
A human-like TORCS controller for the Simulated Car Racing
Championship

Jorge Muñoz, German Gutierrez, Araceli Sanchis

Abstract— This paper presents a controller for the 2010
Simulated Car Racing Championship. The idea is not to create
the fastest controller but a human-like controller. In order to
achieve this, first we have created a process to build a model
of the tracks while the car is running and then we used several
neural networks which predict the trajectory the car should
follow and the target speed. A scripted policy is used for the gear
change and to follow the predicted trajectory with the predicted
speed. The neural networks are trained with data retrieved from
a human player, and are evaluated in a new track. The results
shows an acceptable performance of the controller in unknown
tracks, more than 20% slower than the human in the same
tracks because of the mistakes made when the controller tries
to follow the trajectory.

I. INTRODUCTION

The Simulated Car Racing Championship is a car racing
competition where each participant has to submit a controller
to drive a car. This competition is carried out in The Open
Racing Car Simulator (TORCS) 1, a very realistic simulator
with a sophisticated physic engine and several different
cars and tracks, with their own features. TORCS takes into
account aspects as the fuel consumption, the aerodynamics
of the car, the collisions or the grip of the wheels, among
other things.

As other competitions, the Simulated Car Racing Champi-
onship is growing each year increasing its difficulty and the
skills of their participants. Although every year the rules are
modified to increase the difficulty, the participants send better
controllers. These controllers are really good, even better
than the controllers included in TORCS, which have more
information about the state of the game than the controllers
of the competition due to its specifications. But, despite of
the improvement in the submitted controllers each year, a
skilled human player outperforms the results of any non-
human controller, since reach the level skills of a good human
players is incredibly complex. This is the reason why the
games usually cheat on their own bots to simulate the same
level skills as the human players.

Our goal is to create opponents with the same level
skills of the human players. This can be done by means of
collecting data of the human player first and then training an
algorithm that can learn the human behaviour. We decided
to use neural networks [1] to learn the trajectories followed
by a human in different tracks and the speeds the human
reaches in each position in the trajectory. We call this an

J. Muñoz, G. Gutierrez, A. Sanchis are with the Computer Science
Department, Universidad Carlos III de Madrid, Avda. de la Universidad 30,
28911 Leganés, Spain (emails: { jmfuente, ggutierr, masm }@inf.uc3m.es).

1http://torcs.sourceforge.net

indirect controller because the sensors information is not
matched directly with the effectors, but these information
is processed first, included in the state of the simulation and
then a scripted policy decides the values of the effectors to
achieve the objectives. This is, to follow the trajectory with
the speed given by the neural networks. It is not a reactive
controller but a deliberative controller. We will discuss about
our election of an indirect controller in Section IV.

This paper structure is as follows: Section II references
some related work on car racing games that tries to imitate
some behavior. Section III explains the main features and
rules of the Simulated Car Racing Championship, which
information is provided by the application programming
interface (API) of the competition and how is the car
controlled. In Section IV we talk about the differences of
the direct controller and the indirect controller and why we
choose the latter. The detailed explanation of the controller
is done in Section V where we talk about the trajectory and
speed prediction, the policy used to follow the trajectory with
the given speed and other issues of the controller. Section VI
shows the experiments and their results to check the validity
of the controller and in Section VII this is discussed. Finally,
we talk about future works and improvements in Section
VIII.

II. RELATED WORK

Imitate the human behavior is a very interesting research-
ing topic, but very few times it has been applied to comercial
games. One of the most popular commercial video game
where the player is able to create non-player characters
(NPC), that drives like him and can replace him in the game,
is the famous Forza Motosport 2 for the Microsoft XBox. The
drivers created by learing the player drive-style are called
Drivatars (a complete description of how they works can
be found in [2]). The behavior model that Drivatars build
to imitate the human player is based on a statistical model
of how the human drives in the different segments of the
track. With this statistics model, when a similar segment in
another track is found, a trajectory is created based on the
model and followed by the car. The way the drivatar can
follow the trajectory is done by increasing the grip of the
car, this is a cheat but as the drivatar follow a human-like
trajectory this fact is not noticed by other human players.

Other games where a human data has been used to train
an algorithm to drive are the Colin McRae Rally 2.0 [3], [4]
(which uses neural networks to drive) and Motocross The

2http://research.microsoft.com/en-us/projects/drivatar/forza.aspx

978-1-4244-6297-1/10/$26.00 c©2010 IEEE 473

Published in: Computational Intelligence and Games (CIG), 2010 IEEE Symposium on, 2010, p. 473 - 480.

Force [5]. But in the last game the tracks are designed in a
way that a bad controller does not crash but it makes worse
lap time.

Other researches have done imitation learning, but in
these both cases the controller to be imitated was not a
human. In [6] the author adds a new sensor — which is not
present in the Simulated Car Racing Championship — with
information about how are next segments in the track. With
this new sensor the authors uses different learning methods
as neural networks, case base reasoning (CBS) and k-nearest
neighbour to learn the speed and position of the car in the
segment. Then a scripted policy is used to drive based on the
the target speed and target position, it is a indirect controller.
The results shows good results but slower than the original
controllers.

In [7] the author collects data from a bot controller and
then train a neural network to imitate it. It is a direct
controller where the outputs of the neural network are the
values for the effectors of the car and the inputs are the
sensors information. When the authors try the same learning
method for a human driver the results shows that the NPC
created can drive as the human in the easy parts of the track,
but when it tries to steer in a complicated turn the car crash.

The authors of [8] use a multi-objective evolutionary algo-
rithm to evolve neural networks with a human-like driving
style at the same time the controller is competitive (reach
the longest distance in the evaluations). The results show
that drive like a human is a very hard problem.

Other work where the authors also try to model the human
behavior with the aim of create more enjoyable tracks is [9].

For the Simulated Car Racing Championship different
controllers have been submitted [10], [11], [12], [13], [14].
The controller proposed in [10] is a control architecture
developed for the competition where the parameters has
been optimized with an optimization algorithm. In [11] the
authors also propose another architecture but in this case
they use fuzzy sets to control the car. Fuzzy sets are also
proposed by [13] and [12] although in the latter the fuzzy
sets and rules are evolved with a genetic algorithm. In [14]
the neuroevolution of augmenting topologies (NEAT) [15] is
used to create the controller.

III. SIMULATED CAR RACING CHAMPIONSHIP

A complete description of the Simulated Car Racing
Championship is located in [16] and further information can
be found in the competition web page 3, group 4 and past
competitions [17]. We describe in this section only the most
relevant aspects of the competition for our controller.

The Simulated Car Racing Championship is divided in 3
legs with different kind of tracks. In each leg the car runs
in 3 unknown tracks, they can be tracks of the game or new
tracks. For each track the competition is divided in three
stages: warm-up, qualifying and the race.

3http://cig.dei.polimi.it/?page id=134
4http://groups.google.com/group/racingcompetition

During the warm-up, the cars are allowed to run during
100000 game ticks (approximately 30 minutes of actual game
time). The idea of the warm-up is to set up the parameters
of the car and adapt it to the track features. We calcule that
in an average track each lap is performed in 1 or 2 minutes
for a good controller, this gives us between 15 and 30 laps
to set up the car.

The first important stage is the qualifying. The controllers
have 10000 game ticks (around 3 minutes and 20 seconds)
to run alone in the track and reach the longest distance. The
8 best controllers in the qualifying run together in the race.

In the race the controllers are scored as in the Formula
1. For our work the race is no relevant due to our current
work only focus in a controller that can drive as a human
does, without other cars in the track at the same time. But
we will talk about how the opponents could be included in
the controller in Section VIII-A.

In the nexts Section, we describe the sensor information
given by the API and the effectors to control the car, but
only those ones that are relevant for our controller.

A. Sensors information and effectors

The information provided by the API is related with the
lap, the status of the car, the track and the opponents. For
us, the most important information is:
• Current lap time
• Distance from the start line
• Damage and fuel of the car
• Current gear and revolutions per minute (R.P.M.)
• Relative position of the car with the center of the track
• Spin of the wheels
• Current speed, lateral speed and vertical speed.
• 19 sensors to know the distance between the car and

the limits of the road (range finders)
• 36 sensors of proximity for the opponents (useful for

future versions of our controller)
Two differences of the 2010 Simulated Car Racing Cham-

pionship with previous years is that white noise has been
included in the range finders and proximity sensors, and the
angles of the range finders can be fixed by the controller at
the initialization.

The effectors to control the car are:
• the accelerator
• the brake
• the steering
• the gear
• the clutch
• the value for the focus sensor (not used by our con-

troller)

IV. DIRECT CONTROLLER VS INDIRECT CONTROLLER

We can divide the type of the controllers in two classes:
the direct controllers and the indirect controllers. In our case
that we are using neural networks to control the car, the
indirect controller would be a direct matching between the
input sensor information and the output effectors value, this

474 2010 IEEE Conference on Computational Intelligence and Games (CIG’10)

is, the algorithm would learnt which are the right values in
the effectors given a concrete sensor values. In the indirect
controller the algorithm would process the information of
the sensors first, then creates some kind of model of the
world and objectives, and finally sets the proper values in
the effectors to achieve its objectives

The problem with a direct controller is that all the noise in
the sensors values as the range finders is directly applied into
the effectors, and this could lead to some kind of instability
in the control of the car. Other problem is related with the
training of a neural network of this kind with human data. As
the human player does not perform two laps in the same way,
even does not perform the same actions with the same sensor
information, there is a lot of noise in the data that avoids the
network to learn how to drive [7]. So, our solution is use
a indirect controller. First we create a model of the track,
them we calculate with the model and the current sensor
information where is the car in the track, and finally, we
use an scripted policy to follow a trajectory. This trajectory
is predicted by a neural network trained before with human
data. Our controller does not train a neural network to control
but trains it to predict the trajectory the human will follow
given some information about the track.

V. CONTROLLER

The main goal is to create a controller able to drive as a
human player, this is to imitate the behavior of the player.
As the human player has a knowledge about all the track
we need some kind of information about the track that is
not given by the sensors information. For instance, with the
current sensor information we do not know if the next turn
is to the left or to the right or if car is in a right turn now
or in a straight. We need this kind of information to imitate
the human behavior. So the first step of our controller is to
create a model of the track. This is explained later in Section
V-B.

Once we have a model of the track we can use it to
predict the actions the human will made in a concrete point
of the track. We know that for car racing the humans try
to follows trajectory to optimize the turns. Also remember
the maximum speed they can reach in each turn and where
need to start braking to keep the car on the trajectory. So
our controller need some kind of predictions to calculate the
trajectories and the speed of each points. We used for this
predictions neural networks. Specifically we use 4 neural
networks to do this, a further description is done latter in
Section V-C for the trajectory prediction and Section V-D
for the speeds prediction.

In order to follow the predicted trajectory with the pre-
dicted speed, we have implemented a scripted policy that
takes into account the current error and sets the proper values
in the steering, accelerator and brake to correct it. Section V-
E explains how the steering is set and Section V-F describes
how are the accelerator and brake set.

Notice that our work seems like the work done with
the Drivatars in ForzaMoto Sport [2] and like in [6]. The
differences are that we do not have so many information

about the track to drive the car as in both works, we do not
cheat to set the grip value as in former and we use human
driver in order to learn not like in the latter.

A. Scripted aid policies

We have programed some scripted policies to aid in the
gear change and to avoid the skids. In concrete, we have
done an automatic gear change, an automatic control for
the clutch, a traction control system (TCS) and a anti-lock
braking system (ABS). All these scripted aid policies are
used for the controller and for the human when we collect
the data.

The gear change is an easy problem that could be solve
by using a table with values that points out when it has to
increase or decrease a gear. Table I shows the R.P.M. and
the velocities we have use to increase or decrease a gear.
For instance, if the car is in gear 2 and the R.P.M. are higher
than 8900 or the speed is higher than 80km/h the gear is
set to 3. We also include a restriction that it has to elapse
40 game ticks before change again the gear. This is done in
order to avoid instability in the gear change.

TABLE I
GEAR CHANGE POLICY

Current R.P.M. Speed km/h
Gear Gear Up Gear Down Gear Up Gear Down

Reverse - 3000 - 30
Neutral 5000 - 0 -

1 8500 3000 30 -
2 8900 5000 80 30
3 9000 6000 130 80
4 9000 7000 180 130
5 9000 7500 230 180
6 - 8000 - 230

In order to control the clutch, each time the gear changes
the clutch value is set to 0.5 and clutchDec to 0.01. When
the clutch value is greater than 0 the value is update as
in Equation 1, also the clutchDec value is update as in
Equation 2.

clutch = clutch − clutchDec (1)
clutchDec = clutchDec · 1.3 (2)

The ABS is activated when the brake is activated and
the current speed is bigger than 3m/s. The brake value us
updated as in the Equation 3, where speed is the current
speed in m/s, slip is the velocity of the wheels in m/s, and
absSlip and absRange are two adjust values equals to 2.8
and 6.0.

brake = brake − (speed − slip) − absSlip

absRange
(3)

The TCS is only activated when the current speed is
lower than 28m/s, the car is accelerating and the difference
of the speed of the rear wheels (rearSp) with the front
wheels (frontSp) is greater than 3.0. The accelerate value

2010 IEEE Conference on Computational Intelligence and Games (CIG’10) 475

is update as in Eqcuation 4, where tcsSlip and tcsRange
are two adjust values equals to 3.0 and 6.0.

accelerate = accelerate − (rearSp − frontSp) − tcsSlip

tcsRange
(4)

A recovery policy has been created to return the car to
the road when it goes out. This process is not described here
since is not relevant for the paper.

B. Track model. Exploration

The track model is created during the competition in
the warm-up stage and before collecting the data for the
experiments. In the competition we have around 30 minutes
in the warm-up, in this time we need to perform a complete
lap without going out of the track to get enough information
to create the model of the track.

The way in which the model is built by means of storing
information about the distance from the start line of the
car, the angle with the track, the distance of the car to the
center of the track, the distance of the car with the track
edges and the distance the rear wheels cover between two
game ticks (for this the spin value of the wheels have been
used). We store all this information for each game tick. It is
very important that the car never skids or jumps because it
would mean that wrong information has been stored and a
wrong model of the track will be created. In order to avoid
this problems the controller that makes the exploration to
collect this data drives in a low speed, without accelerating
or braking abruptly, and trying to stay in the middle of the
track. Notice that the distance of the car with the track edges
is measure by the range finders which have noise. To reduce
this noise we use 7 range finders in each lateral of the car to
measure the distance with the track edges, the average value
is the one used.

In order to create the model we also need the distance
between the wheels, we do not know this value but we set
it as 1.94 meters as is the common value for the most of
the cars in TORCS. Now we are going to explain how the
track model is created. We start setting initial points for the
wheels, the middle of the track and the track edges. We know
the distance covered by the wheels (L1 and L2) between
two game ticks and we also know that the trajectory of the
both wheels must follow two differents circles with the same
center in the line that join both wheels and radius which
difference is the separation between the wheels, then we can
calculate the new points of the wheels. See Equation 8 to
know how is the radius calculated and Figure 1 which shows
the update of the wheels: points A and B are the initial points
of the wheels, points D, F are the final points of the wheels
and point C is the center of the circles, L1 is the distance
between A and D, L2 the distance between B and E, angle
is the angle among A, C and D, r1 is the distance between
A and C and r2 is the distance between B and C.

L1 = angle · r1 (5)
L2 = angle · r2 (6)
r1 = r2 − 1.94 (7)

r1 =
1.94

1 − L2
L1

(8)

Fig. 1. Calculus of the new wheel positions

Once we have the next points of the wheels it is very easy
calculate with some trigonometry the new points of edges of
the tracks with the rest of the stored information: the angle
with the track axis, the distance to the edges of the tracks
and the distance of the car with the track center. We continue
with the next stored information about the next point until
we do not have more points. And finally we have a complete
description of the track. Next step in simplify the track model
we have. We do not need all the track points we get. We
decided to use points separated 4 meters to create the model
of the track, this is a tracks divided in segments of 4 meters.
We try more distances than 4 meters but with this value
we get good models of the tracks. Figure 2 shows the track
model divided into segments, black lines are the edges of the
track and dotted gray lines divide the segments.

Fig. 2. Detail of a track segmentation. Dotted line divide the segments of
the track.

The final information that is stored in the model of the
track is the angle between the segments and their width.

The tracks used in the experiments and their corresponding
models can be shown in Figure 3. We can see in the figure

476 2010 IEEE Conference on Computational Intelligence and Games (CIG’10)

e

that the models of the tracks seem similar to the original
tracks but they are not closed. This is due to the process of
segmentation and the mistakes in the stored data when the
car complete the lap.

C. Trajectory model

To create a trajectory model based on the human data we
trained two neural networks. Both networks have the same
inputs but the output of the first network is the predicted
position of the car in the current segment (from here when
we refer to a segment we mean a segment of the track model
described in the previous section), and the output of the
second network is the difference in the position of the car
between the current segment and the last segment. The reason
to use two networks is to reduce the noise and soft changes
in the trajectory.

The target position in the track is calculated as shows the
Equation 9, where tp is the target position, pp is the predicted
position by the neural network, pdp is the predicted difference
position by the other network, tp−1 is the target position of
the previous segment and α is parameters equals to 0.5.

tp = α · pp + (1 − α) · (tp−1 + pdp) (9)

The inputs of both networks are 68:

• the angles of the next 50 segments
• the angles of the last 15 segments
• the track width
• the next turn (0 for left, 1 for right and 0.5 for a straight)
• the current turn (as next turn)

Figure 4 shows an example of predicted trajectory. The
gray line is the predicted trajectory.

D. Velocities model

For the velocities model we use a similar process than for
the trajectory model. We also use two neural networks, the
first one predicts the speed and the second one the difference
in the speed in the current segment with the last segment.

Target speed is calculated as shows the Equation 10, where
ts is the target speed, ps is the predicted speed by the neural
network, pds is the predicted difference speed by the other
network, cs is the current speed of the car and β is parameters
equals to 0.2 when pd is positive and 0.6 when pd is negative.

ts = β · ps + (1 − β) · (cs + pds) (10)

The inputs of both networks are 115:

• the angles of the next 50 segments
• the angles of the last 15 segments
• the trajectory angles of the next 40 segments
• the trajectory angles of the last 10 segments

(a) Ruudskogen (b) Ruudskogen Model

(c) Aalborg (d) Aalborg Model

(e) E-road (f) E-road Model

(g) Street 1 (h) Street 1 Model

(i) CG track 2 (j) CG track 2 Model

Fig. 3. Tracks used in the experiments and their models

2010 IEEE Conference on Computational Intelligence and Games (CIG’10) 477

Fig. 4. Example of predicted trajectory in a turn.

E. Steering

The steering value is calculated based on the difference
of the car position with the trajectory. Equation 11 shows
how is the steering value calculated, where ta is the angle
between the car and the track, maxTurn is the maximum
turn of the wheels (0.785398), ecurrent is the current error
in the trajectory and eadvance is the error in the trajectory
tree segments ahead if the car would not steer.

steering = ta · maxTurn + ecurrent · 0.8 + eadvance

(11)

Both ecurrent and eadvance are calculated as in Equation
13 where error is the error in meters, and γ is an adjust
parameter set to 4 for ecurrent and 8 for eadvance. The results
of Equation 13, erelative, is a value between 0 and 1.

eabsolute = minimum(1, maximum(−1,
error

γ
)) (12)

erelative = 1 − 1
exponential(eabsolute · 8 + 5)

(13)

When we have the steering value we multiply it by a value
depending on the brake value in order to avid brake and turn
at the same time (see Equation 14).

steering = steering · (1 − brake · 0.8) (14)

F. Accelerate and brake

In order to calculate the accelarate and brake values we
need the target speed (st) predicted by the neural networks.
Then we calculate the speed adjust (sa) as shows Equation
15 and the difference speed (sd) between the target speed
and the current speed (sc) as in Equation 16.

sa = 40 · |ecurrent| (15)
sd = st − sc (16)

If the difference speed is positive the car accelerates
and the brake is set to 0, if it is negative the car brakes
and the accelerator is set to 0. When the car accelerates
the accelerator value is set as in Equation 17 when the
difference speed (sd) is bigger than the speed adjust (sa) ,
otherwise is set to 1. When the car brakes the brake value
is set as in Equation 18 when the difference speed (sd) is
bigger than 10 , otherwise is set to 1.

accelerator =
sd

sa
(17)

brake =
sd

10
(18)

(19)

VI. EXPERIMENTS

In the experiments 5 tracks included in TORCS were used:
Ruudsokgen, Aalborg, E-Road, Street 1 and CG track 2 (see
Figure 3). For each of the tracks a human complete 6 laps in a
competitive way without get out of the track in any moment.
The human results are shown in Table II, first column is the
track name (Track), the second the number of laps performed
(Laps), next three columns shows the times in seconds of the
6 laps (Total Time), the average lap (Average Lap) and the
best lap (Best Lap). Last two columns are the top speed (Top
Speed) and the damages (Damages) suffered by the car.

The data of the human game play is stored, except the first
lap of each track that is removed in order to avoid the noise of
the start. Then for each one of the tracks we used the others
as the training data for the neural networks, and the current
track to evaluate the learning. This is, for Ruudskogen we
use Aalborg, E-Road, Street 1 and CG track 2 as the data set
for training the neural networks, and then we evaluate these
networks in Ruudskogen. We do not use the Ruudskogen to
train the networks, so we have a fair evaluation. We do the
same for all the tracks. The networks have two hidden layers
with 20 and 10 neurons each one, they were trained during
1000 cycles with a variable learning rate that starts in 0.8
and ends in 0.0001. We selected these parameters because
we got good results in previous tests. Table III shows the
number of patterns used in the training of each track.

TABLE III
NUMBER OF PATTERNS FOR TRANNING

Track Number of patterns
Ruudskogen 119009

Aalborg 114768
E-Road 119033
Street 1 112758

CG track 2 126180

Table IV shows the same information as Table II but with
the results of the learnt controller. The last column (Best Lap

478 2010 IEEE Conference on Computational Intelligence and Games (CIG’10)

I I

1-1-1

TABLE II
HUMAN PLAYER TIMES

Track Laps Total Time Average Lap Best Lap Top Speed Damages
Ruudskogen 6 445.38 74.23 71.23 246 17

Aalborg 6 506.41 84.4 81.89 227 17
E-Road 6 442.26 73.71 71.56 262 0
Street 1 6 539.55 89.92 87.25 276 9

CG track 2 6 341.71 56.95 54.47 273 36

Increment) shows the increment of the time for the best lap
compared with the human time. Notice that in some tracks
the controller does not perform the 6 laps, this is because it
suffers so damage that the simulation is over.

VII. DISCUSSION

The times of the controller we trained are good enough for
us although slower than a human player. The biggest problem
that we have seen when the controller drives is that the car
can not follow correctly the trajectory and some times this
leads to an instability that makes the car to skid and crash
or get out of the road. This is also the reason why the times
are slower than the human times. The normal behavior of
a human when he can not follow the trajectory he wants
to follow, or he has made a mistake, is not to try to turn
more to recover the mistake but to create a new not-optimal
trajectory to recovery. He also learns the mistake he did and
tries to avoid they in the next laps. These are things that our
controller can not done yet, but could be improved in the
future.

We have seen that in Ruudskogen the controller goes out of
the track in the hard turn, maybe because the networks were
trained without a turn of same characteristics. In Aalborg
the controller is unstable in the straights and crash in some
turns, but not in ones that we think were the most difficult.
In E-road the controller is also unstable in the high speed
turns, making the car crash. In Street 1 the car does not crash
as often as in the other tracks, even perform a lap without
crash. And finally, in CG track 2, the easiest track, the car
never crash and performs good laps. A common problem of
all the tracks is that the top speed reached by the controller
is much lower than the top speed of the human. We think
this is a problem with the training data because there are few
patterns with the top speed, we think this could be solved
including in the training a track with very high top speed
during a lot of time.

The training should be done with similar tracks as the
evaluation track. Of course, this will improve the results
because their similarity, but we have seen that the human
takes some laps to adapt his behavior to the features of the
new track. So, to be fair enough the controllers should have
the same possibilities, and the only way to make this is to
use similar tracks in the training.

VIII. FUTURE WORKS

Some of the works that can be done in our controller
to improve it are: the overtaking and avoid overtaking, the
trajectory adaptation to correct the mistakes the car done,
include a grip parameter to our networks to get better
predictions and into the scripted policy to get a better control
of the car, and avoid the jumps of the track. The current
scripted policy for the gear change, and accelerator, brake
and steering control, could be improved or modified to
decrease the mistakes made by the controller when follows
a trajectory. Another improvement is to adjust the inputs
and outputs of the neural networks used in the predictions
in order to remove useless inputs and include other useful
sensor information.

Next sections explain some of the improvements that could
be done.

A. Overtaking

As we said we do not take into account the opponents for
our controller but this work could be done easily. We only
have to include some modifications to overtake opponents
and avoid the overtaking. One easy way to perform the over-
taking in our controller is taking into account the opponents
in the trajectory. The controller can modify the trajectory
and the target speed in order to pass the opponent cars when
these are close enough to our car. To avoid the overtaking
the trajectory and target speed could be also modified, but in
this case the controller should follow a trajectory that avoids
the overtaking, this is trying to be located all the time in
front of the opponents car.

B. Trajectory adaptation

When our controller is trying to follow a trajectory it
makes some mistakes and never follow the trajectory per-
fectly. The main reason is that the scripted policy to follow
the trajectory is based on the error of the current position
of the car with the trajectory, so there is needed some kind
of error to follow the trajectory. But this error is more or
less the same in each lap, so we could be able to take into
account this error to include it in the scripted policy or in
the trajectory in order to follow the trajectory better. As the
track is divided in segments we can update the error in each
segment and take it into account in the next lap to modify
the steering with the aim of advancing the future errors and
correct them before they happen.

2010 IEEE Conference on Computational Intelligence and Games (CIG’10) 479

TABLE IV
CONTROLLER TIMES

Track Laps Total time Average Lap Best Lap Top Speed Damages Best Lap Increment
Ruudskogen 6 605.35 100.89 90.38 212 1183 +26.88%

Aalborg 3 360.03 120.01 115.75 207 10090 +41.34%
E-Road 6 738.55 123.09 105.10 215 6344 +46.86%
Street 1 4 472.69 118.17 104.40 217 10121 +19.65%

CG track 2 6 417.28 69.54 67.57 217 898 +24.04%

C. Grip

The tracks are different and have different grips, also the
grip is modified at the same time the fuel is consumed and
the wheels are worn. The grip of the car affects directly to
some systems we implemented as the ABS and the TCS, but
also over the scripted policy to control the car. This is the
main reason that the grip should take part, not only in the
TCS and ABS, but in the scripted policy too. The problem is
that the grip is not constant and depends on the track. So one
future improvement is to create an algorithm able to estimate
this parameter and updates it while the car state changes. The
warm-up stage matches perfectly to set this value and make
some test before the race.

D. Jumps

Finally, some of the tracks can include jumps or other
points that the car must avoid, or minimize their influence in
the control in order to get better results. The sensors provide
some information about the vertical speed of the car that can
be used to know when the car jumps. These points could be
stored and in the next laps try to avoid it or do other things
like braking to minimize their effects in the control.

ACKNOWLEDGMENT

This work was supported in part by the University Carlos
III of Madrid under grant PIF UC3M01-0809 and by the
Ministry of Science and Innovation under project TRA2007-
67374-C02-02.

REFERENCES

[1] X. Yang and J. Zheng, “Artificial neural networks,” Handbook of
Research on Geoinformatics, p. 122, 2009.

[2] M. Tipping and M. Hatton, DrivatarsTM and Forza Motorsport, 2006.
[Online]. Available: http://www.vagamelabs.com/drivatars-trade-and-
forza-motorsport.htm

[3] J. Matthews, Colin McRae Rally 2.0. Inter-
view with Jeff Hannan, 2001. [Online]. Available:
http://www.generation5.org/content/2001/hannan.asp

[4] M. Buckland, Colin McRae Rally 2.0. Interview with Jeff Hannan.
[Online]. Available: http://ai-junkie.com/misc/hannan/hannan.html

[5] B. Chaperot and C. Fyfe, “Improving artificial intelligence in a
motocross game,” in 2006 IEEE Symposium on Computational In-
telligence and Games, 2006, pp. 181–186.

[6] L. Cardamone, D. Loiacono, and P. Lanzi, “Learning drivers for
TORCS through imitation using supervised methods,” in Proceedings
of the 5th international conference on Computational Intelligence and
Games. IEEE Press, 2009, pp. 148–155.

[7] J. Muñoz, G. Gutierrez, and A. Sanchis, “Controller for torcs created
by imitation,” in IEEE Symposium on Computational Intelligence and
Games, September 2009, pp. 271–278.

[8] N. Van Hoorn, J. Togelius, D. Wierstra, and J. Schmidhuber, “Robust
player imitation using multiobjective evolution,” in Proceedings of the
IEEE Congress on Evolutionary Computation (in press). Citeseer,
2009.

[9] J. Togelius, R. De Nardi, and S. Lucas, “Making racing fun through
player modeling and track evolution,” Optimizing Player Satisfaction
in Computer and Physical Games, p. 61, 2006.

[10] M. Butz and T. Lonneker, “Optimized sensory-motor couplings plus
strategy extensions for the torcs car racing challenge,” in Proceedings
of the 2009 IEEE Symposium on Computational Intelligence and
Games, Milano, Italy, 2009.

[11] E. Onieva, D. Pelta, J. Alonso, V. Milanés, and J. Pérez, “A modular
parametric architecture for the TORCS racing engine,” in Proceedings
of the 5th international conference on Computational Intelligence and
Games. IEEE Press, 2009, pp. 256–262.

[12] D. Perez, G. Recio, Y. Saez, and P. Isasi, “Evolving a fuzzy controller
for a car racing competition,” in Proceedings of the 5th international
conference on Computational Intelligence and Games. IEEE Press,
2009, pp. 263–270.

[13] D. Ho and J. Garibaldi, “A Fuzzy Approach For The 2007 CIG Simu-
lated Car Racing Competition,” in IEEE Symposium On Computational
Intelligence and Games, 2008. CIG’09, 2008, pp. 127–134.

[14] L. Cardamone, D. Loiacono, and P. Lanzi, “On-line neuroevolution ap-
plied to the open racing car simulator,” in Evolutionary Computation,
2009. CEC ’09. IEEE Congress on, May 2009, pp. 2622–2629.

[15] K. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99–127, 2002.

[16] D. Loiacono, L. Cardamone, and P. L. Lanzi, “Simulated Car Racing
Championship 2010: Competition Software Manual,” Dipartimento di
Elettronica e Informazione, Politecnico di Milano, Italy, Tech. Rep.,
2010.8.

[17] D. Loiacono, J. Togelius, P. Lanzi, L. Kinnaird-Heether, S. Lucas,
M. Simmerson, D. Perez, R. Reynolds, and Y. Saez, “The wcci
2008 simulated car racing competition,” in IEEE Symposium On
Computational Intelligence and Games, Dec. 2008, pp. 119–126.

480 2010 IEEE Conference on Computational Intelligence and Games (CIG’10)

