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Abstract—Recent approaches to classification of text, images,
and other types of structured data, launched the quest for positive
definite (p.d.) kernels on probability measures. In particular,
kernels based on the Jensen-Shannon (JS) divergence and other
information-theoretic quantities have been proposed. We intro-
duce new JS-type divergences, by extending its two building
blocks: convexity and Shannon’s entropy. These divergences
are then used to define new information-theoretic kernels on
measures. In particular, we introduce a new concept of q-
convexity, for which a Jensen q-inequality is proved. Based on
this inequality, we introduce the Jensen-Tsallis q-difference, a
nonextensive generalization of the Jensen-Shannon divergence.
Furthermore, we provide denormalization formulae for entropies
and divergences, which we use to define a family of nonextensive
information-theoretic kernels on measures. This family, grounded
in nonextensive entropies, extends Jensen-Shannon divergence
kernels, and allows assigning weights to its arguments.

Index Terms—Positive definite kernels, nonextensive entropy,
Tsallis entropy, Jensen-Shannon divergence, convexity.

I. INTRODUCTION

In the field of kernel-based machine learning [1], there has
been recent interest in defining positive definite kernels on
probability measures, with applications in classification of text,
images, and other types of structured data [2], [3], [4]. In
particular, kernels based on the Jensen-Shannon divergence
(JSD [5]) and other (Shannon) information-theoretic quantities
have been considered by several authors [2], [3].

Over the years, several generalizations of the Shannon
entropy have been proposed [6], [7], [8]. Rényi entropies are
arguably the best known of these, with several applications
(e.g., [9], [10]). The Rényi and Shannon entropies are both
additive: the joint entropy of independent variables is the
sum of the individual entropies. In the so-called nonextensive
(namely Tsallis) entropies [7], [8], [11], the additivity property
is abandoned. Tsallis entropies have been used to formulate
nonextensive statistical mechanics [12], [13] and, recently, in
signal/image processing [14], [15], [16].

Convexity is a key concept in information theory, namely
via the ubiquitous Jensen’s inequality (JI) [17], [18]. The JI
underlies the concept of JSD, which has been used in statistics,
machine learning, image and signal processing, and physics.

In this paper, we introduce new JSD-type divergences, by
extending its two building blocks: convexity and Shannon’s
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entropy. These divergences are then used to define new (and
recover previous) information-theoretic kernels on measures.
More specifically, our main contributions are:
• A new concept of q-convexity, for which a Jensen q-

inequality (JqI) is proved. Based on the JqI, we introduce
a the Jensen-Tsallis q-difference, (JTqD) a nonextensive
generalization of the JSD.

• Characterization of the JTqD, with respect to convexity
and extrema, extending the work in [19], [5] for the JSD.

• Denormalization formulae for entropies and divergences,
which we use to define a family of nonextensive
information-theoretic kernels on measures. This family
(which contains JSD kernels [2] as particulars cases)
is novel in two ways: it is grounded in nonextensive
entropies; it allows assigning weights to its arguments.

All the proofs omitted in this paper can be found in [20].

II. TSALLIS ENTROPIES

Let ∆n−1 be the simplex in Rn. The Tsallis entropy Sq :
∆n−1 → R, defined as

Sq(p1, . . . , pn) =
(1−∑n

i=1 pq
i )

q − 1
= −

∑

x∈X

p(x)q lnq p(x) (1)

where lnq(x) := (x1−q−1)/(1−q) is the q-logarithm, satisfies
the axioms for nonextensive entropies introduced in [21].

Tsallis joint and conditional entropies are defined as

Sq(X, Y ) := −
∑
x,y

p(x, y)q lnq p(x, y)

Sq(X|Y ) := −
∑
x,y

p(x, y)q lnq p(x|y)

and the chain rule Sq(X,Y ) = Sq(X)+Sq(Y |X) holds [22].
For two pmfs pX , pY ∈ ∆n, the Tsallis relative entropy,

generalizing the KLD, is defined as

Dq(pX‖pY ) := −
∑

x

pX(x) lnq(pY (x)/pX(x)). (2)

III. ENTROPIES OF UNNORMALIZED MEASURES

We consider functionals that extend the domain of the
Shannon and Tsallis entropies to unnormalized measures.
Although they are completely characterized by their restriction
to the normalized counterparts, these denormalizations will be
used in Section VI to derive novel positive definite kernels.



Let (X ,M , ν) be a measured space, where X is Hausdorff
and ν a σ-finite Radon measure (usually the Lebesgue-Borel
measure, if X ⊆ Rn and intX 6= ∅, or the counting measure, if
X is countable). We denote by M+(X ) the set of finite Radon
ν-absolutely continuous measures on X , and by M1

+(X ) the
subset of those which are probability measures. For simplicity,
we often identify each measure in M+(X ) or M1

+(X ) with the
corresponding nonnegative density. In the sequel, Lebesgue-
Stieltjes integrals of the form

∫
A f(x)dν(x) are often written

as
∫
A f , or simply

∫
f, if A = X .

For some functional G : M+(X ) → R, let MG
+ (X ) := {f ∈

M+(X ) : |G(f)| < ∞} and M1,G
+ (X ) := MG

+ (X )∩M1
+(X ).

The following functional [23], extends the SBG entropy from
M1,H

+ to unnormalized measures in MH
+ (with 0 log 0 := 0)

H(f) = −k

∫
f log f =

∫
ϕH ◦ f, (3)

where k ∈ R++, and ϕH : R++ → R is defined as

ϕH(y) = −k y log y. (4)

The generalized KLD is a directed divergence between two
measures µf , µg ∈ MH

+ (X ), such that µf is µg-absolutely
continuous (µf ¿ µg). In terms of densities,

D(f, g) = k

∫ (
g − f + f log

f

g

)
. (5)

Both H and D are completely determined by their restric-
tion to the normalized measures, as the next proposition shows.

Proposition 1: The following equalities hold for any c ∈
R++ and f, g ∈ MH

+ (X ), with µf ¿ µg:

H(cf) = c H(f) + |f |ϕH(c),
D(cf, cg) = c D(f, g),
D(cf, g) = c D(f, g)− |f |ϕH(c) + k (1− c) |g|,

where |f | := ∫
f = µf (X ).

Proof: Straightforward from (3) and (5).
For q ≥ 0, let M

Sq

+ (X ) := {f ∈ M+(X ) : fq ∈ M+(X )}.
The Tsallis counterpart of (3), defined on M

Sq

+ (X ), is

Sq(f) =
∫

ϕq ◦ f, (6)

where ϕq : R++ → R is given by

ϕq(y) =
{

ϕH(y) if q = 1,
k

q−1 (y − yq) if q 6= 1.
(7)

Similarly, a nonextensive version of (5) is

Dq(f, g) = − k

q − 1

∫ (
qf + (1− q)g − fqg1−q

)
, (8)

for q 6= 1, and D1(f, g) := limq→1 Dq(f, g) = D(f, g).
Proposition 2: The following equalities hold for any c ∈

R++ and f, g ∈ M
Sq

+ (X ), with µf ¿ µg:

Sq(cf) = cqSq(f) + |f |ϕq(c), (9)
Dq(cf, cg) = cDq(f, g), (10)
Dq(cf, g) = cqDq(f, g)− qϕq(c)|f |+ k(1− cq)|g|.(11)

Proof: Straightforward from (6) and (8).
Naturally, all the equalities in Prop. 1 are obtained by taking

the limit q → 1 in those of Prop. 2.

IV. JENSEN DIFFERENCES AND DIVERGENCES

Definition 3 (Jensen difference (JD)): Consider
two measured sets (X , M , ν) and (T , T , τ). Let
µ := {µt}t∈T ∈ [M+(X )]T be a set of measures in
M+(X ) indexed by T , and let ω ∈ M+(T ) be a measure in
T . The JD is defined as

Jω
Ψ(µ) := Ψ

(∫

T
ω(t) µt dτ(t)

)
−

∫

T
ω(t)Ψ(µt) dτ(t) (12)

where: (i) Ψ is a concave functional such that domΨ ⊆
M+(X ); (ii) ω(t)µt(x) is τ -integrable, for all x ∈ X ; (iii)∫
T ω(t)µtdτ(t) ∈ domΨ; (iv) µt ∈ domΨ, for all t ∈ T ; (v)

ω(t)Ψ(µt) is τ -integrable.
In the following subsections, we consider several instances

of Definition 3, leading to several Jensen-type divergences.

A. The Jensen-Shannon Divergence

Let P be a random probability distribution with values in
{pt}t∈T following a distribution π ∈ M1

+(T ). Then,

Jπ
Ψ({pt}t∈T ) = Ψ (E[P ])− E[Ψ(P )], (13)

where the expectations are with respect to π. Letting Ψ = H ,
the Shannon entropy, we have Jπ := Jπ

H .
If X and T are finite with |T | = m, Jπ

H(p1, . . . , pm) is
the JSD of p1, . . . , pm, with weights π1, . . . , πm [19], [5]. For
|T | = 2 and π = ( 1

2 , 1
2 ), we have J ( 1

2 , 1
2 )(P ) = JS(p1, p2),

JS(p1, p2) = H((p1 + p2)/2)− (H(p1) + H(p2))/2 (14)

as introduced in [5]. It has been shown that
√

JS satisfies the
triangle inequality and that it is an Hilbertian metric [24], [25].

B. The Jensen-Tsallis Divergence

Divergences of the form (13), based on the Tsallis entropy
have been studied in [19]. Letting Ψ = Sq, (13) becomes

Jπ
Sq

({pt}t∈T ) = Sq (E[P ])− E[Sq(P )]. (15)

For finite X and T , Jπ
Sq

is called the Jensen-Tsallis diver-
gence (JTD) and it has been applied in image processing [26].

V. q-CONVEXITY AND JENSEN q-DIFFERENCES

A. Introduction and Definitions

Definition 4: The unnormalized q-expectation of a random
variable X , with probability density p, is

Eq[X] :=
∫

x pq(x) dx. (16)

For q 6= 1, the q-expectation does not correspond to the
intuitive meaning of expectation. Nonetheless, it has been used
in the construction of nonextensive information theory; e.g.,
the Tsallis entropy can be written as Sq(X) = −Eq[lnq p(X)].

We now introduce q-convexity and derive several related
results, namely the Jensen q-inequality (JqI).



Definition 5: Let q ∈ R and X be a convex set. A function
f : X → R is q-convex if for any x, y ∈ X and λ ∈ [0, 1],

f(λx + (1− λ)y) ≤ λqf(x) + (1− λ)qf(y). (17)

Naturally, f is q-concave if −f is q-convex, and 1-convexity
is simply standard convexity.

Proposition 6 (The Jensen q-Inequality): If f : X → R
is q-convex, then for any n ∈ N, x1, . . . , xn ∈ X and π =
(π1, . . . , πn) ∈ ∆n−1,

f
(∑

πixi

)
≤

∑
πq

i f(xi). (18)

Proof: By induction, as in the proof of the JI [18].

Proposition 7: Let f ≥ 0 and q ≥ q′ ≥ 0; then, q-
convexity implies q′-convexity.

Definition 8 (Jensen q-Differences (JqD)): Let
µ := {µt}t∈T ∈ [M+(X )]T be a class of measures in
X indexed by T , and let ω ∈ M+(T ) be a measure in T .
For q ≥ 0, define

Tω
q,Ψ(µ) := Ψ

(∫

T
ω(t)µt dτ(t)

)
−

∫

T
ωq(t)Ψ(µt) dτ(t)

(19)
where: (i) Ψ is a concave functional such that domΨ ⊆
M+(X ); (ii) ω(t)µt(x) is τ -integrable for all x ∈ X ; (iii)∫
T ω(t)µtdτ(t) ∈ domΨ; (iv) µt ∈ domΨ, for all t ∈ T ; (v)

ωq(t)Ψ(µt) is τ -integrable.

Conditions for the Jensen difference to be convex were
given in [19]. The following proposition generalizes that result,
extending it to JqD.

Proposition 9: Let T and X be finite sets, with |T | = m
and |X | = n, and let π ∈ M1

+(T ). Let ϕ : [0, 1] → R be a
function of class C2 and consider the (ϕ-entropy [19]) function
Ψ : [0, 1]n → R defined by Ψ(z) := −∑n

i=1 ϕ(zi). Then, the
q-difference Tπ

q,Ψ : [0, 1]nm → R is convex if and only if ϕ is
convex and −1/ϕ′′ is (2− q)-convex.

B. The Jensen-Tsallis q-Difference

Definition 10 (Jensen-Tsallis q-Difference (JTqD)): In
the conditions of Definition 8, the JTqD, denoted Tπ

q , is
defined as Tπ

q := Tπ
q,Sq

.

When |T | = 2 and π = (1/2, 1/2), define Tq := T
1/2,1/2
q .

Notable cases arise for particular values of q:
• For q = 0, S0(p) = −1 + ‖p‖0, where ‖p‖0 denotes the

so-called 0-norm (although it’s not a norm) of vector p,
i.e., its number of nonzero components. The JT0D is thus

T0(p1, p2) = 1− ‖p1 ¯ p2‖0, (20)

where ¯ denotes the Hadamard-Schur (i.e., elementwise)
product. We call T0 the Boolean difference.

• For q = 1, since S1(p) = H(p), T1 is the standard JSD.
• For q = 2, S2(p) = 1 − 〈p, p〉, where 〈x, y〉 =∑

i xi yi denotes inner product. Consequently, the JT2D
is T2(p1, p2) = (1−〈p1, p2〉)/2, we call linear difference.

We now present results regarding convexity and extrema of
the JTqD, extending known properties of the JSD (q = 1),
some of which are lost in the transition to nonextensivity. For
example, while the JSD is nonnegative and vanishes iff all the
distributions are identical, this is not true in general for the
JTqD. Nonnegativity of the JTqD is only guaranteed if q ≥ 1,
explaining why some authors (e.g., [22]) only consider q ≥ 1,
when developing nonextensive information theories.

The following propositions establish convexity properties of
the JTqD (complementing the joint convexity of the JTD, for
q ∈ [1, 2], proved in [19]) and provide upper and lower bounds
for the JTqD.

Proposition 11: Let T and X be finite sets with cardinali-
ties m and n, respectively. For q ∈ [0, 1], the JTqD is a jointly
convex function on (M1,Sq

+ (X ))T .

Proposition 12: Let T and X be countable sets. The JTqD
is convex in each argument, for q ∈ [0, 2], and concave in each
argument, for q ≥ 2.

Proposition 13: Let T and X be countable sets. For q ≥ 0,
Tπ

q (p1, . . . , pm) ≤ Sq(π), with the bound reached for a set of
disjoint degenerate distributions. For q ≥ 1, Tπ

q (p1, . . . , pm) ≥
0, with the minimum attained in the pure deterministic case,
i.e., when all distributions are equal to the same degenerate
one. For q ∈ [0, 1] and X a finite set with |X | = n,
Tπ

q (p1, . . . , pm) ≥ Sq(π)[1−n1−q]. This lower bound (which
can be negative) is attained when all distributions are uniform.

VI. TSALLIS KERNELS

A. Positive and negative definite kernels

We start by recalling basic concepts from kernel theory [1];
in the following, X denotes a nonempty set.

Definition 14: Let ϕ : X × X → R be a symmetric
function, i.e., satisfying ϕ(y, x) = ϕ(x, y), for all x, y ∈ X .
ϕ is called a positive definite (p.d.) kernel if and only if

n∑

i=1

n∑

j=1

ci cj ϕ(xi, xj) ≥ 0 (21)

for all n ∈ N, xi, . . . , xn ∈ X and ci, . . . , cn ∈ R.

Definition 15: Let ψ : X × X → R be symmetric. ψ is
called a negative definite (n.d.) kernel if and only if

n∑

i=1

n∑

j=1

ci cj ψ(xi, xj) ≤ 0 (22)

for all n ∈ N, xi, . . . , xn ∈ X and ci, . . . , cn ∈ R, such that
c1 + . . .+ cn = 0. In this case, −ψ is called conditionally p.d.

Both the sets of p.d. and n.d. kernels are convex cones
(closed under pointwise sums and integrations), the former
being closed under pointwise products; moreover, both sets
are closed under pointwise convergence. Proofs of these facts
and of the following propositions can be found in [27].

Proposition 16: Let ψ : X × X → R be a symmetric
function, and x0 ∈ X . Let ϕ : X × X → R be given by



ϕ(x, y) = ψ(x, x0) + ψ(y, x0) − ψ(x, y) − ψ(x0, x0). Then,
ϕ is p.d. if and only if ψ is n.d.

Proposition 17: The function ψ : X × X → R is a n.d.
kernel if and only if exp(−tψ) is p.d. for all t > 0.

Proposition 18: The function ψ : X × X → R+ is a n.d.
kernel if and only if (t + ψ)−1 is p.d. for all t > 0.

Proposition 19: If ψ is n.d. and nonnegative on the diag-
onal, i.e., ψ(x, x) ≥ 0 for all x ∈ X , then so are ψα, for
α ∈ [0, 1], and log(1 + ψ).

Proposition 20: Let f : X → R with f ≥ 0; then, for
α ∈ [1, 2], ψα(x, y) = −(f(x) + f(y))α is a n.d. kernel.

The following definition has been used in a machine learn-
ing context [23], following [27].

Definition 21 (Semigroup Kernels): Let (X , +) be a
semigroup. A function ϕ : X → R is called p.d. (in the semi-
group sense) if k : X×X → R, defined as k(x, y) = ϕ(x+y),
is a p.d. kernel. Likewise, ϕ is called n.d. if k is a n.d. kernel.

B. Jensen-Shannon and Tsallis kernels

The basic result underlying JSD- and JTqD-based p.d.
kernels is the fact, shown in the following proposition, that
the denormalized Tsallis q-entropies (6) are n.d. functions
on M

Sq

+ (X ), for q ∈ [0, 2]. Of course, this includes the
denormalized Shannon entropy (3) as a particular case (for
q = 1). Although, for the Shannon entropy case, part of the
proof is in [27], [25], [23], we present a general proof here.

Proposition 22: For q ∈ [0, 2], the denormalized Tsallis
q-entropy Sq is a n.d. function on M

Sq

+ (X ).
Proof: Since n.d. kernels are closed under pointwise inte-

gration, it suffices to prove that ϕq (see (7)) is n.d. on R+. For
q 6= 1, ϕq(y) = (q−1)−1(y−yq), thus ϕq = |q−1|−1(ξq+γq),
where ξq(y) = y sign(q− 1) and γq(y) = yq sign(1− q), both
defined on R+. Since the set of n.d. functions is closed under
sums and multiplications by non-negative scalars, this reduces
to showing that both ξq and γq are n.d. Function ξq is both n.d.
and p.d. for any q. For q ∈ [0, 1[, γq = ξq

a, for any a > 1; since
ξa is n.d. and nonnegative, Prop. 19 guarantees that γq is also
n.d. For q ∈]1, 2], Prop. 20 guarantees that k(x, y) = −(x+y)q

is n.d., thus so is γq.
For q = 1, we use the fact that,

ϕ1(x) = ϕH(x) = −x log x = lim
q→1

x− xq

q − 1
= lim

q→1
ϕq(x),

where the limit is obtained by L’Hôpital’s rule; since the set
of n.d. functions is closed under limits, ϕ1(x) is n.d.

We are now in a position to present the main contribution
of this section, which is a family of weighted Jensen-Tsallis
kernels, generalizing the JSD-based (and other) kernels in
three ways
• they allow using unnormalized measures;
• they allow using different weights for each of the two

arguments;
• they extend the mutual information feature of the JSD

kernel to the nonextensive scenario.

Definition 23 (weighted Jensen-Tsallis kernels (WJSK)):
The kernel ϕ̃q : M

Sq

+ (X )×M
Sq

+ (X ) → R is defined as

ϕ̃q(µ1, µ2) =
(
Sq(π)− Tπ

q (p1, p2)
)
(ω1 + ω2)q,

where p1 = µ1/ω1 and p2 = µ2/ω2 are the normal-
ized counterparts of µ1 and µ2, with corresponding masses
ω1, ω2 ∈ R+, and π = (ω1/(ω1 + ω2), ω2/(ω1 + ω2)).

The kernel ϕq :
(
M

Sq

+ (X ) \ {0}
)2

→ R is defined as

ϕq(µ1, µ2) = Sq(π)− Tπ
q (p1, p2).

Proposition 24: The kernel ϕ̃q is p.d., for q ∈ [0, 2].
Proof: Writing µ1 = ω1p1 and µ2 = ω2p2 and using the

denormalization formulae of Prop. 2, we obtain, after algebra,
ϕ̃q(µ1, µ2) = −T

(1,1)
q,Sq

(µ1, µ2). Since −T
(1,1)
q,Sq

(µ1, µ2) =
−Sq(µ1 +µ2)+Sq(µ1)+Sq(µ2) = −Sq(µ1 +µ2)+Sq(µ1 +
µ0)+Sq(µ2 +µ0)−Sq(µ0 +µ0), with µ0 = 0, and Sq is n.d.
(Prop. 22), Prop. 16 guarantees that −T

(1,1)
q,Sq

is p.d.

Proposition 25: The kernel ϕq is p.d., for q ∈ [0, 1].
Proof: Observe that ϕq(µ1, µ2) = ϕ̃q(µ1, µ2)(ω1 +

ω2)−q . The result follows from the fact that the product of
two p.d. kernels is a p.d. kernel and (ω1 + ω2)−q is a p.d.
kernel, for q ∈ [0, 1] (see [27]).

The following are particular cases of WJTK, for q = 1.

Definition 26 (weighted JS kernel (WJSK)): The kernel
ϕ̃ : (MH

+ (X ))2 → R is defined as ϕ̃ = ϕ̃1, i.e.,

ϕ̃(µ1, µ2) = (H(π)− Jπ(p1, p2)) (ω1 + ω2),

where p1 = µ1/ω1 and p2 = µ2/ω2 are the normalized coun-
terpart of µ1 and µ2, and π = (ω1/(ω1 + ω2), ω2/(ω1 + ω2)).

Analogously, the kernel ϕ :
(
MH

+ (X ) \ {0})2 → R is
simply ϕ = ϕ1, i.e.,

ϕ(µ1, µ2) = H(π)− Jπ(p1, p2).

Corollary 27: The WJSK ϕ̃ and ϕ are p.d.
Proof: Invoke Props. 24 and 25 with q = 1.

The JS kernel (JSK), introduced and shown to be p.d. in
[2], is now simply a particular case of the WJSK in Def. 26.

Definition 28 (JSK): The kernel kJS : (M1
+(X ))2 → R is

defined as kJS(p1, p2) = 1− JS(p1, p2).

Corollary 29: The kernel kJS is p.d.
Proof: kJS is the restriction of ϕ to (M1

+(X ))2.

The so-called exponentiated JSK (EJSK), next defined, has
been used (and shown to be p.d.) by several authors [23].

Definition 30 (EJSK): Let the kernel k EJS :
(M1

+(X ))2 → R be defined (for t > 0) as
k EJS(p1, p2) = exp [−t JS (p1, p2)] .

Corollary 31: The EJSK is p.d.
Proof: Invoke Prop. 17 and the fact that kJS is n.d.

Next, we introduce a weighted generalization of the EJS
kernel, which allows unnormalized measures as its arguments.



Definition 32 (Weighted EJSK (WEJSK): Define the
kernel kWEJS : MH

+ (X )×MH
+ (X ) → R, for t > 0, as

kWEJS(µ1, µ2) = exp(tH(π)) exp [−tJπ(p1, p2)] . (23)

Corollary 33: The kernel k WEJS is p.d.
Proof: From Prop. 17 and Cor. 27. Notice that although

kWEJS is p.d., none of its exponential factors in (23) is p.d.

Finally, we study two particular (nonextensive) members
cases of the family of Tsallis kernels.

Definition 34 (Boolean kernel): Let the kernel kBoole :
MS0

+ (X )×MS0
+ (X ) → R be defined as kBoole = ϕ̃0, i.e.,

kBoole(µ1, µ2) = (card(π)− 1) card(µ1 ¯ µ2). (24)

Definition 35 (Linear kernel): Let the kernel klin :
M1

+(X )×M1
+(X ) → R be defined as

klin(p1, p2) =
1
2
〈p1, p2〉. (25)

Corollary 36: The kernel kBoole is p.d.
Proof: Invoke Prop. 24, with q = 0.

Corollary 37: The kernel klin is p.d.
Proof: This well-known property of the inner product

kernel [1], also results from Prop. 24, since klin(p1, p2) =
ϕ2(p1, p2) = ϕ̃2(p1, p2)/4.

In conclusion, the Boolean kernel, the JSK, and the linear
kernel, are simply particular elements of the much wider fam-
ily of Tsallis kernels, continuously parameterized by q ∈ [0, 2].
Furthermore, the Tsallis kernels are a particular subfamily of
the even wider set of weighted Tsallis kernels.

VII. CONCLUSION

In this paper we have introduced a new family of positive
definite kernels between measures, which contain previous
information-theoretic kernels on probability measures as par-
ticular cases. One of the key features of the new kernels is that
they are defined on non-normalized measures (not necessarily
normalized probabilities). This is relevant, e.g., for kernels
on empirical measures (such as word counts, pixel intensity
histograms); instead of the usual step of normalization [2],
we may leave these empirical measures unnormalized, thus
allowing objects of different size (e.g., documents of different
lengths, images with different sizes) to be weighted differently.
Another possibility is the explicit inclusion of weights: given
two normalized measures, they can be multiplied by arbitrary
(positive) weights before being fed to the kernel function.

Technically, the new kernels, and the proofs of positive
definiteness, are supported on other contributions of this paper:
the new concept of q-convexity, for which we proved a
Jensen q-inequality; the concept of Jensen-Tsallis q-difference,
a nonextensive generalization of the JSD; denormalization
formulae for several entropies and divergences.

We are currently experimentally assessing the performance
of these new kernels, namely on text classification problems.
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