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Abstract— Secure data compression in the presence of side ) ) Re
information at both a legitimate receiver and an eavesdroppr is cN =~ Charlie i
explored. A noise-free, limited rate link between the soure and l
the receiver, whose output can be perfectly observed by theaees-
dropper, is assumed. As opposed to the wiretap channel modéh Bob |+ AN
which secure communication can be established by exploitinthe
noise in the channel, here the existence of side informatioat the Vol Al
receiver is used. Both coded and uncoded side information ar A 1ce
considered. In the coded side information scenario, inner rad [—
outer bounds on the compression-equivocation rate regionra Eve PA
given. In the uncoded side information scenario, the availility of
the legitimate receiver's and the eavesdropper’s side infmation f
at the encoder is considered, and the compression-equivdizn EN
rate region is characterized for these cases. It is shown thdhe
side information at the encoder can increase the equivocath rate ~ Fig. 1.  Side information of Bob is provided by Charlie who aess to
at the eavesdropper. Hence, the side information at the ender his own correlated side information.
is shown to be useful in terms of security; this is in contraswith
the pure lossless data compression case where side inforrioat
at the encoder would not help. Alice’s information can be reliably transmitted to Bob, Vehi

keeping Eve’s information about the source limited.

Secure communication over noisy channels in the presence

Consider a sensor network in which multiple sensors obf a wiretapper has recently attracted considerable isitere
serve an underlying phenomenon that needs to be rectmformation theoretic security in this context is definebtigh
structed at an access point. While some sensors might héve equivocation rate at the wiretapper, which can be rgughl
secure (possibly wired) connections to the access poimtrst defined as the uncertainty of the wiretapper about the messag
might be transmitting over the wireless medium, which caeifter observing the channel output. In his pioneering waik [
be accessed by an adversary trying to obtain informatid¥yner introduced the wire-tap channel, and showed that it
about the underlying phenomenon. Furthermore, this adiersis possible to transmit at a positive rate with perfect sggre
might have its own observation of the main source. Our goalassuming the wiretapper’s channel is physically degradéd w
to explore the security issues in this sensor network s@enarespect to the receiver. Later, Wyner's analysis is extdride
Our model is a simplified version of the general problenmore general broadcast channels in [2], which charackerize
in which we assume a single sensor (Alice) having diretlte capacity-equivocation rate region. Various extersioh
access to the underlying source that needs to be transmititeel wiretap channel model to multiuser scenarios and fading
to the access point (Bob) reliably and securely. Furtheemochannels have recently been investigated [3], [4], [5].
we assume an idealized noise-free channel whose output cam the wiretap channel model, the potential for secure com-
also be observed by the eavesdropper (Eve). munication arises from the fact that the intended receiasreh

If no side information is available to Bob, then we canbetter quality communication channel than the wiretapggr [
not achieve any level of security. However, if we assume our model, since the communication channels are not noisy
the existence of a nearby sensor (Charlie) having accesshe techniques of [2] do not apply; however, it is still pbési
correlated side information about Alice’s source and a secuo achieve security when Bob has higher quality side inferma
limited-rate link to Bob, this sensor might enable secut&n than Eve as in [6], [7]. In [6], Merhav proved a source-
transmission of Alice’s source using its own secure linke(sehannel separation theorem for the wiretap channel asgumin
Fig.[). Our goal is to characterize the capacities of efree- both the channel and the side information of the wiretapper a
communication links from Alice and Charlie to Bob such thathysically degraded. Recently, Prabhakaran and Ramcaandr

. . . _ . [7] consider the arbitrarily correlated side informatioase
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that the availability of Bob’s side information to Alice nfig Definition 2.1: We say that(Ra, Rc, A) is achievableif,
increase Eve’s uncertainty about Alice’s source. Secum-cofor any e > 0, there exist an(R4, Rc, N) code such that
pression of two correlated sources is considered in [10gr&h H (AN |f4(AN), EN) > NA and PN < e.

the eavesdropper has access to only one of the compressed bit

streams. Our work is also closely related to the secret keill. CODED AND UNCODED SIDE INFORMATION AT BOB
capacity model of [8], [9], where correlated sources areluse
for secure key generation. However, our goal here is notél
generate a secret key among Alice and Bob. Instead, we wis

to communicate Alice’s source to Bob securely. not match.
In this paper, we first consider the case in which the sid Theorem 3.1.For the setup abové/is, Ro, A) is achiev-

information of Bob is provided by Charlie over a noise—freg{%Ie i,

In this section, we give inner and outer bounds to the set of
achievable(R 4, Rc, A) triplets. In general, these bounds

secure channel. After giving inner and outer bounds for the Ra > H(A|V), A3)
set of achievable compression-equivocation rates fosttisp, Re > I(C:V) @)
we focus on the case in which Charlie-Bob link has enough ¢ = o

capacity for Bob to obtain Charlie’s side information loss- A < max{I(4;V|U) - I(A; E|U)}, and (5)
lessly. For this scenario, which also corresponds to urtode R4+ A > H(A|E), (6)

side information, we consider cases in which either or both
Bob's and Eve’s side information may be available to Alicevhere we maximize over auxiliary random variabkésand
We show that, in the secure compression model, as oppose&/tghat come from the joint distribution(a, c,e,u,v) =
the usual lossless compression where side informationeat ta ¢, €)p(ula)p(vlc) with [U| < [A] + 1 and[V| < [C| + 2.
encoder does not improve the performance, the availahifity ~Conversely, if(R4, Rc, A) is achievable, thed (3)4(6) hold
side information to Alice has the potential of improving théor some auxiliary random variablés andU for which V' —
secrecy performance. We generalize the characterizatitreo C — (4, E) andU — A — (C, E) form Markov chains.
achievable compression and equivocation rates to all the si ~ Proof: The proof is given in Appendii I. |
information cases and provide illustrative examples. We can consider this problem to be a generalization of
source coding with coded side information [11], where we
) have the security constraint in addition to lossless cosipre
We assume that Alice has access to liFength source gjon |n the achievability of the inner bound given in Appand
sequenced™, which she wants to transmit to Bob reliablyy ajice’s encoder, instead of directly binning its obseioa
over a noise-free, finite capacity channel. Alice’s trarssion ith respect to the coded side information at Bob, uses an
will also be perfectly received by an eavesdropper calle. Ev, xiliary codebook generated byto send her observation and
WJ% assume that Eve has her own correlated side informatigRaies higher equivocation at Eve. This auxiliary cod&boo
£7. On the other hand, a helper, called Charlie, has accggseration resembles lossy source coding with coded side

to correlated side informatio@™ and a limited rate SECUre nformation [12] for which the single letter characteripat
channel to Bob (see Figl 1). We modél’, C, andEY as  of the rate region remains to be an open problem. Similar to

being generated independent and identically distributed.}  he inner and outer bounds for that problem [13], our inner

according to the joint probability distributiopa,c, z(a, ¢;¢)  and outer bounds differ in the joint distribution of the diaiy
over the finite alphabetl x C x £. While Alice wants to trans- ,3ndom variables.

mit her source reliably to Bob, she also wants to maximize the 5 special case of the above theorem is obtained when we
equivocation at Eve, which represents the uncertainty & EY< o me thaRe > H(C), that is, the side informatio@™™ of
aboutAYN after receiving Alice’s transmission and combiningpharlie can be_recove,red by ,Bob with an arbitrarily small
) ) o N
with her (Eve’s) own side informatiof™. .. probability of error. In this scenario, in order to keep the
An (RA’RC’N) code for Secure source compression in thlEresentation simple, we can assume that a side information
SeJE,Up IS Compose?vgf an encoding function at Ao " sequenceB” is available directly to Bob wher& = CV
AT L2 2T an encoding function at Gharle ity high probabiliy (see Fig12 with both switches opergr F
fo + €7 = {1,2,...,27%¢}, and a decoding function aty,is yncoded side information case, the decoding function a

Il. SYSTEM MODEL

BO_I?HQN {12, '_"2NRA}fX é_l,l 'd'7_2j\;R?} —d> AN, Bob is replaced by : {1,2,...,2V%4a) x BN — AN, The
e equivocation rate of this code Is defined as achievability is now defined similarly, for afR 4, A) pair.
%H(ANUA(AN)’ EN), 1) We have the following corollary which follows from The-

orem[3.1. The proof of this special case (assuming no rate
and the error probability of the code has the usual definitiofpmitations between Alice and Bob) is also given in [7].
PN = P(g(fa(AN), fa(CN)) # AN). 2) Corollary 3.2: For uncoded side informatio”¥ at Bob,

(Ra,A) is an achievable rate-equivocation pair if and only if,
1To keep the presentation simple, here we assume deterimicisting, but

similar to [8], randomized coding can be considered by assyriat Alice, R > H(A|B). and 7
Bob and Charlie initially generate independent randomatées and keep the 4= ( | )’ ( )
rest of the coding scheme deterministic. Proofs would fol&imilarly. A < max{I(A;B|U) - I(A;E|U)}, (8)



BN

Sy | where the last inequality is due to the less noisy assumption
v [ |
Bob . Corollary[3.3 for the special case of physically degraded
© A side information at Eve is given in [6] as well. The following
. R4 corollary, which we state without proof, gives a condition
A% Alice under which no positi ivocati be achieved
positive equivocation can be achieved.
Fve A Corollary 3.4: If Bob’s side_ infc_)rmation_ is a stochastical_ly
degraded version of Eve’s side information, then no pasitiv
! equivocation rate is achievable, afd= 0.
Sk ]‘5;\: We use the following simple example (suggested in [7]) to
illustrate some of our results. Let the original source sege
Fig. 2. Uncoded side information at Bob. The states of switchiz and AN — (A1,...,Ay) available to Alice be an i.i.d. binary

S del different ios in t f the side inf tiothe der. . .
& model different scenarios in terms of the side informati encoder. sequence ofd; ~ Bernoulli(1/2) random variables. The

observation of BobBY = (Bj,...,By) is generated by

where we maximize over auxiliary random variabléssuch independently erasing each element of ¢ sequence with

thatU — A — (B, E) form a Markov chain and/| < |A|+ 1. Probabilitypp, that is, B; = A; with probability1 — pp, and
While Corollary[32 requires an auxiliary codebook genBi = ¢ with probability p. Similarly, the observatio?" =

erated byU in the general case to conceal the source frofd, ..., Ex) of the eavesdropper Eve is an independent

the eavesdropper, it is sometimes possible that the ogdingfased version ofA". We haveE; = A; with probability

Slepian-Wolf binning achieves the highest possible secimi 1 — pr, and E; = e with probability p.

terms of equivocation, i.e[](8) is maximized by a constant  For pr > pg, the side information of Eve is a stochasti-

Some definitions are in order. cally degraded version of the side information of Bob. Using
Definition 3.1: We say that the side informatioR is less Corollary[3.3, we know that a constabt is optimal. Then,
noisythan the side informatio® if the optimal equivocation isA = I(A;B) — I(A;E) =

(1-pB) = (1 —pE) =pE — PB-
When pg > pg, then BY is a stochastically degraded
for every probability distribution of the formp(a,b,e,u) = version of EV. From Corollary(31, we gef = 0.

p(a;b, e)p(ula).

I(U;E) < I(U; B) 9)

Definition 3.2: Side informationE' is said to bephysically IV. SIDE INFORMATION AVAILABLE TO ALICE
degradedwith respect toB if, A — B — E form a Markov
chain. We sayF is stochastically degradedith respect taB In this section, we consider various cases in which Alice

if, there exists a joint probability distributiop, 5z such that also has access to the side information available to Botoand/
DPaf =PAB: Pafp = PAE, aNdA — B — E is a Markov chain. Eve. We know from the Slepian-Wolf source coding that,
Theless noisycondition is strictly weaker than treochasti- the availability of Bob’s side information at Alice does not
cally degradedcondition [14]. Furthermore, the compressionkelp in terms of compression rates. However, as shown in [7]
equivocation rate region depends on the joint distributionia a simple example, in the secure compression setup, the
pape only via its marginalp 4z andpar. Hence, physical availability of BV at Alice potentially enables higher equiv-
degradation and stochastic degradation are equivaletitisn tocation rates at the eavesdropper. In the following theprem
scenario. we characterize the compression-equivocation rate redimmn
Corollary 3.3: For uncoded side information at Bob, if Bobvarious side information scenarios at Alice.

hasless noisyside information than Eve, then @4, A) pair  Theorem 4.1:Consider secure source compression for un-

is achievable if and only if coded side information at Bob as illustrated in Fig. 2. An
Ra > H(A|B), and (10) (R4, A) pair is achievable if and only if
A = I(A4B)—I4E). (1) Ra > H(A|B), and (15)
Proof: Achievability follows simply by lettingU be A < max{I(A: BU) — I(A: E|U)}. (16)

constant in Corollary_3]2. For the converse, consider &ny

with the joint distribution b,e) = b . We . . .
: p(u;a,b,¢) = p(a, b, e)p(ula) where we maximize over auxiliary random variabléssuch

have that the joint distributiorp(u, a, b, €) is given in the following
[I(A;B) — I(A; E)] — [I(A; BIU) — I(A; E|U)] table depending on which switches are closed:
= [[(4;B) — I(A; )]
—[I(A,U;B) = I(B;U) — I(A,U; E) + I(E;U)] (12) Closed Switcheg  p(u,a,b, e)
— I(B,U|E) —I(E,U|B) (13) SB p(aaba e)p(u|a,b)
Sk p(a, b, e)p(ula, e)
= I(B;U) - I(E;U) > 0, (14) Sp andSg p(a, b, e)p(ula, b, e)




In the case when only the switchiz is closed, the rate to Slepian-Wolf codebooks. We have also characterized the
region can be explicitly given as follows. compression-equivocation rate regions considering aviity
Ra > H(A|B) andA < I(4; B|E). (17) of _sid(? !nformation.at the encoder. We have shc_>wn that,
while it is useless in the pure lossless compression setup,
Proof: The proof resembles Theordm 3.1, and will noside information at the encoder may help to increase the
be included due to space limitations. B equivocation rate in secure compression model.

Note that the availability of either or both of the side
information sequences at the transmitter enlarges theespac
of the auxiliary random variableS and potentially results in
a higher equivocation rate at the eavesdropper. To illtestra Inner bound: We fix p(ula) and p(v|c) satisfying the
this, consider the random erasure side information examgnditions in the theorem. Then we generafél/(4:U)+<1)
in Section[Tll. Suppose that the observation of BB is independent codewords of lengthV, UN(wi), w1 €
available to Alice as well. Alice can transmit only the exse{l, - .., 2V AU} with distribution] T, p(u;). We ran-
bits of Bob, hence leaking the least amount of information @&mly bin all U™ (w;) sequences int@" !/ (A:UIV)+e2) pins,
Eve. As stated in [7], it is possible to show that the optim&@lling them the auxiliary bins. For each codewafd (w;),
auxiliary random variablé/ satisfiesU = A when there is We denote the corresponding auxiliary bin index @s ).
an erasure at Bob, arfd is constant otherwise. The optimalOn the other hand, we randomly bin allV sequences into
equivocation rate in this cddés A = pg(1 — p). Note that 2~ (AIV:U)Fe) bins, calling them the source bins, and denote
this equivocation is strictly larger than the one withoudesi the corresponding bin index ag(A"). We also generate
information. Furthermore, even if Bob’s side informatiana 2"V (/(“*V)*<4) independent codewords™ (w;) of length N,

APPENDIX |
PrROOF OFTHEOREM[3]]

stochastically degraded version of Eve’s, iz > pg, we w2 € {1,.. -72N(_I(C;V)“4)}, with distribgtion_vazl p(?)i)-
are still able to achieve a non-zero equivocation rate & thi For each typical outcome ofi™, Alice finds a jointly
side information can be provided to Alice as well. typical UN (w;). Then she reveala(w,), the auxiliary bin

When only the observation of EvE? is available to Alice, index of U (w;), ands(A"), the source bin index ofi",
from (I7) the optimal equivocation rate is given byd; B|E). to both Bob and Eve, that is, the encoding functipn of
In the erasure example, the optimal equivocation rate indouAlice is composed of the paii (w1 ), s(A")). Using standard
to be A = pg(1—pg), which is the same as in the case whetechniques, it is possible to show that we have such a unique
only switch S5 is closed. We observe that, for this specifindex pair with high probability.
example of erased observations at Bob and Eve, the benefit of he helper, Charlie, observes the outcome of its soGtte
having either Bob’s or Eve’s side information to Alice is thdinds a jointly typicalV" with C', and sends the index;
same. For this example, it is also possible to show that, evehV "' over the private channel to Bob. With high probability
when both observation sequences are available to Alice, tH€ Wwill be a typical outcome, and there will be a unique
optimal equivocation rate is stil\ = pg(1 — pp). VN (wy) that is jointly typical withC™V. Bob, having access to
While there is no difference between physically or stocha¥-" (w2) and the auxiliary bin index(w; ), can find the jointly
tically degraded observations when both switches are opé&ical U™ (w;) correctly with high probability. Then using
this is no longer true when we consider side informatiol”™ (w2), U™ (w;) and the source bin index(A"), Bob can
at Alice. In the following corollary, we show that for areliably decode the source sequent¥. Lettinge; — 0 for
physically degraded observation at Eve, the availabilitgd ¢ = 1,2, 3 and4, we can make the total communication rate of
to Alice does not help. This is in contrast to stochasticalilice arbitrarily close tol (A; U|V)+ H (AU, V) = H(A[V),
degraded side informatio®™ whose availability at Alice While having an error probability less thanfor sufficiently
would potentially increase the equivocation rate as seenl@geN.
the example above. The equivocation rate for this scheme can be found as
Corollary 4.2: If the observation of Eve is a physically 1
degraded version of Bob’s side information, i.d.— B — E NH(ANV‘(“’I)a s(AY), BY)
form a Markov chain, then providing this observation to Alic
would not improve the equivocation rate.

[H(AY) = I(AY; a(wn), s(AN), BY)]

V. CONCLUSION [H(AY) — I(A"; a(wy), EV)
We have considered secure lossless compression in the _ I(AN, S(AN)|EN a(wl))}
presence of an eavesdropper with correlated side infoomati 1 ’ ’
We have shown that secure communication can be enabled by > — [H(AN) — I(AN;UN,EN) — H(s(AY))]  (18)
another agent who has its own correlated side information an
a secure Iignk to the legitimate receiver. We have studiedasee = H(A|U,E) - H(A|V,U) — €5 (19)
ios under which secure compression codebooks are identical = I(A4; V|U) — I(4; E|U) — es,

2There is a typo in the leakage rate bf- py p reported in [7]. It should where KIB) follows form the data prqcessing inequa”_ty; and
have beenl —py — pypz. (I9) follows form the fact thak(A") is a random variable

2l=zl=



over a set of siz@N(H(AIV:U)+es),
Finally, we also have

L H(AN|a(wy), s(A), EY)

N

= < [H(AYBY) — 1A afun), 5(AY)| BY)]

> H(A|E) - - Hla(wn), s(4") (20)
> H(A|E) - Ra, (21)

Outer bound:Let J £ fa(AN) and K £ fo(CN). From
Fano’s inequality, we havél (AY|J, K) < N§(PY), where
d(z) is a non-negative function withim,_,o d(z) = 0.

DefineU; £ (J, A1 E'~') andV; £ (K,C""1). Note
that bothU;— A,— (B;, E;) andV;—C;—(A;, E;) form Markov

chains. Then, we have the following chain of inequalities:

N
NRe >H(K) > I(CV; K) =Y I(C; K,C™Y)  (22)
i=1

N
:ZI(Q‘;VZ%
im1

-

< [I(A; K, C I, A B
Z:—l H(E;|J, B A" + H(E;|A;)] + Ne (28)
= XN: [I(Ai; Vi|U;) — H(E;|U;) + H(E;|A:)] + Ne  (29)
i]:vl
=Y 1A VilUi) = I(As; Bi|U3)] + Ne (30)

S
—

where [26) follows from the Fano’s inequality and the chain
rule of mutual information;[(27) follows from the memorydes
property of the source and the side information sequenaeés, a
the fact that conditioning reduces entrody:1(28) followsnir
the chain rule and non-negativity of mutual informatidrg)2
follows from the definitions ofV; and U; given above and
the fact that conditioning reduces entrody:](30) followscsi

Ui — Ai — Ei.

We define an independent random varial)euniformly
distributed over the sef1,2,...,N}, and A = Ag, E =
Eq, V. = (Vu,Q), andU = (Ug,Q). Then from the
usual techniques[J(3(5) follow whil& — C — (A, E) and

where [22) follows from the chain rule of mutual informatiod/ — 4 — (C, E) are Markov chains. Finally, we also have

and the memoryless assumption @n We also have
NRy >H(J) > H(J|K)
=H(AN,J|K) — H(AN|J, K)

>H(AV|K) — Ne
N

(23)

%H(AN|EN) < %H(AN, J|EN)
= %[H(JUEN) + H(AN|EN, )]
H(J)

< —= < .
N +A<Ryu+A
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= H(A|K,A"") - Ne

N
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-

—
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U
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Il
=

—

K]

N
= H(A|K,C"") = Ne (25) ]
i=1
N (5]
= H(A;|Vi) — Ne,
i=1 [6]
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