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Abstract— We study extensions of a quantum channel whose I(T; B)yrp = S(T)wr + S(B)wy — S(BT)wsr, Where we
one-way capacities are described by a single-letter formal have used subscripts on the states to indicate which system

This provides a simple technique for generating powerful uper ; _ i
bounds on the capacities of a general quantum channel. We afyp ??3/ live Ens(e'g"wBWh Tr.]; O.JBT)I’ and ;:.S(:]d tth? notation
this technique to two qubit channels of particular interest—the (B)up = S(wp). en 1t 1s clear which state we are

depolarizing channel and the channel with independent phas referring to, we will omit the subscript on the entropy.
and amplitude noise. Our study of the latter demonstrates tht Since the formulas for these capacities involve maximiza-
the key rate of BB84 with one-way post-processing and quanta  tions over ever growing numbers of channel uses, we cannot
bit error rate ¢ cannot exceedH (1/2—2q(1-q)) ~H(2¢(1-4)).  gyajyate them at all. This unsatisfying situation is a réfec
of our lack of understanding of how to choose asymptotically
. INTRODUCTION good codes. Our best understanding is presented in [8].

Perhaps the central problem of information theory is finding Fortunately, wecan evaluate capacity for some channels—
the rate at which information can be transmitted through dggradable ones [9]. In general, channels for which thereohe
noisy channel. Indeed, Shannon created the field with hig 19gnt information is additivei.e.
paper [1] showing that the capacity of a noisy channel is kqua B .
to the maximum mutual information over all input distrikarts QW) =QWW) = mij WV 9). ©)
to a single usef the channel, even though the encoding needs ,
in general, to use an asymptotically large number of chantf¥| Which degradable channels are an example, are much
uses. easier to deal with than arbitrary channels. Once we have an

However, it has long been known that the apparent quantMﬁderStanq_ing of additive channels, we can use them_to bound
generalization of the mutual information, namely tteherent the capacities of other channels [1(_)] [11]. Here we Improve
information does not yield a single-letter formula for the!PON that work and develop new tighter and much simpler
quantum information capacit@) [2], [3]. Similarly, though UPPer bounds. N
the private capacity of a classical broadcast channel isvkno F|rst_we will define the concepts of additive and dggradable
and given by a single-letter formula [4], the private clagbi extensions to a channel and prove they have single-letter

capacity of a quantum channel is not known. fc_)rmulas for their capacities. W(_e then use a partfcularly
The quantum capacity is given by [5], [6], [7]: S|mple_class of degradable extensions, WhICh we call_fldgge
1 extensions’ to bound the quantum and private capacities. We
Q= lim —maxy I° (N®", ,) (1) also show that the best known previous techniques are $pecia
noeen cases of our new bound. Finally, we bound the key rate of
where B AB BB84 quantum key distribution [12] for a channel with bit
IY(N, ) = I° (TN (|o" P} 7)) (2) error rateq by H(1/2 — 2q(1 — q)) — H(2¢(1 — q)).

Here |¢4B) is a purification of ¢ and I¢(pag) =

S(pp)=S(pan) With S(p)= — Tr(plog p). The private ca- [I. ADDITIVE AND DEGRADABLE EXTENSIONS

pacity is given by [6] Definition 1 We call 7 an additive extensiorof a quantum
1y aren channelV if there is a second chann® such that\" = RoT
CoW) = Jim G WP @) andQ(7) = Q(T)B
where

A particularly nice type of additive extension is one which
01(71)(]\/) = sup (I(T;B), — I(T; E).), (4) satisfies the following definition:
{Das|pa) }, X =T

1 ) . . .
. - t Of course, we could also define additive extensions whichehav
With wape = ijtp(t|x)p(a:)|t><t|,4 ® UN|‘:01><‘:01|UN and Cél)(T) = Cp(T) in order to find upper bounds o6, (N\'). However,

Uy an isometric extension oY (i.e., N(p) = Trg UNPUJJ{/)- since the only channels we know with\” (T) = C,(7) also have
The mutual information is defined, as usual, according tgf" (7) = Q((7), we will not pursue this approach here.
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Definition 2 A channel\, with isometric extensiofy : 4 —

Proof: First, let R be the partial trace on the flagging

BE is calleddegradablef there is adegrading magD such system so thatV = R o 7. To see thafl is degradable, note
that Do N = N, whereN (p) = Trg UpU'. N is called the that the complementary channel Bfis

complementary channeff \V.

We call an additive extension of a quantum channel that
is degradable alegradable extensiorDegradable extensions
have the additional property that their coherent infororats
an upper bound for the private classical capacity as well as

the quantum capacity.

T =Y Ni®liil (12)
and that letting

D= D;li)il, (13)

Our main tool will be the following simple theorem, WhiChwhereDiﬁ — 7., wehaveDoT = T.

bounds the capacity of a quantum channel in terms of theFinaIIy

capacity of its additive extensions.

Theorem 3 The quantum capacity of a channkl satisfies

QW) < QW(T), (6)

for all additive extensionsy, of N. Furthermore, if 7 is
degradable, the private classical capacity & satisfies

Cp(N) < QM(T). ()

Proof: QW(T) = Q(T) and Q(N) < Q(T) follows
immediately from the fact thak/ can be obtained frorfi™ by
apply R. If T is degradable, it was shown in [11] that

Cp(T) = QU(T), (8)
so that we hva&, (V) < C,(T) = QW (T). [ |

IIl. KNOWN UPPER BOUNDS

letting ¢ be the optimal input state fof, we find

QU(T) = 5 (ZpiM(¢) ® |i><il>
-$ (mew ® |z'><z'|>
= Yn(SWi9) - S (i)
< ZPiQ(l)(M)a
so that by Theorem 2 the result follows. |

B. No-cloning bounds

We next show that no-cloning bounds [15], [16] are a special
case.

SupposeV is antidegradable, meaning there is a channel
D such thatD o A/ = A. In this case, we can define a zero-

In this section we show that the two strongest techniquegpacity degradable extension &f as follows. LetA” have

for upper bounding the capacities of a quantum channel 3§ metric extensiod/ : A — BE. d — max(dp, dg), and Fy
encompassed by our approach. The first technique, estadblish, 4 I, be d-dimensional spaces wit  F;, and E C Fb.

in [10], [13] and best for low noise levels, is to decomposgnan define isometry : A — FyF,C,C5 as
the channel into a convex combination of degradable channel

The second, first studied in [14], [15], [16], is a no-clonin
type argument that can sometimes be used to show that a very

noisy channel has zero capacity.

A. Convex combinations of degradable channels
Lemma 4 Suppose we have

N = Zpif\/i, ©)
where \; is degradable with degrading map;. Then
T =2 piNi@ i)i (10)
is a degradable extension ¢f, and
QW) <3 piQVW). (11)

We will call 7 a flaggeddegradable extension o sincei

keeps track of whictlV; actually occurred in the decomposi-

tion of V.

W) =

1 1
—U[#)|01) ¢, + —=(SWAPE, £, U|6))[10) ¢, ¢
7 [9)|01) ey \/5( m.F.U|9))[10)¢, ¢

This gives a degradable extension of, 7(p) =
Tre,c, VpVT, which can be degraded 1.

C. Convexity of bounds

We now show that if we have upper bounds for the capacity
of two channels, both obtained from a degradable extension,
the convex combination of the bounds is an upper bound for
the capacity of the corresponding convex combination of the
channels. More concretely, suppokeand7; are degradable
extensions of\y and .\, respectively. Then,

T =pTo @ |0)0] + (1 - p)Th @ [1)1] (14)

is a degradable extension &f = pNy + (1 — p)N;, and
satisfies

QT = pI(To,¢) + (1 —p)I°(T1, )

QM (To) + (1 — p)QW(Th).

(15)
(16)

IN



IV. BOUNDS ONSPECIFIC CHANNELS A. Depolarizing Channel

In this section we will evaluate eXpIiCit upper bounds on the The depo]arizing channel of error probab”ﬁys given by
private classical and quantum capacities of the depoteizi

channel and Pauli channels with independent amplitude and A/, (p) = (1 —p)p + ]—jXpX + I_jypy + EZpZ )

phase noise (which we also call “the BB84 channel”, because 3 3 3

of its relevance for BB84). In each case, we will use a flaggédis particularly nice to study since it has the propertyttha
degradable extension of the channel of interest, based fonany unitaryU

the convex decomposition into degradable channels used in

[10][11]. The advantage we obtain over this previous work Nop(UpUT) = UN,,(p)UT . (22)

is, essentially, due to the fact that our upper bound inwlve . .
a maximization of the average coherent informations of the 1he following theorem, together with the subsequent corol-

elements of our decomposition, all with respect to the sarfy: Provides the strongest upper bounds to date on the

state. In [10][11], the corresponding bound is the averdge GAPacity of the depolarizing channel. We provide a proof of
the individual maxima, allowinglifferentreference states for the theorem below, after establishing two essential lemmas

each channel in the decomposition, which generally leads to

a weaker bound. Theorem 6 The capacity of the depolarizing channel with
Throughout this section, we will use the following speciatrror probability p satisfies

property of coherent information for degradable channels,

which was first proved in [17]. It will assist in the evaluatio QN) < co[A(p), 1 —4p], (23)
of coherent informations for specific degradable exterssion
below. where
. 1 . . 1
Lemma 5 Let A be degradable. Then A(p) = min H {5[1+ Slnusm“]] -H [5[1+ COSUCOSU]] ;

pI“(N, ¢o) + (1 —P)Ic(j.v’ 01) TN pgo + (.1 P9 ith  the  minimization  over (u,v) such that
In other words,/¢(N, ¢) is concave as a function of. cos?(u/2) cos?(v/2) = 1 — p, and co[f1(p), f2(p) ... fn(D)]

denotes the maximal convex function that is less than or

Proof: Writing out the entropies involved explicitly, what
9 : plcry. equal to all f;(p) ,i=1...n.

we would like to prove is that
pS (N(¢o)) + (1 = p)S (N (o))

Corollary 7
~8(pN(60) + (1~ PN (1))

IN

Q) < co 1~ H(p), BT (W) ),
pS (N(60)) + (1= p)S (N(60))
=5 (pN(o0) +(1=pN(6)). @D

which, lettingU be the isometric extension ¢f and

where(p) = 4yT=p(1 — VT =p).

Proof: Corollary[7 follows from the theorem by noting
that the first two terms inside the square brackets are dpecia
pvee = plOY0ly @ UdoUT + (1 —p)|[1X1|y @ U UT, (18) cases ofA for values of (u,v) corresponding to amplitude
damping and to dephasing channels, and using the fact that

is equivalent to - ) ;
q the true minimum is always bounded by particular casas.

H(V|B)py,p < H(VIE)py 5- (19)  To establish Theoreil 6 we will use the following flagged
Noting thatH (U| B) is nondecreasing under operations®n degradable extension of the depolarizing channel:
(which is a simple consequence of the strong subadditivity . 1
of quantum entropy), and there is7a that mapsB to £ T(i,i) (p) = ﬁ ZCTN(U,U) (cpch)e @ |e)el, (24)
completes the proof. | cec

We will also have use faN, ., the most general degrad—Wherec is the set of unitaries which mafl, X, Y, Z} —

able qubit channel (up to unitary operations on the input ar{g X, Y, Z} under conjugation (the Clifford group).
output) [18]. V..., has Kraus operators T

_ (cos(3(v—u)) 0 Lemma 8
Ar = < 0 cos(2(v+u)) (20) . .
A = . 0 sin(g (v + u)) @ Q(l)(mfg))zH [ﬂl—i—sinusinv]} —-H {ﬂl—l—cosucosv]}
sin(z (v —u)) 0
In [13], M, was shown to be degradable whisinv| < Proof: The main step is to show that the coherent

| cosul. information ofT(fff}’) is maximized by the maximally mixed



state. To see this, first note that for apywe have

- 1

- |71| D XMW (eXoXeheX @ [e)dl is a depolarizing channel with the same entanglement fi-
cec delity asN. In other words,

_ %' 3 XNy (X 6Xh)eX @ V]eX ) eX |V
cec (ST @N)(I6 XM DIoT) = (oF T @ N) (19" )™ )leT),

= ([T ()T @V, (37)

where|¢ ") = (5)(/00)+[11)). As aresult, lettingV, .., =
Nu,v) definep(u,v), and using the fact that — p(u,v) =

TP (¢) = % > Ny (coche@ fefel,  (26) (671 @ Npuw)([67)eH @), we have

where we have chosen unitarysuch tha/’|cX) = |¢). Since

(u,v)

. < L=p(u,v) = (@18 Nuw)(6* Ko Dle™)
by an identical argument we also get that _ I ® A 6N T ® " 6%
~ ~ = +
Tin (XoX) = (X @ V)T (9)(X @ V). (27) HoT T A_|¢T)oT T @ Al jgt).

Thus, we have
S(Tan@) = s(Tunxex)  (@8)
s(Tan@) = s(Tunxex), @)
so thatl*(T\P, ¢) = IC(T(dep X¢X), and similarly fory

Using the fact that
(@11 Al ot T e Allo) = (3ea) (3101)

and A_ is traceless then gives

(u,v)? u,v)’ 2
andZ. Using the concavity ofc(ﬁdufs), ¢) in ¢, this givesus 1 —p(u,v) = (% TrA+> (38)
c ep 2
Il (7?3“’)’ 2 (30) = <% (cos((v —u)/2) + cos((v + u)/2))>
f — ¢ €p T
4 Z ! (T(i’”)’Png ) (31) = cos?(v/2) cos?(u/2).
PeP
< o780 LS pypi 32 -
= (uw)’ g Z ¢ (32) Proof: (of Theorem [16) Let 1 — p(u,v) =
. rer cos?(u/2) cos?(v/2), and 7265) be the channel described in
= I (7?1?5)5]), (33) Eq. [23). Then, by LemmaAl 4T(ff§)(p) is degradable, and

) by Lemma[® tracing over the flag system degraﬁgﬁf) to
where we have leP = {I,X,Y,Z} denote the Pauli ma- Thus. 79 is a degradable extension N"
trices. This shows that the maximum coherent information %P(“-r”)' US: 0 ! 9 xtensi p(u,v)-

achieved for the reference staltg2, where its value is S & result, by +heore 3 we have

whereas by Lemmia 8

F (T ) = SO (1/2) - S (1/2)

H 1[1 + sin u sin v)
2 5l
1 2
—H (5[1 + cosu cos U]) - (34 Furthermore, it was shown in [15] tha{, becomes anti-
degradable whep = 1/4, so thatQ (N, 4) = 0.
Since both of these bounds are the result of arguments via a
egradable extension, their convex hull is also an uppendou
or the capacity of\V,,, which completes the proof. [ |

QT = gl i [

14 cosu cos U]] .

The following lemma shows thafﬁlfs can be degraded to 4

a depolarizing channel, and computes the error probaluiﬁtyf
that channel as a function af andv.

B. The BB84 Channel

Lemma 9 dep Bennett-Brassard quantum key distribution [12] is the most
Try (u,v)(p) = Np(uw)(0), (35) widely studied and practically applied form of quantum cryp
wherep(u, v) = 1 — cos?(u/2) cos?(v/2). tography. A simple bound on the achievable key rate is there-

fore quite useful. Here we evaluate the coherent informatio
Proof: First, note that for any channgl’, it was shown sharable though a degradable extension of the BB84 channel,
in [14] that which also bounds the secret key rate of this protocol.



Proof: This follows, via Theoreni]3, from the fact
that 7,°5% is a degradable extension g¥*5%* together

information. [ |
Lemma 11
1
QU(TF ) = H (5 —2q(1 - q)) — H(29(1—q)) (45)

Proof: We would like to evaluate

0.05 0.10 0.15 0.20 0.2t mq?x ¢ (TqBB84, (b). (46)

Fig. 1. Bounds on the quantum capacity of the depolarizingnokl with
error probabilityp. The horizontal axis is the error probability, and the waiti  For any ¢, we have
axis is the rate. The lowest line is the achivable rate usashimg [14]. The
top line is the minimum ofl — H(p) [19] and 1 — 4p [14]. The middle

line is our new bound from Corollafyl 7. While the bound frome®hem[® IC(TZBBMv o) = IC(’EBBMv Y¢Y) (47)
is tighter everywhere, it, the bound plotted, and the bouncthf[10] all look ] ) ]
essentially identical on this scale. so that, using the concavity éf in ¢ for degradable channels,
we have
Define the following degradable channel I° (TP, ¢) < I° <TqBB84, %(b + %ngY) (48)
1
TSP = Nv(q)( ) @ ]0)0| + §YNij) (YpY)Y @|1)X1], As a result, we may take the optimalto be of the form
with y(q) = 4¢(1 — ¢), and N2 the amplitude damping ba = 114— Ly, (49)
channel with Kraus operators 2 2
Now,
wo= (h ) (40)
0 0 L=y IC(EBBM’ $a) =S (N4q(1*q) (¢a)) -5 (N1*4q(1*q)(¢a)) J
A = <8 \{7) . (41) which can be written more explicitly as
1
The channeV?! is a special case ok, ,) with u = v = H <§ (1 — VPt (1-y) ) (50)
cos~t(y/T —7), which is degradable as long as< 1/2 [20]. 1
By tracing out the flag system, we find that —H (5 ( (1 -2+ a2 )
T, 775 (p) = (1-9¢)’p+a(1 - q)XpX from which we see thaf“(7°"%, ¢,) = I°(T,”P*, ¢_.).
+*ZpZ +q(1 — )Y pY. Using the concavity of ¢ again, we see
With suitable unitary rotations on the input and outputsthi J(TBBSY) —  pe(7BBSt 11) (51)
can be transformed to 4 2
> I(TPH, a), (52)
NP p) = (1=a?p+a(l—9)XpX  (42) _ !
a1 = Q) ZpZ + Y pY. (43) and evaluating Eq[(50) fat = 0 gives the result. [ |

The ChanneWBBs4 is such that its private classical capacity V. ADDITIVE EXTENSIONS AND SYMMETRIC ASSISTANCE

is equal to the maximal achievable key rate in BB84 with There is an entertaining connection to the capacity of a
one-way postprocessing and quantum bit error rat&ince quantum channel with symmetric assistance [10]. We first
7,°P%" is a degradable extension of an equivalent channel, Bfiefly summarize the main finding of [10], using slightly
coherent information provides an upper bound on the key raifyre streamlined notation. Lettirlg’ = span{| (i, 1)) bicjez+

of this protocol. and % = span{|i)};cz+, and defining the partial isometry
The coherent information of *"** can readily be evalu- v : %/ — H @ H to act asV|(i, j)) = \}5(|i>|j> — 15)9)),
ated, giving the following upper bound. we call the channel : B(H') — B(#) that acts asd(p) =

with LemmalIl, which evaluates this extension’s coherent

Tr, VpV'T the symmetric assistance channel. It was shown in

Lemma 10 [10] that for any channeV, the quantum capacity df given

NBB84 free access tod is given by
<H(=-2¢1- H(2q(1 — 44
GNP < (201~ )) - H2a(1 - 0) (@9 e e, -



where the single-letter nature of this expression comes fro
the non-obvious fact that

QVINOMeA) =QWN®A) +QVM®A) . (54)

We note that sinced is an infinite dimensional operator,
A is equally valuable for assistance #®" Note also that
Q) = QI(A) = Q(A®") = QW (A®") = 0 by a no-
cloning argument. Then

QW ®A) = lim %Q(l) (NE" @ A®") (55)

= 1im ~ (QUWE @A) + QA @A) (56)

n—oo N

= lim

mm%m@WN®A»:@WN®A%(W>

ThereforeN ® A is an additive extension of for any V.
JAS thanks ARO contract DAAD19-01-C-0056.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communicatioBell Syst.
Tech. J, vol. 27, pp. 379-423 and 623-656, 1948.

[2] P. W. Shor and J. A. Smolin, “Quantum error-correctingle® need not
completely reveal the error syndrome,” 1996, arXiv:quaim9604006 .

[3] D. DivVincenzo, P. W. Shor, and J. A. Smolin, “Quantum chehn
capacity of very noisy channels?hys. Rev. Avol. 57, no. 2, pp. 830—
839, 1998, arXiy:quant-ph/9706061.

[4] 1. Csiszar and J. Korner, “Broadcast channels with canrfiil mes-
sages,"IEEE Trans. Inf. Theoryvol. 24, pp. 339-348, 1978.

[5] S. Lloyd, “Capacity of the noisy quantum channdthys. Rev. Avol. 55,
pp. 1613-1622, 1997.

[6] I. Devetak, “The private classical capacity and quantcapacity of a
quantum channel,TEEE Trans. Inf. Theoryvol. 51, pp. 44-55, 2005,
arXiviquant-ph/0304127.

[7] H. N. Barnum, M. A. Nielsen, and B. Schumacher, “Inforioat
transmission through a noisy quantum channehys. Rev. Avol. 57,
no. 6, pp. 4153-4175, 1998, arXiv:quant-ph/9702049.

[8] G. Smith and J. A. Smolin, “Degenerate coding for Paulamfels,”
arXiviguant-ph/0604107.

[9] I. Devetak and P. W. Shor, “The capacity of a quantum chan-
nel for simultaneous transmission of classical and quantofor-
mation,” Comm. Math. Phys.vol. 256, no. 2, pp. 287-303, 2005,
arXiviguant-ph/0311131.

[10] G. Smith, J. Smolin, and A. Winter, “The quantum capacitith
symmetric side channels,” arXiv:quant-ph/0607039.

[11] G. Smith, “The private classical capacity with a symrizeside channel
and its application to quantum cryptography,” arXiv:07@21.

[12] C. H. Bennett and G. Brassard, “Quantum cryptographyblie key
distribution and coin tossing,Proceedings of the IEEE International
Conference on Computers, Systems and Signal Procegsi@s, 1984.

[13] M. Wolf and D. Perez-Garcia, “Quantum capacities of rofels with
small environment,Phys. Rev. Avol. 75, p. 012303, 2007.

[14] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. d¥ers,
“Mixed state entanglement and quantum error correctiBhys.Rev. A.
vol. 54, pp. 3824-3851, 1996, arXiv:quant-ph/9604024.

[15] D. Bruss, D. P. DiVincenzo, A. Ekert, C. A. Fuchs, C. Maiavello, and
J. A. Smolin, “Optimal universal and state-dependent quantioning,”
Phys. Rev. Avol. 57, p. 2368, 1998, arX|v:quant-ph/9705038.

[16] N. J. Cerf, “Quantum cloning and the capacity of the pahlannel,”
Phys. Rev. Lettvol. 84, p. 4497, 2000.

[17] J. Yard, I. Devetak, and P. Hayden, “Capacity theoremsduantum
multiple access channels: Classical-quantum and quagtiantum ca-
pacity regions,” 2005, arXiv:quant-ph/0501045.

[18] T. Cubitt, M.-B. Ruskai, and G. Smith, “The structure dégradable
quantum channels,” in preparation.

[19] E. M. Rains, “A Semidefinite Program for Distillable BEmglement,”
IEEE Trans. Inf. Theoryvol. 47, no. 7, pp. 2921-2933, 2001.

[20] V. Giovannetti and R. Fazio, “Information-capacity sgeption of
spin-chain correlations,”Phys. Rev. A.vol. 71, p. 032314, 2005,
arXiviguant-ph/0405110.


http://arxiv.org/abs/quant-ph/9604006
http://arxiv.org/abs/quant-ph/9706061
http://arxiv.org/abs/quant-ph/0304127
http://arxiv.org/abs/quant-ph/9702049
http://arxiv.org/abs/quant-ph/0604107
http://arxiv.org/abs/quant-ph/0311131
http://arxiv.org/abs/quant-ph/0607039
http://arxiv.org/abs/quant-ph/9604024
http://arxiv.org/abs/quant-ph/9705038
http://arxiv.org/abs/quant-ph/0501045
http://arxiv.org/abs/quant-ph/0405110

	Introduction
	Additive and Degradable Extensions
	Known upper bounds
	Convex combinations of degradable channels
	No-cloning bounds
	Convexity of bounds

	Bounds on Specific Channels
	Depolarizing Channel
	The BB84 Channel

	Additive Extensions and Symmetric Assistance
	References

