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Abstract— We study extensions of a quantum channel whose
one-way capacities are described by a single-letter formula.
This provides a simple technique for generating powerful upper
bounds on the capacities of a general quantum channel. We apply
this technique to two qubit channels of particular interest—the
depolarizing channel and the channel with independent phase
and amplitude noise. Our study of the latter demonstrates that
the key rate of BB84 with one-way post-processing and quantum
bit error rate q cannot exceedH(1/2−2q(1−q))−H(2q(1−q)).

I. I NTRODUCTION

Perhaps the central problem of information theory is finding
the rate at which information can be transmitted through a
noisy channel. Indeed, Shannon created the field with his 1948
paper [1] showing that the capacity of a noisy channel is equal
to the maximum mutual information over all input distributions
to a single useof the channel, even though the encoding needs,
in general, to use an asymptotically large number of channel
uses.

However, it has long been known that the apparent quantum
generalization of the mutual information, namely thecoherent
information, does not yield a single-letter formula for the
quantum information capacityQ [2], [3]. Similarly, though
the private capacity of a classical broadcast channel is known,
and given by a single-letter formula [4], the private classical
capacity of a quantum channel is not known.

The quantum capacity is given by [5], [6], [7]:

Q = lim
n→∞

1

n
maxφn

Ic
(
N⊗n, φn

)
(1)

where
Ic(N , φ) = Ic

(
I⊗N (|φAB〉〈φAB |)

)
. (2)

Here |φAB〉 is a purification of φ and Ic(ρAB) =
S(ρB)−S(ρAB) with S(ρ)= − Tr(ρ log ρ). The private ca-
pacity is given by [6]

Cp(N ) = lim
n→∞

1

n
C(1)

p (N⊗n) (3)

where

C(1)
p (N ) ≡ sup

{px,|ϕx〉},X→T

(I(T ;B)ω − I(T ;E)ω) , (4)

with ωABE =
∑

x,t p(t|x)p(x)|t〉〈t|A ⊗ UN |ϕx〉〈ϕx|U †
N and

UN an isometric extension ofN (i.e.,N (ρ) = TrE UNρU †
N ).

The mutual information is defined, as usual, according to

I(T ;B)ωTB
= S(T )ωT

+ S(B)ωB
− S(BT )ωBT

, where we
have used subscripts on the states to indicate which system
they live on (e.g.,ωB = TrT ωBT ), and used the notation
S(B)ωB

= S(ωB). When it is clear which state we are
referring to, we will omit the subscript on the entropy.

Since the formulas for these capacities involve maximiza-
tions over ever growing numbers of channel uses, we cannot
evaluate them at all. This unsatisfying situation is a reflection
of our lack of understanding of how to choose asymptotically
good codes. Our best understanding is presented in [8].

Fortunately, wecan evaluate capacity for some channels—
degradable ones [9]. In general, channels for which the coher-
ent information is additive,i.e.

Q(N ) = Q(1)(N ) ≡ max
φ

Ic(N , φ), (5)

of which degradable channels are an example, are much
easier to deal with than arbitrary channels. Once we have an
understanding of additive channels, we can use them to bound
the capacities of other channels [10] [11]. Here we improve
upon that work and develop new tighter and much simpler
upper bounds.

First we will define the concepts of additive and degradable
extensions to a channel and prove they have single-letter
formulas for their capacities. We then use a particularly
simple class of degradable extensions, which we call ’flagged
extensions’ to bound the quantum and private capacities. We
also show that the best known previous techniques are special
cases of our new bound. Finally, we bound the key rate of
BB84 quantum key distribution [12] for a channel with bit
error rateq by H(1/2− 2q(1− q))−H(2q(1− q)).

II. A DDITIVE AND DEGRADABLE EXTENSIONS

Definition 1 We call T an additive extensionof a quantum
channelN if there is a second channelR such thatN = R◦T
andQ(T ) = Q(1)(T ).1

A particularly nice type of additive extension is one which
satisfies the following definition:

1Of course, we could also define additive extensions which have
C

(1)
p (T ) = Cp(T ) in order to find upper bounds onCp(N ). However,

since the only channels we know withC(1)
p (T ) = Cp(T ) also have

C
(1)
p (T ) = Q(1)(T ), we will not pursue this approach here.
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Definition 2 A channelN , with isometric extensionU : A →
BE is calleddegradableif there is adegrading mapD such
that D ◦ N = N̂ , whereN̂ (ρ) = TrB UρU †. N̂ is called the
complementary channelof N .

We call an additive extension of a quantum channel that
is degradable adegradable extension. Degradable extensions
have the additional property that their coherent information is
an upper bound for the private classical capacity as well as
the quantum capacity.

Our main tool will be the following simple theorem, which
bounds the capacity of a quantum channel in terms of the
capacity of its additive extensions.

Theorem 3 The quantum capacity of a channelN satisfies

Q(N ) ≤ Q(1)(T ), (6)

for all additive extensions,T , of N . Furthermore, ifT is
degradable, the private classical capacity ofN satisfies

Cp(N ) ≤ Q(1)(T ). (7)

Proof: Q(1)(T ) = Q(T ) and Q(N ) ≤ Q(T ) follows
immediately from the fact thatN can be obtained fromT by
applyR. If T is degradable, it was shown in [11] that

Cp(T ) = Q(1)(T ), (8)

so that we hvaeCp(N ) ≤ Cp(T ) = Q(1)(T ).

III. K NOWN UPPER BOUNDS

In this section we show that the two strongest techniques
for upper bounding the capacities of a quantum channel are
encompassed by our approach. The first technique, established
in [10], [13] and best for low noise levels, is to decompose
the channel into a convex combination of degradable channels.
The second, first studied in [14], [15], [16], is a no-cloning
type argument that can sometimes be used to show that a very
noisy channel has zero capacity.

A. Convex combinations of degradable channels

Lemma 4 Suppose we have

N =
∑

i

piNi, (9)

whereNi is degradable with degrading mapDi. Then

T =
∑

i

piNi ⊗ |i〉〈i| (10)

is a degradable extension ofN , and

Q(N ) ≤
∑

i

piQ
(1)(Ni). (11)

We will call T a flaggeddegradable extension onN sincei
keeps track of whichNi actually occurred in the decomposi-
tion of N .

Proof: First, let R be the partial trace on the flagging
system so thatN = R◦ T . To see thatT is degradable, note
that the complementary channel ofT is

T̂ =
∑

i

N̂i ⊗ |i〉〈i| (12)

and that letting

D =
∑

i

Di ⊗ |i〉〈i|, (13)

whereDiTi = T̂i, we haveD ◦ T = T̂ .
Finally, lettingφ be the optimal input state forT , we find

Q(1)(T ) = S

(∑

i

piNi(φ) ⊗ |i〉〈i|
)

−S

(∑

i

piN̂i(φ)⊗ |i〉〈i|
)

=
∑

i

pi

(
S (Ni(φ)) − S

(
N̂i(φ)

))

≤
∑

i

piQ
(1)(Ni),

so that by Theorem 2 the result follows.

B. No-cloning bounds

We next show that no-cloning bounds [15], [16] are a special
case.

SupposeN is antidegradable, meaning there is a channel
D such thatD ◦ N̂ = N . In this case, we can define a zero-
capacity degradable extension ofN as follows. LetN have
isometric extensionU : A → BE, d = max(dB, dE), andF1

andF2 be d-dimensional spaces withB ⊂ F1 andE ⊂ F2.
Then define isometryV : A → F1F2C1C2 as

V |φ〉 = 1√
2
U |φ〉|01〉C1C2

+
1√
2
(SWAPF1F2

U |φ〉)|10〉C1C2

This gives a degradable extension ofN , T (ρ) =
TrF2C2

V ρV †, which can be degraded toN .

C. Convexity of bounds

We now show that if we have upper bounds for the capacity
of two channels, both obtained from a degradable extension,
the convex combination of the bounds is an upper bound for
the capacity of the corresponding convex combination of the
channels. More concretely, supposeT0 andT1 are degradable
extensions ofN0 andN1, respectively. Then,

T = pT0 ⊗ |0〉〈0|+ (1 − p)T1 ⊗ |1〉〈1| (14)

is a degradable extension ofN = pN0 + (1 − p)N1, and
satisfies

Q(1)(T ) = pIc(T0, φ) + (1− p)Ic(T1, φ) (15)

≤ pQ(1)(T0) + (1 − p)Q(1)(T1). (16)



IV. B OUNDS ONSPECIFICCHANNELS

In this section we will evaluate explicit upper bounds on the
private classical and quantum capacities of the depolarizing
channel and Pauli channels with independent amplitude and
phase noise (which we also call “the BB84 channel”, because
of its relevance for BB84). In each case, we will use a flagged
degradable extension of the channel of interest, based on
the convex decomposition into degradable channels used in
[10][11]. The advantage we obtain over this previous work
is, essentially, due to the fact that our upper bound involves
a maximization of the average coherent informations of the
elements of our decomposition, all with respect to the same
state. In [10][11], the corresponding bound is the average of
the individual maxima, allowingdifferent reference states for
each channel in the decomposition, which generally leads to
a weaker bound.

Throughout this section, we will use the following special
property of coherent information for degradable channels,
which was first proved in [17]. It will assist in the evaluation
of coherent informations for specific degradable extensions
below.

Lemma 5 Let N be degradable. Then

pIc(N , φ0) + (1− p)Ic(N , φ1) ≤ Ic(N , pφ0 + (1− p)φ1).

In other words,Ic(N , φ) is concave as a function ofφ.

Proof: Writing out the entropies involved explicitly, what
we would like to prove is that

pS (N (φ0)) + (1− p)S (N (φ0))

−S
(
pN (φ0) + (1− p)N (φ1)

)

≤
pS
(
N̂ (φ0)

)
+ (1 − p)S

(
N̂ (φ0)

)

−S
(
pN̂ (φ0) + (1 − p)N̂ (φ1)

)
, (17)

which, lettingU be the isometric extension ofN and

ρV BE = p|0〉〈0|V ⊗Uφ0U
†+(1− p)|1〉〈1|V ⊗Uφ1U

†, (18)

is equivalent to

H(V |B)ρV B
≤ H(V |E)ρV E

. (19)

Noting thatH(U |B) is nondecreasing under operations onB
(which is a simple consequence of the strong subadditivity
of quantum entropy), and there is aD that mapsB to E
completes the proof.

We will also have use forN(u,v), the most general degrad-
able qubit channel (up to unitary operations on the input and
output) [18].N(u,v) has Kraus operators

A+ =

(
cos(12 (v − u)) 0

0 cos(12 (v + u))

)
(20)

A− =

(
0 sin(12 (v + u))

sin(12 (v − u)) 0

)
. (21)

In [13], N(u,v) was shown to be degradable when| sin v| ≤
| cosu|.

A. Depolarizing Channel

The depolarizing channel of error probabilityp is given by

Np(ρ) = (1 − p)ρ+
p

3
XρX +

p

3
Y ρY +

p

3
ZρZ .

It is particularly nice to study since it has the property that
for any unitaryU

Np(UρU †) = UNp(ρ)U
† . (22)

The following theorem, together with the subsequent corol-
lary, provides the strongest upper bounds to date on the
capacity of the depolarizing channel. We provide a proof of
the theorem below, after establishing two essential lemmas.

Theorem 6 The capacity of the depolarizing channel with
error probability p satisfies

Q(Np) ≤ co [∆(p), 1− 4p] , (23)

where

∆(p) = minH

[
1

2
[1+ sinu sin v]

]
−H

[
1

2
[1+ cosu cos v]

]
,

with the minimization over (u, v) such that
cos2(u/2) cos2(v/2) = 1 − p, and co[f1(p), f2(p) . . . fn(p)]
denotes the maximal convex function that is less than or
equal to allfi(p) , i = 1 . . . n.

Corollary 7

Q(Np) ≤ co

[
1−H(p), H(

1− γ(p)

2
)−H(

γ(p)

2
), 1− 4p

]
,

whereγ(p) = 4
√
1− p(1−√

1− p).

Proof: Corollary 7 follows from the theorem by noting
that the first two terms inside the square brackets are special
cases of∆ for values of(u, v) corresponding to amplitude
damping and to dephasing channels, and using the fact that
the true minimum is always bounded by particular cases.

To establish Theorem 6 we will use the following flagged
degradable extension of the depolarizing channel:

T dep
(u,v)(ρ) =

1

|C|
∑

c∈C
c†N(u,v)(cρc

†)c⊗ |c〉〈c|, (24)

where C is the set of unitaries which map{I,X, Y, Z} →
{I,X, Y, Z} under conjugation (the Clifford group).

Lemma 8

Q(1)(T dep
(u,v))=H

[
1

2
[1+ sinu sin v]

]
−H

[
1

2
[1+ cosu cos v]

]

Proof: The main step is to show that the coherent
information of T dep

(u,v) is maximized by the maximally mixed



state. To see this, first note that for anyφ, we have

(X ⊗ I)T dep
(u,v)(XφX)(X ⊗ I) (25)

=
1

|C|
∑

c∈C
Xc†N(u,v)(cXφXc†)cX ⊗ |c〉〈c|

=
1

|C|
∑

c∈C
Xc†N(u,v)(cXφXc†)cX ⊗ V |cX〉〈cX |V †

= (I ⊗ V )T dep
(u,v)(φ)(I ⊗ V †),

where we have chosen unitaryV such thatV |cX〉 = |c〉. Since

T̂ dep
(u,v)(φ) =

1

|C|
∑

c∈C
c†N̂(u,v)(cφc

†)c⊗ |c〉〈c|, (26)

by an identical argument we also get that

T̂ dep
(u,v)(XφX) = (X ⊗ V )T̂ dep

(u,v)(φ)(X ⊗ V †). (27)

Thus, we have

S
(
T dep
(u,v)(φ)

)
= S

(
T dep
(u,v)(XφX)

)
(28)

S
(
T̂ dep
(u,v)(φ)

)
= S

(
T̂ dep
(u,v)(XφX)

)
, (29)

so thatIc(T dep
(u,v), φ) = Ic(T dep

(u,v), XφX), and similarly forY

andZ. Using the concavity ofIc(T dep
(u,v), φ) in φ, this gives us

Ic(T dep
(u,v), φ) (30)

=
1

4

∑

P∈P
Ic(T dep

(u,v), PφP †) (31)

≤ Ic

(
T dep
(u,v),

1

4

∑

P∈P
PφP †

)
(32)

= Ic
(
T dep
(u,v),

1

2
I

)
, (33)

where we have letP = {I,X, Y, Z} denote the Pauli ma-
trices. This shows that the maximum coherent information is
achieved for the reference stateI/2, where its value is

Ic
(
T dep
(u,v),

1

2
I

)
= S(N(u,v)(I/2))− S(N̂(u,v)(I/2))

= H

(
1

2
[1 + sinu sin v]

)

−H

(
1

2
[1 + cosu cos v]

)
. (34)

The following lemma shows thatT dep
(u,v) can be degraded to

a depolarizing channel, and computes the error probabilityof
that channel as a function ofu andv.

Lemma 9
Tr2 T dep

(u,v)(ρ) = Np(u,v)(ρ), (35)

wherep(u, v) = 1− cos2(u/2) cos2(v/2).

Proof: First, note that for any channelN , it was shown
in [14] that

Ñ (ρ) =
1

|C|
∑

c∈C
c†N (cρc†)c (36)

is a depolarizing channel with the same entanglement fi-
delity asN . In other words,

〈φ+|(I ⊗N )(|φ+〉〈φ+|)|φ+〉 = 〈φ+|(I ⊗ Ñ )(|φ+〉〈φ+|)|φ+〉,
(37)

where|φ+〉 = ( 1√
2
)(|00〉+|11〉). As a result, lettingNp(u,v) =

Ñ(u,v) definep(u, v), and using the fact that1 − p(u, v) =
〈φ+|(I ⊗Np(u,v))(|φ+〉〈φ+|)|φ+〉, we have

1− p(u, v) = 〈φ+|(I ⊗N(u,v))(|φ+〉〈φ+|)|φ+〉
= 〈φ+|I ⊗ A+|φ+〉〈φ+|I ⊗A†

+|φ+〉
+〈φ+|I ⊗A−|φ+〉〈φ+|I ⊗A†

−|φ+〉.
Using the fact that

〈φ+|I ⊗A|φ+〉〈φ+|I ⊗A†|φ+〉 =
(
1

2
TrA

)(
1

2
TrA†

)

andA− is traceless then gives

1− p(u, v) =

(
1

2
TrA+

)2

(38)

=

(
1

2
(cos((v − u)/2) + cos((v + u)/2))

)2

= cos2(v/2) cos2(u/2).

Proof: (of Theorem 6) Let 1 − p(u, v) =
cos2(u/2) cos2(v/2), andT dep

(u,v) be the channel described in

Eq. (24). Then, by Lemma 4,T dep
(u,v)(ρ) is degradable, and

by Lemma 9 tracing over the flag system degradesT dep
(u,v) to

Np(u,v). Thus, T dep
(u,v) is a degradable extension ofNp(u,v).

As a result, by Theorem 3 we have

Q(Np(u,v)) ≤ Q(1)(T dep
(u,v)), (39)

whereas by Lemma 8

Q(1)(T dep
(u,v))=H

[
1

2
[1+ sinu sin v]

]
−H

[
1

2
[1+ cosu cos v]

]
.

Furthermore, it was shown in [15] thatNp becomes anti-
degradable whenp = 1/4, so thatQ(N1/4) = 0.

Since both of these bounds are the result of arguments via a
degradable extension, their convex hull is also an upper bound
for the capacity ofNp, which completes the proof.

B. The BB84 Channel

Bennett-Brassard quantum key distribution [12] is the most
widely studied and practically applied form of quantum cryp-
tography. A simple bound on the achievable key rate is there-
fore quite useful. Here we evaluate the coherent information
sharable though a degradable extension of the BB84 channel,
which also bounds the secret key rate of this protocol.
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Fig. 1. Bounds on the quantum capacity of the depolarizing channel with
error probabilityp. The horizontal axis is the error probability, and the vertical
axis is the rate. The lowest line is the achivable rate using hashing [14]. The
top line is the minimum of1 − H(p) [19] and 1 − 4p [14]. The middle
line is our new bound from Corollary 7. While the bound from Theorem 6
is tighter everywhere, it, the bound plotted, and the bound from [10] all look
essentially identical on this scale.

Define the following degradable channel

T BB84
q =

1

2
N ad

γ(q)(ρ)⊗ |0〉〈0|+ 1

2
YN ad

γ(q)(Y ρY )Y ⊗ |1〉〈1|,

with γ(q) = 4q(1 − q), and N ad
γ the amplitude damping

channel with Kraus operators

A0 =

(
1 0
0

√
1− γ

)
(40)

A1 =

(
0

√
γ

0 0

)
. (41)

The channelN ad
γ is a special case ofN(u,v) with u = v =

cos−1(
√
1− γ), which is degradable as long asγ ≤ 1/2 [20].

By tracing out the flag system, we find that

Tr2 T BB84
q (ρ) = (1− q)2ρ+ q(1− q)XρX

+q2ZρZ + q(1 − q)Y ρY.

With suitable unitary rotations on the input and output, this
can be transformed to

NBB84
q (ρ) ≡ (1− q)2ρ+ q(1− q)XρX (42)

+q(1− q)ZρZ + q2Y ρY. (43)

The channelNBB84
q is such that its private classical capacity

is equal to the maximal achievable key rate in BB84 with
one-way postprocessing and quantum bit error rateq. Since
T BB84
q is a degradable extension of an equivalent channel, its

coherent information provides an upper bound on the key rate
of this protocol.

The coherent information ofT BB84
q can readily be evalu-

ated, giving the following upper bound.

Lemma 10

Cp(NBB84
q ) ≤ H

(
1

2
− 2q(1− q)

)
−H(2q(1− q)) (44)

Proof: This follows, via Theorem 3, from the fact
that T BB84

q is a degradable extension ofNBB84
q together

with Lemma 11, which evaluates this extension’s coherent
information.

Lemma 11

Q(1)(T BB84
q ) = H

(
1

2
− 2q(1− q)

)
−H(2q(1− q)) (45)

Proof: We would like to evaluate

max
φ

Ic(T BB84
q , φ). (46)

For anyφ, we have

Ic(T BB84
q , φ) = Ic(T BB84

q , Y φY ) (47)

so that, using the concavity ofIc in φ for degradable channels,
we have

Ic
(
T BB84
q , φ

)
≤ Ic

(
T BB84
q ,

1

2
φ+

1

2
Y φY

)
(48)

As a result, we may take the optimalφ to be of the form

φα =
1

2
I +

α

2
Y. (49)

Now,

Ic(T BB84
q , φα) = S

(
N4q(1−q)(φα)

)
− S

(
N1−4q(1−q)(φα)

)
,

which can be written more explicitly as

H

(
1

2

(
1−

√
γ2 + α2(1− γ)

))
(50)

−H

(
1

2

(
1−

√
(1− γ)2 + α2γ

))
,

from which we see thatIc(T BB84
q , φα) = Ic(T BB84

q , φ−α).
Using the concavity ofIc again, we see

I (T BB84
q ) = Ic(T BB84

q ,
1

2
I) (51)

≥ Ic(T BB84
q , φα), (52)

and evaluating Eq. (50) forα = 0 gives the result.

V. A DDITIVE EXTENSIONS AND SYMMETRIC ASSISTANCE

There is an entertaining connection to the capacity of a
quantum channel with symmetric assistance [10]. We first
briefly summarize the main finding of [10], using slightly
more streamlined notation. LettingH′ = span{|(i, j)〉}i<j∈Z+

and H = span{|i〉}i∈Z+ , and defining the partial isometry
V : H′ → H ⊗ H to act asV |(i, j)〉 = 1√

2
(|i〉|j〉 − |j〉|i〉),

we call the channelA : B(H′) → B(H) that acts asA(ρ) =
Tr2 V ρV † the symmetric assistance channel. It was shown in
[10] that for any channelN , the quantum capacity ofN given
free access toA is given by

Qss(N ) = Q(1)(N ⊗A), (53)



where the single-letter nature of this expression comes from
the non-obvious fact that

Q(1)(N ⊗M⊗A) = Q(1)(N ⊗A) +Q(1)(M⊗A) . (54)

We note that sinceA is an infinite dimensional operator,
A is equally valuable for assistance toA⊗n Note also that
Q(A) = Q(1)(A) = Q(A⊗n) = Q(1)(A⊗n) = 0 by a no-
cloning argument. Then

Q(N ⊗A) = lim
n→∞

1

n
Q(1)(N⊗n ⊗A⊗n) (55)

= lim
n→∞

1

n

(
Q(1)(N⊗n ⊗A) +Q(1)(A⊗(n−1) ⊗A)

)
(56)

= lim
n→∞

1

n
(nQ(1)(N ⊗A)) = Q(1)(N ⊗A) . (57)

ThereforeN ⊗A is an additive extension ofN for anyN .
JAS thanks ARO contract DAAD19-01-C-0056.
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