditidn{3b) follows from Wh d (b) follow f 2
the standard notion of degradedness. ere (a) and (b) follow froni{2).

. " . Definition[3 does not constitute only a mathematical con-
Using = conditions [(3a) and[{Bb) we obtain (WheQ/enience, but represents a physical scenario. For example,

ynr i=1

ply", 2"[s0) > 0) consider a scenario in which a base station transmits to two
p("y", x", s0) mobile units, located approximately on the same line-ghsi
~p(e™, ", 2" s0) from the base station (BS), as indicated by the dashed line
 p(ym, amso) in Figure[1. Let the BS transmit a BPSK signal and let
15, p(zis i, il 2Ly 2 ) the received signals be subject to additive Gaussian therma
= D s —— noise due to the receivers’ front-ends. When decoding at

[I— p(yi, zily =1, 271, s0)
Loz Ly e ) [T p(zi, vl 2y

the receivers takes place after a hard threshold at zero, the

1—1 .0
,",50) resulting scenario is the binary symmetric broadcast chlann

[Ty plaly™=t =) TTi 1I?(yz|yZ ot so) (BSBC). Denote the situation where there is no traffic on the
@ [Ty p(zila= Y TTis, p(za wal 2Lyt 2%, s0) road between the BS and the mobiles as statel et the
o [T, p(zi|z=1) [T, p(yslyi—", 2, so) channel BS—-Rx have a crossover probabilitss (4) = 0.1

and the channel BS—-Rxave a crossover probability(A) =
0.15. This can be represented as a stochastically degraded BC
with a degrading channel whose crossover probability is

©1 i1 _

= [zl v, s0), 4) e12(A) = 2L — 0.0625.
. 1-2
=1 €1

o Ty pluily™™" 2, s0) Ty p(zil 2"~ o' 2, s0)
Ty p(yily? =1, 2%, s0)




Assume that on occasions, a car passes on the road betweeNtite that we assum&o knowledge of the states at the
BS and the mobiles. This causes attenuation in both channedsmitter and receivers

simultaneously. Call this stat® and lete;(B) = 0.18 and Definition 6: Theaverage probability of erroof a code for
e2(B) = 0.22. Again we havesi»2(B) = 0.06251. Hence, the the FSBC is given b)Pe(") = maxs,es Pe(”)(so), where,
degrading channel is the same for both states, irrespeative n "

the state sequence (in this example the state sequence repre P (s0)=Pr (gy (Y") # (Mo, My) or

sents the traffic pattern, and is not an independent sequence 92(Z") # (Mo, M2)|50)7

This satisfies conditiorL18). where each of the messagkg € M, M, € M; andM, €
M is selected independently and uniformly.

Definition 7: A rate triplet (Ry, Ry, R2) is called achiev-
ablefor the FSBC if for every > 0 and¢ > 0 there exists an
n(e, 0) such that for alln > n(e, ) an (Ry — d, Ry — 0, Ry —
d,n) code WithPe(") < € can be constructed.

Definition 8: The capacity regionof the FSBC is the con-
vex hull of all achievable rate triplets.

Base

St IIl. M AIN RESULTS AND DISCUSSION

Define first
1 1 S
Rin(pyso) 2 21003y U7, 59), — 2225
n n
! log, ||S]|
L U™ 27sg), — —22120
Fig. 1. A degraded FSBC scenario: the mobile units are ldcatethe same R2,n(p, So) = nI(U A |80)p . .

line-of-sight from the base-station (indicated by the @aksline). Passing cars

affect the channels to both mobile units simuitaneously. The main result is stated in the following theorem, whose

) proof is outlined in SectiofI\V:
More generally, we can define a set of states for this theorem 1: LetQ, be the set of all joint distributions on
scenario, e.g5 = {1,2,..., K}, with Y = Z = {0,1} and (x7_,U;, X™) such that the cardinality of the random vector

p(zi; Silyis si-1) = p(si|si—1)p(zilyi, s:) U™ is bounded by| xiL, ¢;|| < min{||X]], |_|y||a||Z||}n-
c2(k) ,z=1-y For_ the physically degraded FSBC of Definitioh 2, define the
p(zly, s =k) = { 1— (k) 2=y ) region R, (so) as
elg(k_) € (0,0.5),k € S. This results_in a coIIecti_or_1_ OfRn(SO) _ COU {(Ro,Rl,Rz) "Ry >0,R, >0,Ry >0,
physically degraded BSBCs that can give more flexibility in s
modeling the scenario of Figufé 1, as the degrading channel
may depend on the state. However, for this reason, this model R1 < Ri n(qn, 50), Ro+ Ra < Ran(qn, so)}.(lo)
does not satisfy our definition of stochastic degradedness i
Definition[3. The capacity region of the physically degraded FSBC is given
Definition 4: (see [5, Section 4.6]) The FSBC is calledy
indecomposabléf for every ¢ > 0 there existsNy(e) such Cpa = lim_ () Rau(s0), (11)
that for alln > Ny(e), [p(sn|x, s0) — p(snlx, ()| < €, for all 50€S
sn, X, and initial states, and sj,. and the limit exists.

Definition 5: An (Ro, Iy, R, n) deterministic codéor the  Since the capacity of the broadcast channel depends only on
FSBC consists of three message s@ity = {1,2,....2"}, the conditional marginals(y"|z", so) andp(z"|z", so) (see
My ={1,2,..,2""} and M, = {1,2,...,2"F2}, and three [7, Chapter 14.6]) then the capacity region of the stochakyi

mappings(f, gy, g=) such that degraded FSBC is the same as the corresponding physically
FiMox My x My = X7 9) degraded FSBC: _
is the encoder and Corollary 1: For the stochastically degraded FSBC of Def-
gy : V" Mo x My, inition [3, the capacity region is given by Theor&in 1 where

p(z|s,y,x, s") is replaced byp(z|y) that satisfies equatiof).
When the FSBC is indecomposable, then the effect of the

are the decoders. Hergyl, is the set of common messagesitial state fades away as increases. Therefore we have the
and M; and M, are the sets of private messages tq Rrd following corollary:

Rx, respectively. Corollary 2: For the indecomposable physically degraded

1 The scenario parameters assumed in this example are: Twpropa- _FSBC' the capacity regio_n is given by Theoréin 1. For th?
gation model, Rx decoding scheme is maximum-likelihoodseBatation Tx indecomposable stochastically degraded FSBC, the capacit

power =30 dBm, Base station antenna gain1® dBi, Rx antenna gain = region is obtained from COI’OllaI'El 1. In both cases the param-
0 dBi, Rx noise floor =—90 dBm, Base station antenna heightl& m, Rx . d d the i .
antenna height 3.5 m, BS—Rx_distance =7.2 Km and BS—Ryx distance = St€r so IN R1 ,(qn, 50) @and Ry ,,(qn, s0) and the intersection

8 Km. We also assume a passing car increases the path attenbgts dB.  over S in the expression fo€,,; are omitted.

gz : ZnHMQXMQ,



Proof outline: Loosely speaking, the corollary is true since R A
for n large enough the effect of the initial state fades away. 2 | a0
Therefore, for asymptotically large the maximum over all
initial statessy € S equals the minimum.

Discussion

First, note that iflim,,_,~, R, (s0) exists for allsy € S then
the capacity regior(11) can be written as

. (a) .
Cpa = lim_ () Ruls0) = () Jim R (s0)-

Achievable
S0ES S0ES Region
Here, (a) is permitted becauskeis finite. Thus, the capacity
region can be viewed as the intersection of all the capacity >
regions obtained when the initial state is known at the exsi R,

(but not at the transmitter). We also note the followingig. 2. Lines bounding the achievable regions for the FSBGriitial states
conclusions: sa andspg, and the resulting region of positive error exponents.

1) Since the limit of the region exists, then asncreases, A Achievability Theorem

optimizing the code will result in better performansehich  pye to space limitations we omit the details of the achiev-

is not guaranteed when the limits cannot be shown to .exighility proof and give only the conclusion. For completeadlet
consider for example a non-stationary channel with noiae thsee [8]. Define first

oscillates with time). . . /
2) The codebook structure that achieves capacity is ]g"()‘) = hax rf,lé%RQ’”(p’ SO)—’_/\gé%Rl’"(p’ s0) (-

. _ ; plumzn) (s
superposition codebook. This introduces a structuraltcaims Following [9, Section 2], the boundary of the region of piusit
when optimizing the codebook for achieving the maximur‘grmr exponénts for a g’ivem can be written as

rate triplets.

3) The auxiliary RVU™ introduces difficulties mainly in Ry (RY) {Fn(/\) — /\Rl}. (13)
places where we need to rely on the its cardinality. This is o o
because we cannot translate the bound on the cardinality [6fS characterization is illustrated in Figure 2. _
U™ into a bound on the cardinality of a subset @' In !N the achievability proof we show that for a given
particular, we cannot use the cardinality@f when deriving P(u":2"), when transmitting at thepositive rate pair

the capacity region for the indecomposable FSBC. Moreovéfilis;es 121, (p, 50), mins,es Fo.n (P, s0)), then the error
letting 1 — m, + mo, then from Equation[{1) we have that exponent is positive and bounded away from zero. Hence, the
' probability of error can be made less than any arbiteary0

= inf
0<A<1

p(z" Y™, s 2", s0) = p(2™ Y™, 8™ 2™ s0). by taking a block lengthkn with a large enough integek .
But because(z™ |u™) # p(z™ [u™) then Furthermore, in sectidn IVAD we show that the largest region
is obtained by taking the limit
p(zm] ) yml ) s |un’ SO) 7é p(zml ) ym1 ) s |um1 ) SO)'
This is a major difference from the point-to-point and the ®IA Ro(B) = inf { Jim F(A) — /\Rl}, (14)

channels. Consider, for example, the expression o . o L
P P and that this limit exists and is finite. The fact that the timi

exists and is finite implies that we can approach the rates of

Theorent 1L arbitrarily close by taking large enough, thus by
(12) Definition[7 these rates are achievable.

While in the MAC and the point-to-point channels the corre- Before considering the converse we discuss the cardinality

sponding expressions converge for all channels, for theG=SBf the auxiliary RVU™, as the evaluation oR% (R}) of (I3)

(12) can be shown to converge only for the indecomposallepends on the existence of such a bound.

case. Therefore, using superposition coding, the charsel b L

tweenU™ and (Y", Z") is fundamentally different from the B- Cardinality Bounds

channel betweeX™ and (Y™, Z™). This is in contrast also  From the derivation in [9], it follows that maximizing the

to the discrete, memoryless BC. region R,,(sg) of Equation [ID) over all joint distributions
p(u™, z™), can be carried out while the cardinality of the

auxiliary random variablé/" is bounded by

In the derivation we focus on the physically degraded FSBC. 1= 8] < i {[IX]], [ 121137 (15)
The derivation requires only that conditidd (5) holds. Ie thNow note that from[(Tl1), the achievable region for a fixed
derivation we shall consider only the two private messagesis given by the intersectiofi), s Rn(s0). As for each
case as the common message can be incorporated by splitfagso), so € S we have the same cardinality bound, then
the rate to Rx into private and common rates, as in [7this bound also holds for maximizing the intersection of the

Theorem 14.6.4]. regionsR,,(so), so € S.

1 1
max {maX—I(U”;Z"|SO)—|—/\maX—I(X";Y"|U",56)}.
p(u™,z™) (s0€ES N s0ES N

IV. PROOFOUTLINE



C. Converse
Lemma 1: If for some > 0, A > 0,

Ry + ARy > lim F,(A) +¢,
—r OO
then there exists a pair of initial stateg and s{, such that

P (s0) Bt (P (s6) R ) > € = L (14+2)(1 + log, [IS]).
The implication of this inequality, as explained in [9, Sent
3], is that forn large enough the probability of errgp(™
cannot be made arbitrarily small outside the reglogd (14).
Proof: From Fano’s inequality we have that
H(M,|Z", s0) < P2 (so)nRy + 1

H(M|Y™,s0) < PU(s0)nRy + 1.

(16a)
(16b)

Next write
min I(Mz; Z"|sg) = nRe — max H(Ms|Z", s¢) (17)
s0ES spES
min [(My; Y"| M, sy) = nRy—max H(M;|Y" Ma, s)
s0E€S s0€S

> nRy —max H(M|Y™, s;).(18)
s,ES

Now note that
I(Mg; Zn|80)

= H(Z"|sg) — H(Z"|Ma, s¢)
= I(U™; Z"|s0),
whereU; = Ms, 1 =1,2,...,n. We also have
I(My;Y"| My, sy) = H(Y™|Ma, sy) — H(Y™| My, Ma, sp)
< H(Y"|U"sp) — H(Y™| X", U s)
= I(X™Y™U", s;), (20)

(19)

where the definition o/ satisfies the Markov relationship z

which implies that the limit exists. Due to its length, thél fu
proof is omitted and only the main points are highlighted.

Let so sg(l) minimize 1I(U';Z'|s;) and
sy = sp(l) minimize +I1(X,; YUY, ), for the triplet
(q1(u', 2"), s5(1), s§(1)) that achieves the max-min solution
for F;()\), and let (g2(u™, ™), s§(m), sg(m)) achieve the
max-min solutionF,, (). Finally, let s§(n) ands(n) be the
states that achieve the max-min solution for(\). We show
that £, (\) is sup-additive, i.e., for every integet, ! € [0, n]
with n = m + [ we have

nFL(\) = I (\) + mFy(N).

Sup-additivity is verified by breaking the lengthexpres-
sions into expressions of lengthand expressions of length
m. The critical part here is to consider the lengthsequence
from i+ 1 to n. Here we use the fact that given the initial state
the channel is stationary, se(Z}, |, Y/} |2}, 51 = s0) =
p(Z7, Y{" a7 = x7, 1, s0). This, combined with the fact the
cardinality bound depends only on the length of the sequence
leads to the conclusion that the joint distributigr{uf™, 1)
that maximizesF,,,(\) will maximize the segment from+ 1
to n (i.e. is the maximizing distribution fofU;", ,, X7, | ), with
the same initial state).

Additionally, both 2 1(U™; Z™|sq) and LI(X™; Y™ |U™, s()
are bounded from above, independent:of

1
—1(U"; 2"|s0) < logs || 2,

since all theZ;'s are defined over the same alphalst =
, and similarly L7(X"™; Y"|U", s() < log,||X||. Thus,

Um|sy — X"|s(, — Y™|s(,. Combining [2®) and[{20) we havan()\) < log, ||Z]] + Alog, ||X|| < oo for any A € [0,1].

that for this choice of/™:
min I(Mas; Z"|so) + A min I(My;Y" | Mo, s;)
SpES s,ES

< min I(U™; 2" Amin I(X™ Y"|U™, s
< min I(U™; 27s0) + A min I(X™ YU, 55)

< nFn(A) 4 (14 A)log, ||S]],
sinceF,, ()\) is obtained by maximizing over all joint distribu-

tionsp(u™, 2™) subject to the cardinality constraifit{15), which

is also satisfied by our choice éf". Let s, and sgyn be
the maximizing states foff (M| Z", s¢) and H(M;]Y™, s()
respectively.
Plugging [I7) and{18) intd (21) yields
TLRQ - H(M2|Zn, SO.,n) + /\(an - H(M1|Yn, Slom))
—(L+ A)log, [|S]] < nFy(A).

Thus, H(Ms|Z", s0) +  AH(M|Y",sp,) +
(I 4+ Nlogy |ISI] = n(Re+ AR —F,()) =
n(Re + ARy — lim,,, F,(A)) > ne. Combined with
(I6), this completes the proof of the lemma. |

D. Convergence
In this subsection we show théin,,_, . F,(\) exists and is
finite for the channel under consideration, whea [0, 1].

The proof of convergence extends the arguments in [
Appendix 4A] to the FSBC. The main difficulty here is the

introduction of the auxiliary RWU™ and its interaction with
the other RVs,S™, X™ Y™ and Z™ . We actually show that

nhﬂngo EF,(\) = sup F,(\)

The fact thatF,,(\) is bounded from above independent of
n and is also sup-additive implies thh,, ., F;,(\) exists
and is finite.

Combining the fact that the limit exists with sectidns TV-A,

1) IV-Bland[IV-Q gives the capacity of the FSBC of Theorgm 1.
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