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Communicating the sum of sources over a network

Aditya RamamoorthyMember, IEEE and Michael Langbergylember, IEEE

Abstract—We consider the network communication scenario,
over directed acyclic networks with unit capacity edges in which
a number of sourcess; each holding independent unit-entropy
information X; wish to communicate the sumy_ X; to a set of
terminals ¢;. We show that in the case in which there are only two
sources or only two terminals, communication is possible if and
only if each source terminal pair s;/t; is connected by at least
a single path. For the more general communication problem in
which there are three sources and three terminals, we prove that a
single path connecting the source terminal pairs does not suffice

The problem of multicasting sums of sources is an important
component in enabling the multicast of correlated sources over
a network (using network coding). Network coding for corre-
lated sources was first examined by Ho et [al. [4]. The work
of Ramamoorthy et all[5] showed that in general separating
distributed source coding and network coding is suboptimal
except in the case of two sources and two terminals. The work
of Wu et al. [6] presented a practical approach to multicasting
to communicate 3" X,. We then present an efficient encoding correlated sources overa network. Referenhte [6] al_so stated the
scheme which enables the communication 6F X; for the three  Problem of communicating sums over networks using network
sources, three terminals case, given that each source terminal coding, and called it théNetwork Arithmeticproblem. We
pair is connected bytwo edge disjoint paths. elaborate on related work in the upcoming Seckion II.

In this work, we present (sometimes tight) upper and lower
bounds on the network resources required for communicating
the sum of sources over a network under certain special cases.

Index Terms—network coding, function computation, multi-
cast, distributed source coding.

. INTRODUCTION A. Main Contributions

We consider the problem of function computation over We consider networks that can be modeled as directed
directed acylic networks in this work. Under our setting thacyclic graphs, with unit capacity edges. L&t = (V, E)
sources are independent and the network links are errmgpresent such a graph. There is a set of source n®des”
free, but capacity constrained. However, the topology of thleat observe independent unit-entropy sourcés; € S, and
network can be quite complicated, e.g., an arbitrary directadset of terminal node® C V, that seek to obtai} -, ¢ X,
acyclic graph. This serves as an abstraction of current-dajiere the sum is over a finite field. Our work makes the
computer networks at the higher layers. We investigate tfalowing contributions.

problem of characterizing theetwork resourcesequired to i) Characterization of necessary and sufficient conditions
communicate the sum (over a finite field) of a certain number \hen either|S| =2 or |T| = 2.

of sources over a network to multiple terminals. By network  syppose tha€ is such that there are either two sources
resources, we mean the number of edge disjoint paths between (/5| — 2) and an arbitrary number of terminals or an
various source terminal pairs in the network. Our work can be  arhitrary number of sources and two terminais|(= 2).
considered as using network coding to compute and multicast The following conditions are necessary and sufficient for
sums of the messages, as against multicasting the messagesrecovery ofy"._. X; at all terminals in7".

themselves.

The problem of multicast has been studied intensively
under the paradigm of network coding. The seminal work of
Ahlswede et al.[[1] showed that under network coding the
multicast capacity is the minimum of the maximum flows;
from the source to each individual terminal node. The work
of Li et al. [2] showed that linear network codes are sufficient
to achieve the multicast capacity. The algebraic approach to
network coding proposed by Koetter and Médard [3] provided
simpler proofs of these results.
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max-flow(s; —t;) > 1 for all s; € S andt; € T.

Our proofs are constructive, i.e., we provide efficient
algorithms for the network code assignment.
Unit connectivity does not suffice whé$| and |T'| are
both greater than 2
We present a networks such that|S| = |T| = 3 in
which the maximum flow between each source terminal
pair is at least 1 and (as opposed to that stated above)
communicating the sum of sources is not possible.

o _ iii) Sufficient conditions whejt| = |T'| = 3.
A. Ramamoorthy is with the Department of Electrical and Computer Suppose thafy is such thatS| = |T| = 3. The following

Engineering, lowa State University, Ames IA 50011, USA (email: adit- L -
yar@iastate.edu). condition is sufficient for recovery of,_ ¢ X; atallt; €

M. Langberg is with the Computer Science Division, Open University of T.
Israel, Raanana 43107, Israel (email: mikel@openu.ac.il).
The material in this work was presented in part at the 2008 IEEE

€S

International Symposium on Information Theory in Toronto, Canada, at the
2009 IEEE International Symposium on Information Theory in Seoul, South
Korea and the 2010 IEEE International Symposium on Information Theory,
Austin, TX, USA. This work was supported in part by NSF grants CCF-
1018148 and DMS-1120597.

max-flow(s; —t;) > 2 for all s; € S andt; € T.

Efficient algorithms for network code assignment are
presented in this case as well. Note however, that the
algorithms may be randomized in some cases, with a
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probability of success that can be made arbitrarily clogxtended and improved the results[df [1], in different wdgs.
to one. example, [[2], [[8] considered multicast with linear codes. H
This paper is organized as follows. We discuss backgrouatial. [4] proposed random network coding and examined the

and related work in Sectiofi]ll and our network codinghulticast of correlated sources over a network and showed
model in Sectior 1ll. The characterization for the case &f tight capacity region for it that can be achieved by using
|S| = 2,|T| =n and|S| = n,|T| = 2 is discussed in Section random network codes. Follow-up works [E]] [6] investighte
V] Our counter-example demonstrating that unit-connégti practical approaches for the multicast of correlated segirds
does not suffice for three sources and three terminals crown in [6], the problem of communicating (multicasting)
be found in Sectio_ V. Sectiorls VI arld_VII discuss th&ée sum (over a finite field) of sources over a network is a
sufficient characterization in the case of three sources asigbproblem that can help facilitate practical approacbebe
three terminals, and Sectibn VIl presents the conclusioms problem of multicasting correlated sources.

possibilities for future work. In this work we consider function computation under net-
work coding. Specifically, we present network code assign-
Il. BACKGROUND AND RELATED WORK ment algorithms for the problem of multicasting the sum of

Prior work of an information theoretic flavor in the aresources over a network. As one would expect, one needs
of function computation has mainly considered the case fefiwer resources in order to support this. To the best of our
two correlated sourceX andY, with direct links between knowledge, the first work to examine function computation in
the sources and the terminal, where the terminal is intedesthis setting is the work of RamamoortHy [15], that considere
in reconstructing a functiory(X,Y"). In these works, the the problem of multicasting sums of sources, when there are
topology of the network is very simple, however the struetueither two sources or two terminals in the network. Subse-
of the correlation betweerX and Y may be arbitrary. In quently, the work of Langberg and Ramamoorihyl [16] showed
this setting, Korner & Marton[]7] determine the rate regiothat the characterization df [15] does not hold in the case of
for encoding the modulo-2 sum of andY when they are three sources and three terminals. Referehcé [16], prdpose
uniform, correlated binary sources. The work of Orlitsky &n alternate characterization in this case. The currenémpap
Roche [[8] determines the required rate for sendiigo a is a revised and extended version [of1[15],1[16] and [17] that
decoder with side informatiol” that must reliably compute contains all the proofs and additional observations.

F(X,Y). The result of[[8] was extended to the case when bothWe note, as presented by Rai and Dey [in] [18], that the
X andY need to be encoded (under certain conditions)in [Sask of finding a network coding scheme in the setting
Yamamotol[[1D] (generalizing the Wyner-Ziv reslili [11]) fal of sum-networks is strongly connected to the problem of
the rate-distortion function for sending to a decoder with finding a network coding solution in the multiple-unicast
side informationY’, that wants to computg¢(X,Y) within a communication setting. Specifically, for any mutiple usica
certain distortion level (see also ]12] for an extensiorgzér network, [18] constructs a sum-network which is solvable if
et al. [13] consider the problem of reliably reconstructang and only if the original multiple unicast network is solvabl
function over a multiple-access channel (MAC) and findinghe reduction of[[18] increases the number of sources and
the capacity of finite-field multiple access networks. In therminals in the network). Rai and Dey [19] independently
majority of these works, the sources and the terminal ai@und the same counter-example found in our wadrk] [16];
connected by direct links or by simple networks (such dmwever, their proof only shows that linear codes do noteeiffi
a MAC). A work closer in spirit to our work is[[14] that for multicasting sums under the characterization of [13]je T
considers functional compression over tree-networks. work of Appuswamy et al.[[20],[T21] also considers the

In this work we consider a problem setting in which th@roblem of computing general functions in the setting oberr
sources are independent and the network links are errey-friree directed acyclic networks. InT20], [21], the emphasisn
but capacity constrained. However, the topology of the netw considering the rate of the computation, where the ratagefe
can be quite complicated, such as an arbitrary directediacydo the maximum number of times a function can be computed
graph. This is well motivated since it is a good abstractigmer network usage. While their setting is significantly more
of current-day computer networks (at the higher layers). VWgeneral, their results are mostly in the context of only kEing
investigate the problem of characterizing tiework resources terminal networks.
required to communicate the sum of a certain number ofFinally, the work most related to our result on three
sources over a network to multiple terminals. Network resource/three terminal networks is the conference pubdicat
sources can be measured in various ways. For example, ofieShenvi and Dey[[22] (and its extended version avail-
may specify the maximum flow between the subsets of tlable as[[2B]) which proposes (in this case) a combinatorial
source nodes and subsets of the terminal nodes in the netwatlaracterization for sum computation via network coding.
In the current work, all of our characterizations are in tewwh In our work, for three source/three terminal networks, we
the maximum flow between various—¢; pairs, wheres; (t;) present a simple sufficient combinatorial condition for sum
denotes a source (terminal) node. Previous work in this,areammunication based on flow requirements. Our result is not
includes the work of Ahlswede et al.l[1], who introduced thproven to be necessary, and indeed in the subsequent work
concept of network coding and showed the capacity region fof [22], [23], our flow condition is refined (and weakened) to
multicast. In multicast, the terminals are interested icore obtain a tight characterization. The characterization[Z#]
structing the actual sources. Numerous follow-up workseha{23] implies a significant improvement in the understanding



3s/3t sum-networks. Nevertheless, we believe that oulteesisources and two terminals. Before embarking on this proof,
(obtained independently and prior fo [22],]23]) are of ie#t we overview the concept of greedy encoding that will be used
due to the natural and simple nature of our sufficient coowliti throughout the paper when considering two source networks.
Definition 1: Greedy encodingConsider a graphG =
Il. NETWORK CODING MODEL (V, E), with two source nodes; and s, and an edge’ =
Our model and terminology follow those common in th¢, — v) € E. Suppose that the coding vector on each edge
network coding literature, e.d./[3]. We represent the nekwoe enteringu, has only0 or 1 entries, i.e.,3, = [Be.1 Be.2),
as a directed acyclic graph G = (V,E). The network containghereg, ; € {0,1}, for all i = 1,2. We say that the encoding
a set of source nodes C V' that are observing independenton edgee’ is greedy, if fori = 1,2 we have
discrete unit-entropy sources and a set of termiffals V. , .
We assume that each edge in the network has unit capacity and B i = 0 if B = 0, Ve enteringu )
can transmit one symbol from a finite field of sigeper unit ’ 1 otherwise.
time. We are free to chooselarge enough. In addition, as wea coding vector assignment fa#, is said to be greedy if the
shall see in the later discussion, in some cases we may nggloding on each edge i is greedy.
to choosey to be an odd prime. If a given edge has a higher consider a vertex that is downstream of a subset of the
capacity, it can be treated as multiple unit capacity edgeg,yrce nodes3 C {1,2}. Under greedy coding it can be seen
A directed edgec between nodes; and v; is represented that the outgoing edges af will carry the sumy, 5 Xi.
as (vi — v;). Thus head(e) = v; andtail(e) = vi. A Namely, if a node only receives eithet; or X, it just
path between two nodes; and v; is a sequence of edgestorwards them. Alternatively, if it receives both of them or
{e1,e2,... ex} such thattail(er) = vi, head(ex) = v; and  x, 1 x, then it just transmits\; + Xo.
head(e;) = tail(eiyr),i=1,...,k — 1. _ _ The first result of this section is the following.
Our counter-example in Sectiga V considers arbitrary net- Thegrem 1:Consider a directed acylic graghi = (V, E)
work codes. However, our constructive algorithms in Sexstioith unit capacity edges, two source nodgsand s, andn

[Vland[V] shall use linear network codes. In linear networksyminal nodes; .. ., t, such that
coding, the signal on an edde; — v,), is a linear com- , .
bination of the signals on the incoming edgeswrand the ~ Max-flow(s; —¢;) > 1 foralli=1,2andj =1,...,n.

source signal at; (if v; € 5). In this paper we assume that thexssume that at each source nogethere is a unit-rate source
source (terminal) nodes do not have any incoming (outgoing) and that theX;'s are independent. Then, there exists an
edges from (to) other nodes. If this is not the case one cg&signment of coding vectors to all edges such that sagh=
always introduce an artificial source (terminal) connedted | , can recoverX; + Xo.
the original source (terminal) node by an edge of sufficientproof of Theorenfll Consider any terminal nodg. As we
large capacity that has no incoming (outgoing) edges. We shgssume that max-flow; — ¢;) > 1 for all i = 1,2, it holds
only be concerned with networks that are directed acyclic iﬁattj is downstream of botk; ands,. Thus, (using greedy
which internal nodes have sufficient memory. Such networbﬁcolding) by the observation abo\tﬁ'can recove[}(l + X2_
can be treated as delay-free networks. &t (such that -
tail(e;) = vr and head(e;) = v;) denote the signal on the Note that if any of the conditions in the statement of
i'" edge inE and let X; denote thej*" source. Then, we Theorem[1 are violated then some terminal will be unable
have to computeX; + X,. For example, if max-flofs; —¢;) <1
Y,, = Z fiiYe, if v, € V\S, and then any decoded signal at ¢; will have H(Y|X3) <1 (as
Y is solely a function ofX; and X5). We conclude that”
cannot beX; + Xs.
Next, consider the class of networks with sources and
{41X; observed avy } two terminals. The original proof of this result (obtained i
where the coefficients, ; and f; ; are fromGF(g). Note that [15]) was obtained via a series of graph-theoretic opematio
since the graph is directed acyclic, it is possible to expresn the network. However, subsequently it was showri_in [19]
Y., for an edgee; in terms of the sourceX;’s. Suppose that that this result follows in a simpler manner by using the idea

{ej|head(e;)=vk}

Y. = Z aj,in if Vv € 57

i

there aren sourcesXy, ..., X,. If Y, = ZZ:1 Be; kX1 then of network reversibility. We state the result below.
we say that the global coding vector of edgeis 3., = Theorem 2:Consider a directed acylic graghi = (V, E)
[Be;1 -+ Besn|. For brevity we shall mostly use the termwith unit capacity edgess source nodes, ss,...,s, and

coding vector instead of global coding vector in this papewo terminal nodes; andt, such that
We say that a node; (or edgee;) is downstream of another

' . max-flow(s; —t;) >1foralli=1,...,nandj =1, 2.
nodev; (or edgee;) if there exists a path from; (or ¢;) to x-flow(s i)z ! " J

v; (Or e;). Assume that the source nodes observe independent unit-
entropy sourcesX;,i = 1,...,n. Then, there exists an
IV. NETWORKS WITH EITHER TWO SOURCEB: assignment of coding vectors such that each terminal can
TERMINALS OR7” SOURCE$TWO TERMINALS recover the sum of the sourcds’_, X;.

In this section we state and prove the result for (a) networRsoof. Given a directed acyclic networki = (V, E), its
with two sources and terminals, and (b) networks with reverse networkG is defined as the network that has the



same set of vertice¥, but the orientation of each edge is
reversed. Moreover the sourcesGhbecome terminals it
and the terminals iG become the sources i@i. Reference
[19] shows if the sum of sources i@ can be multicast to
all the terminals (in), the sum of sources i can also be
multicast to all the terminals (i67). Our proof now follows
from using reversibility and Theore 1. |

V. INSUFFICIENCY OF UNIFCONNECTIVITY FOR
3-SOURCH3-TERMINAL NETWORKS

In the discussion below we show an instance of a network
with three sources and three terminals, with at least one

path connecting each source terminal pair, in which the sum g

of sources cannot (under any network code) be transmitted

(with zero error) to all three terminals. Consider the netwo

shown in FiguréTl, with three source nodes and three terminal ts

nodes such that the source nodes observe unit entropy SOUFGE 1. Example of a network with three sources and threeiteis) such
X1, X5 and X3 that are also independent. All edges are unftat there exists at least one path between each source aehdtezeninal.

capacity. As showed in Figurél 1 the incoming edges intéwever all the terminals cannot compuie;._, X;.

terminal ¢3 contain the valuesf(X:, X2) and f/(Xs, X3)
! .
where/ and/ are some fun<_:t|o_ns O-f the sources. Let X; be the (unit entropy) information present at source
suppose thats = 0. Fhis implies thatf, should be If there exist two edge disjoint paths between each
able to recoverX, + X, (that has entropy 1) from just °" 9 ] p

. . . source/terminal pair, then there exists a network coding
f(X1,X>2). Moreover note that each edge is unit capacity. : . . .
Therefore, the entropy of (X1, X») also has to be 1, i'(e.’)écheme in which the sunY; + X + X3 is obtained at each

there exists a one-to-one mapping between the set of Valltjermlnal ;. Moreover, such a network code can be found

e%?ciently.

that f(X;,X2) takes and the values oK; + X5. In a ) . . .
similar manner we can conclude that there exists a one-to-Remark 1:Our example n SectiollV, sh_ows that a single
one mapping between the set of values tHaf,, X5) takes path betvv_een eack;, — t; pair does _n(_)t_ suffice. At the other
and the values oK+ X 3. At terminalts, there néeds to exist extreme, '.f there are three edge-d|510|r_1t paths betweeh eac
some functioh( (X1, Xa), f'(Xa, Xs)) = Z; X;. By the s; — t; pair, t_hen one can actually multica&t,, X, an.d.X_g

. D . ST i=1""% to each terminal[3]. Our results show thato edge disjoint
previous observations, this also implies the existence of a hs b h inal pai fici f
function/’ (X, 4 Xa, Xo+ Xs) that equa@f | X, However paths between each source terminal pair are sufficient for

) 1= '

this is a contradiction. Consider the following sets of itgpu mlwg:zf:rr:gbsurir;?ﬁ an overview of our broof. Our anoroach
Xi=a,X,=0,X; =candX/ = a—b, X}, = b, X}, = c—b. y gving proot. PP

. . for determining the desired network code has three steps. In
In both cases the inputs to the functibf(-,-) are the same. . . - P
3 . 3 , the first step, we turn our gragh into a graphG = (V, E) in
However) ~ | X; = a+¢, while >, | X/ =a—-0b+c¢, . . o :
= , = . which each internal node € V' is of total degree (in-degree +
that are in general different. Therefore such a functigp, -)
cannot exist out-degree) at most three. We refer to such graplssrastured

Note that we have presented the proof in the context g;aphs. Our eff|C|en_t reduct|on_foll.ow§ that appganngﬁ][z
. : . and has the following properties: (&) is acyclic. (b) For
scalar nonlinear network codes. However, even if we conside . . ; .
: . every source (terminal) id: there is a corresponding source
vector sources along with vector network codes, the sanze i i A L
erminal) in G. (c) For any two edge disjoint path’, and
of the proof can be used. : . L .
P, connecting a source terminal pair @, there exist two
vertexdisjoint paths inGG connecting the corresponding source
VI. CASE OF THREE SOURCES AND THREE TERMINALS  tarminal pair. Here and throughout we say two paths between
It is evident from the counter-example discussed in Sectiansource terminal pair are vertex disjoint even though they
[V that the characterization of the required resources fehare their first and last vertices (i.e., the source anditeim
networks with three sources and three terminals is difterest hand). (d) Any feasible network coding solutionGhcan
from the cases discussed in Sectiod IV. In this section, vbe efficiently turned into a feasible network coding solntio
show that as long as each source is connectetioyedge in GG. We note that the same reduction has facilitated a study
disjoint paths to each terminal, the terminals can recaver tof three-source, three-terminal multiple unicast netsdgé&],
sum. We present efficient linear encoding schemes, i.eatin [26].
codes that can be found in time polynomial in the number of It is not hard to verify that proving Theordm 3 on structured
nodes, that allow communication in this case. The main tesgtaphs implies a proof for general grapfisas well. Indeed,
of this section can be summarized as follows. given a network satisfying the requirements of Theoréin 3
Theorem 3:Let G = (V, E) be a directed acyclic network construct the corresponding netwotk. By the properties

with three sourcess, ss,s3 and three terminalgq, o, t3. above (+ also satisfies the requirements of Theofém 3. Assum-



ing TheoreniB is proven for structured gragiiswe conclude ~ Now, we can find an inverted tree that is a subset of the
the existence of a feasible network codedGh Finally, this red edges directed into and similarly a tree rooted at with
network code can be converted (by property (d) above) intata to andt¢s as leaves using the blue edges. Finally, we can
feasible network code faf as desired. The mapping betweemompute(X; + X2 + X3) atv over the red tree and multicast
G and( is presented in detail if [24]. For notational reasong, to ¢,, ¢, andt; over the blue subgraph. More specifically,
from this point on in the discussion we will assume that owne may use an encoding scheme in which internal nodes of
input graphG is structured — which is now clear to be w.l.0.gthe red tree receiving; andY> send on their outgoing edge
In the second step of our proof, we give edges and verticke sumY; + Ys.
in the graphG certain labels depending on the combinatorial 2) Case 1: There exists a node of typ@,3) in G. Note
structure ofG. This step can be viewed as a decompositidhat it is sufficient to consider the case when there does not
of the graphG (both the vertex set and the edge set) intexist a node of typg3, 3) in G. We shall show that this case
certainclasssets that will play a major role in our analysisis equivalent to a two sources, three terminals problem.
The decomposition of7 is given in detail in Sectioh VI-A. W.l.o.g. we suppose that there exist§2a3) nodew that
Finally, in the third and final step of our proof, using thés connected ta, ands3. We color the edges opath(ss —
labeling above we perform a case analysis for the proof of The) and path(ss — v) blue. Next, consider the set of paths
orem3. Namely, based on the terminology set in Se€fionVI-Aj;_; path(s; — t;). We claim that these paths do not have
we identify several scenarios, and prove Theorém 3 assumay intersection with the blue subgraph. This is because the
they hold. As the different scenarios we consider will coader existence of such an intersection would imply that therstexi
possible ones, we will conclude our proof. Our detailed cagepath between; andv which in turn implies thaty would
analysis is given in Sectidn_ VIIB and Section VII. be a(3,3) node. We can now computeXs + X3) at v by
finding a tree consisting of blue edges that are directedunto
Suppose that the blue edges are removed ftomo obtain a

A. Graph decomposition ' IR ! ]
e . . . raphG’. Sinced is directed acyclic, we have that there still
As justified in our previous discussions, we assume throu@s<

 that it | vertex il | : hich i Xists a path from to each terminal after the removal. Now,
out that any internai vertex | (namely, any vertex which is note that ()G’ is a graph such that there exists at least one
neither a source or a sink) has total degree at hdgioreover,

& satisfies th fivit . ¢ i @ath froms; to each terminal and at least one path frorto
}/xeT?]sesourr;nEBsa IShies the connectivity requirements Specili€gyep terminal, and (b) can be considered as a source that

. . contains(X» + X3). Now, G’ satisfies the condition given in
. We start by Iabel_lng the vertu?es_ @. A vertexy € V Theorend (which addresses the two sources version of the
is labeled by a paincs,c;) specifying how many sources

. 7 o bl t hand), theref done.
(terminals) it isconnectedto. Specifically,c;(v) equals the problem at hand), therefore we are done

ber of ; hich th . h ; 3) Case 2: There exists a node of typg,2) in G. As
number of Sources; 1or whic there exists a pat conne_ctlnq)efore it suffices to consider the case when there do not exist
s; andv in G. Similarly, ¢;(v) equals the number of terminals

any (3,3) or (2,3) nodes in the graph. Suppose that there
t; for which there exists a path connectingandt; in G. y (3,3) of (2:3) Jrap PP

. . exists a (3,2) node and w.l.o.g. assume that it is connected
For example, any source is labeled by the gair3), and any to ¢, and t,. We consider the subgrapfi’ induced by the
terminal by the pair(3,1). An internal vertexv labeled(-, 1)

) ted t inale terminal onlv. This imolies that union of the following sets of paths
is connected to a single terminal only. This implies that any 1) U2 path(s: — v),

information leavingyv will reach at most a single terminal. 2) U2 path(v — t,), and

. 3) U2 path(s; — t3).

B. Case analysis Note that as argued previously, a subset of edges of

Our proof methodology involves a classification of networks?_, path(s;—v) can be found so that they form a tree directed
based on the node labeling procedure presented above. iRtw v. For the purposes of this proof, we will assume that this
each class of networks we shall argue that each terminal deas already been done, i.e., the gragh,path(s; —v) is a
compute the sum of the sourcé¥; + X» + X3). Our proof tree directed inta.
shall be constructive, i.e., it can be interpreted as anrilkgo The basic idea of the proof is to show that the paths from
for finding the network code that allows each terminal tthe sources to terminak, i.e., U3_,path(s; — t3) are such
recover(X; + X + X3). that their overlap with the other paths is very limited. Thus

1) Case 0: There exists a node of typé3,3) in G. the entire graph can be decomposed into two parts, one over
Suppose node is of type (3,3). This implies that there which the sum is transmitted to and¢, and another over
exist path(s; — v), for ¢ = 1,...,3 and path(v — t;), for which the sum is transmitted tg.
j = 1,...,3. Consider the subgraph induced by these pathsTowards this end, note thauth(s; — t3) cannot have an
and color each edge on}_;path(s; — v) red and each edgeintersection with eithepath(ss — v) or path(ss — v), for if
on U?_,path(v — t;) blue. We claim that a€’ is acyclic, at such an intersection occurred at a nedethenv’ would be a
the end of this procedure each edge gets only one color. To seele of type(2, 3) contradicting our assumption. Likewise, it
this suppose that a red edge is also colored blue. This impl@n be noted that (anth(s; —t3) cannot have an intersection
that it lies on a path from a source toand a path fromv  with eitherpath(s; —v) or path(ss—v), and (b)path(ss—ts)
to a terminal, i.e. its existence implies a directed cycléh@ cannot have an intersection with eithguth(s; — v) or
graph. path(sz — v). In a similar manner, we observe that the paths



path(s1 — t3), path(se — t3) andpath(ss — t3) cannot have We note that a source node can be a leaf node for a given
an intersection with eithepath(v — ¢1) or path(v — t2) as terminal.
this would imply thatv is a (3,3) node contradicting our
assumption. VIl. ANALYSIS OF CASE 3
We now discuss the coding solution @#. Let v; be the  Note that the node labeling procedure presented above
node closest tow that belongs to bothpath(s; — v) and assigns a labék:,(v), ¢, (v)) to a nodey wherec, (v) (c;(v)) is
path(s; — t3) (notice thatv; may equals; but it cannot the number of sources (terminals) thais connected to. This
equalv). On the pathgath(s; — v;) sendX;. On the paths |abeling ignores the actual identity of the sources anditeals
path(v; — v) send information that will allowv to obtain that have connections ta It turns out that we need to use an
X1 + X2 + X3. This can be easily done, as these (lattegdditional, somewnhat finer notion of node connectivity when
paths form a tree inte. Namely, one may use an encodingve want to analyze case 3. We emphasize that throughout this
scheme in which internal nodes receivilig andY> send on section, we still operate under the assumption the graph is
their outgoing edge the suiry + Y>. By the discussion above structured (cf. reduction discussed in Secfioh VI).
(and the fact thaty’ is acyclic) it holds that the information  Towards this end, for case 3 (i.e., in a graghwithout
flowing on edges in path(v; —t3),i = 1,...,3 has not been (3,3),(2,3) and(3,2) nodes) we introduce the notion of the
specified by the encoding defined above. Thus, one may sedirce-terminal label (att-label for short) of a node. For each
information on the pathgath(v; — t3) that will allow ¢3 to  (2,2) node inG, the st-label of the node is defined as the
obtain X + X5 + X3. Here we assume the pathsth(v; —t3)  tuple of sources and terminals it is connected to, e.qg.,if
form a tree intas, if this is not the case we may find a subsetonnected to sources and s, and terminalg; andt», then
of edges in these paths with this property. Once more, by ti€ st-label, denotedit-lab() is (s1, s2,t1,12). We shall also
discussion above (and the fact i@t is acyclic) it holds that say that the source label ofis (s;, s2) and the terminal label
the information flowing on edgesin the pathspath(v —t1) of v is (t1,t2). The following claim is immediate.
and path(v — t2) has not been specified (by the encodings Claim 1: If there is a(2,2) nodev in G of st-label, st-
above). On these edges we may transmit the ym X»+X3 lab() , then each terminal in the terminal label ofhas at
present ab. least one leaf withst-label st-lab(v) . For example, ifst-
4) Case 3:There do not exist3, 3), (2, 3) and(3,2) nodes lab@) = (s1, s2,1,2), then botht; andt, have leaves with
in G. Note that thus far we have not utilized the fact thadt-label (sq, s2, 1, t2).
there exist two edge-disjoint paths from each source to each Proof: W.l.0.g, letst-lab(v) = (s1, s2, 1, t2). This implies
terminal inG. In previous cases, the problem structure that h@sat there exists a patR betweenv andt;. Let ¢ be a leaf
emerged due to the node labeling, allowed us to communicafet; on P. It follows directly from the definition of a leaf
(X1 + X2 + X3) by using just one path between eagh-¢; that ¢ is the last node onP with terminal label at leas®,
pair. However, for the case at hand we will indeed need to usamelyc, (¢) > 2. Namely, ifc;(¢) = 1 then the incoming link
the fact that there exist two paths between each t; pair. of ¢ on P would be at;-edge (contradicting the assumption
As we will see, this significantly complicates the analyaisd that ¢ is a leaf). Moreoverg,(¢) is exactly2 and no larger
we present it in the upcoming section. as otherwise;(v) would also be greater than 2 contradicting
The following definitions are required for this case. An edgeur assumptions in the claim. This implies that the terminal
e = (u,v) for which v is labeled(-, 1) will be referred to as label of ¢ is exactly(t;,t). As ¢ is downstream of it holds
a terminal edge. Namely, any information flowing ancan that cs(¢) > c,(v) = 2. Here also, it holds that,(¢) is
reach at most a single terminal. If this terminakjsthen we exactly 2, otherwise/ would be a(3,2) node (contradicting
will say thate is a ¢;-edge. Clearly, the set aofi-edges is our assumption for case 3). This implies that the sourcd labe
disjoint from the set oft;-edges (and similarly for any pairof ¢ is (s1, s2). Thereforet; has a leaf of labe(sy, sz, t1, t2).
of terminals). An edge which is not a terminal edge will b@ similar argument holds fots. ]
referred to as @aemainingedge or an--edge for short. The notion of anst-label is useful for the set of graphs
Note that there exists an ordering of edge&’im which any under case 3, since we can show that there can never be an
r-edge comes before any terminal edge, and in addition thetge between nodes of differesttlabels.
is no path from a terminal edge to aredge. This is obtained Claim 2: Consider a graphG, with sources,s;,i =
by an appropriate topological order @. Moreover, for any 1,...,3, and terminalg;,j = 1,...3, such that it does not
terminal ¢;, the set oft;-edges form a connected subgraphave any(3,3), (2,3) or (3,2) nodes. There does not exist an
of G with t; as its sink. To see this note that by definitioredge betweeri2,2) nodes of differenst-labels inG.
eacht;-edgee is connected td; and all the edges on a path Proof: Assume otherwise and consider t{® 2) nodes
betweene andt; aret;-edges. Finally, the head of aredge v; andw, such thatst-lab(v1) # st-lab(ve), for which there
is either of type(-,2) or (-,3) (as otherwise it would be ais an edggv;,v2) in G. Note that if the source labels of-

terminal edge). lab(v1) and st-lab(v.) are different, then has to be g3,2)
For each terminat; we define a set of vertices referred tamode, which is a contradiction. Likewise, if the termindidds
as the leaf sef; of ¢;. of st-lab(v1) and st-lab(v2) are different, then; has to be a
Definition 2: Leaf set of a terminal’he leaf set of terminal (2,3) node, which is also a contradiction. |
t; is the set of nodes of in-degree 0 in the subgraph consistingClaim [2 implies that we are free to assign any coding
of ¢;-edges. coefficients on a subgraph induced by nodes of ankabel,



(52,83, t1,13)

(51,82, ta2,t3)

without having to worry about the effect of this on another
subgraph induced by nodes of a differestlabels (simply
because there is no such effect).

Our approach is as follows. We divide the set of graphs
under case 3, into various classes, depending on the numbe
of distinct st-labels that exist in the graph. It turns out that
as long as the number at-labels in the graph is not 2, i.e.,
either 0,1 or 3 and higher, then there is a simple argument p v
which shows that each terminal can be satisfied. The argumen ! 2
in the case of two distinctt-labels is a bit more involved Fig. 2. A possible instance offq.. When the degree sequence of the
and is developed separately. It can be shown that our counfgfminals is(2,2,2). The encoding specified in the legend denotes the

. . . encoding to be used on the appropriate subgraphs.
example in SectiofV is a case where there are sivtabels.
Note however, that in our counter-example there are certain
s; — t; pairs that have only one path between them (and th

H%2.2) leaf with sourcest-label includings;, must have a
the sumX; + X, + X3 cannot be computed at all terminals) (2,2) > 9si,

: . ; ’"(1,-) leaf (i.e., a leaf connected to a single source) at which
Claim 3: Consider the subgraph induced by the vertlce(/?? . : :
with a certainst-label, w.1.0.g.(s1, 52, 1, £2) in G, denoted by —-* can be recovered, for instance by simply forwarding the

a source information along the path to the leaf. We refer tdsuc
(

ov;lr’sé’thm. Theresjé'ftfh:tr' ::S'gS::tezzfri)enC(:S:]nc%ggcé?lrgaves assingletonX; leaves. The above follows directly by
the soasr}fgz&’tzgnd X, can be ym(ulticasted ?c))/)all nodes inthe connectivity assumption (b) stated in the Lemma. Recall

L 2 ; ; that in Sectiof Tll, we presented the network coding model as
G (s,,ss,t1,t2)- MoOreover, such encoding vector assignments ¢

; . Bhe where each symbol flowing on an edge is from a field of
be done ||j1dependently over subgr{:\phs (.)f dlffergeriabels. . Sizeq. In cases 2 and 3 in the analysis below, we assume that
Proof. Note that_ we are V\_/orklng with directed acy(_:hcthe characteristic of the field of operationsis2. This can for
graphs. Thus,_there is a _nodé iN Gs, s5,t1,12), SUCh that it instance be done by choosing= 3.
has no incoming edges iV, s, 1,).- Next, note that the )
path froms; to v* has no intersection with a path from or  (0) Case 0.There are nost-labels inG.

s5. To see this, suppose that there was such an intersection at This implies that there are n@, 2) nodes inG and thus

(s1,82,t1,t2)
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nodev’. If there is a path froms; to v/, thenv* is a(3, 2) node
(which contradicts the assumption thatis a (2,2) node). If
there is a path from; to v/, thenv” and the remaining vertices
connectingy’ to v* on the path froms; to v* have st-label ]
(s1, 82,11, t2). Contradicting the fact that* has no incoming 0]
edges inG ,, 4, 1, 1,)- Likewise, we see that the path frosp

to v* has no intersection with a path from or ss.

Therefore, the path from; to v* carries X; exclusively,
and likewise for the path from, to v*. Thus,v* can obtain
both X; and X, and can compute any (unit entropy) function
of them. Moreoverp* can transmit this function to all nodes
of G (s, s0.11,1,) dOWNstream ob™. As the argument above can
be repeated for any node of in-degree 0 inG/(,, s, 1, ¢, it
follows that all nodes of~(,, , ;) can obtain the desired
function of X; and Xs.

Finally, we note that the encoding functions assigned to
edges in subgraphs of differest-labels can be done inde-
pendently, since there does not exist any edge between noébs
of different st-labels (from Clain{R), and all1,-) edges use
the same encoding scheme regardless ofstHabel at hand.

[ |

Lemma 1:Consider a graphG, with sources,s;,i =
1,...,3, and terminalg;,j = 1,...3, such that (a) it does
not have any(3, 3), (2, 3) or (3,2) nodes, and (b) there exists
at least oney; — ¢; path for alli andj. Consider the set of all
(2,2) nodes inG and their correspondingt-labels. If there
exist nost-labels, exactly onat-label or at least three distinct
st-labels inG, then there exists a set of coding vectors such
that each terminal can recovgt._, X;.

Proof: Note that all leaves i7 are of type(1, 2), (1,3)
or (2,2). This implies that any terminal; that does not have

all terminalst; have distinct leaves holding;, X, and

X3 respectively. It suffices to design a simple code on the
paths from those leaves tg which enableg; to recover
the sumX; + X5 + Xs.

Case 1.There is only onest-label in G.

In this case perform greedy encoding (cf. Definitldn 1)
on ther-edges. We show that each terminal can recover
Zle X, from the content of its leaves. W.l.0.g, suppose
that the st-label is (s1, s2,t1,t2). Using Claim[1, this
means that both, andt, have leaves of thist-label. The
greedy encoding implies that andt, can obtainX; + X5
from the corresponding leaves. Moreover, bethand

ty have a singleton leaf containings, because of the
connectivity requirements. Therefore, they can compute
Zf’zl X,. The terminaks has only singleton leaves, such
that there exists at least ol¢, X» and X3 leaf. Thus

it can compute their sum.

Case 2.There exist exactly three distinst-labels inG.

It is useful to introduce an auxiliary bipartite graph that
denotes the existence of the-labels at the leaves of
the different terminals. This bipartite graph denofegd, ..

is constructed as follows. There are three notjes =
1,...,3 that denote the terminals on one side and three
nodesc,,i = 1,...,3 that denote thest-labels on the
other side. If thest-label ¢; hast; in its support, then
there is an edge betweery and ), i.e., t; has a leaf

of st-label ¢}. See Figur&l2. The following properties of
Gaue are immediate.

— Eachc, has degree-2.
— Eacht} has degree at most 3 (as there are 3 distinct
st-labels).



Fig. 3.
terminals is (3,2,1). The encoding specified in the legend denotes the
encoding to be used on the appropriate subgraphs.
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A possible instance off,. when the degree sequence of the

— Multiple edges between nodes are disallowed.

Note that there are exactly three possible soutdabels
((s1,82), (s2, s3) and(ss, s1)) and three possible terminal
st-labels (t1,t2), (t2,ts3) and(ts,t1)). We now perform

a case analysis depending upon the degree sequence of
nodest;-,j =1,...,31in Gu.:. The degree sequence is
specified by a 3-tuple, where we note that the sum of the
entries has to be 6.

a) The degree sequence is a permutatio0o8, 3).
This only happens if the terminal label of ait-
labels,c;,i = 1,...,3is the same and in turn implies
that the source label of eack-label is distinct,
i.e., the sourcet-labels includg sy, s2), (s2, s3) and
(s1,s3). In this case, greedy encoding (cf. Definition
[I) works for the two terminals in the-label support.
This is because each terminal will obtaly + X5,

X5 + X5 and X; + X3 at its leaves (using Claims
@ and[3) from which the terminal can compute
25°%_| X;. The remaining terminal is not connected
to any (2,2) leaf, which implies that all its leaves
contain singleton values, from which it can compute
Eiizlin

The degree sequence(i 2, 2).

This only happens if all the terminal labels of thie
labels are distinct, i.e., the terminal labels ére t2),
(t2,t3) and (t1,t3). Now consider the possibilities
for the source labels.

If there is only one source label, then greedy encod-
ing ensures that the sum of exactly two of the sources
reaches each terminal. The connectivity condition
guarantees that the remaining source is available as
a singleton at a leaf of each terminal. Therefore we
are done.

If there are exactly two distinct sourc€-labels,
then we argue as follows (see Figurk 2). On the
subgraphs induced by the-labels with the same
source label, perform greedy encoding. On the re-
maining subgraph, propagate the remaining useful
source. We illustrate this with an example that is
w.l.0.g. Suppose that the-labels arg(sy, s2,t1, t2),

b)
(ii)

TABLE |
ENCODING ON SUBGRAPHS OF DIFFERENT SOURC#-LABELS.

RECOVERY OFZ?:l X IS POSSIBLE FROM ANY TWO OF THE RECEIVED

VALUES, USING ADDITIONS OR SUBTRACTIONS

Sourcest-label Encoding
(s1,52) 2X1 + X2
(s2,53) X2 +2X3
(s1,83) X1 - X3

connectivity condition dictates that has to have a
leaf that has a singleto’s, therefore it is satisfied

as well.

Finally, suppose that there are three distinct source
st-labels. In this case we use the encoding specified
in Tabl€el] on the subgraphs of each soustdabel. It

is clear on inspection th&f?_, X, can be recovered
from any two of the received values (as from any two
of the linear combinations stated, one can deduce the
sum X; + X5 + X3).

The degree sequence is a permutatioiilo®, 3).

In this case (see Figurgl 3), the degree sequence
dictates that there have to be two terminals that
share twost-labels (namely, two terminals that to-
gether appear in two different-labels). This implies
that the source label of thos€-labels has to be
different. For the subgraphs induced by thesge
labels, we use the encoding proposed in Table I. For
the subgraph induced by the remaininiglabel, we
perform greedy encoding. For example, suppose that
the st-labels are(sy, s2,t1,t2), (s2,ss,t1,t2) and
(s2,83,t1,13). As shown in Figuré€l3{; andt, are
clearly satisfied (even without using the information
from st-label(ss, s3,t1,t3)). Terminalts has to have

a singleton leaf containing(; by the connectivity
condition and is therefore satisfied.

Together, these arguments establish that in the case when
there are threat-labels, all terminals can be satisfied.
Case 3.There exist more than three distingtlabels in

G.

Note that if there are at least four-labels inG, then

(a) there are twast-labels with the same terminal label,
since there are exactly three possible terminal labels, and
(b) for the st-labels with the same terminal labels, the
source labels necessarily have to be different. Our styateg
is as follows. For the terminals that share twelabels,

use the encoding proposed in TaBle I. If the remaining
terminal has access to only one sous¢dabel, then use
greedy encoding and note that this terminal has to have
a singleton leaf. If it has access to at least two source
st-labels, simply use the encoding in Taljle | for it as
well.

c)

It remains to develop the argument in the case when there

(81, 82,ta,t3) @and(sz, s3,t1,t3). We perform greedy are exactly two distinckt-labels inG. For this we need to

encoding on the subgraphs of the first teielabels,

explicitly use the fact that there are two edge-disjointhpat

and only propagateXs; on the subgraph of the between each; — ¢; pair.
third st-label. As shown in Figuré€l2, this means Lemma 2:Consider a graphG, with sources,s;,i =

that terminalst; and¢; are satisfied. Note that thel, ..

8

.,3, and terminals/;,j = 1,...3, such that (a) it does
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Fig. 5. An instance oti,.. when there exist exactly two distinet-labels
under case 3, such that both the source labels and the tératieds of the
st-labels are different.

Fig. 4. An instance of7,., When there exist exactly two distinet-labels
under case 3, such that the terminal labels of dhéabels are the same.

not have any(3, 3), (2,3) or (3,2) nodes, and (b) there existg|lows botht, and t, to receive two linearly independent
at least twos; —t; paths for alli and j. Consider the set compinations ofX; and X, at their leaves. An analogous
of all (2,2) nodes inG and their correspondingt-labels. If argument also holds far, andt; when considering thet-
there exist exactly two distingt-labels inG, ther_1 there exists |gpe| (s2,3,t2,t3) and the informationX, and X3. This

a set of coding vectors such that each terminal can recogffices to conclude our assertion. Our proof is based on the
> e Xi- following two claims.

Proof: As in the proof of Lemm&]l, we argue based on cjaim 4: Let « be any leaf inG’. Let U = aX; + 38X,
the content of the leaves of the terminals. Suppose that #e the incoming information of.. With probability (1 —
auxiliary bipartite graphtz ... is formed. If both thest-labels 2-m+1)IVI hoth o and 3 are not zero.
have the same terminal label (see Figlre 4 for an example), proof: Denote byC = {¢;} the multiset of coefficients
then it is clear that the encoding in Talle | on the subgrappged in the random linear network code @h Namely, each
induced by thest-labels suffices for the corresponding termiz. is uniformly distributed inGF(2™), and the information
nals. The third terminal has singleton leaves corresp@in g each edge is a linear combination of it's incoming

3
each source and can comptg_; X;. information using coefficients from' (each coefficient inC'
Another possibility is that the terminal labels of thelabels s used only once).

are different, but the source labels are the same. It shaild b |t is not hard to verify that is a multivariate polynomial
clear that this case can be handled by greedy encoding oniig¢ne variables inC' of total degree’, where/ is the length
st-labels. of the longest path between andu (herei = 1,2). Namely,
The situation is more complicated when the terminal and< n = |V/|. Moreover, each variable; in « is of degree
source labels of thet-labels are different, see for exampleat mostl. As v is a (2,2) leaf and is connected tey, there
Figure5. In the case depicted, greedy encoding does not wigka setting for the variables i@ such thata # 0 (consider
since it satisfies; andts but nott,. W.l.0.g., we assume thatfor example setting the values of variables(into match the
the st-labels are(sy, s2,%1,t2) and (s2, s3,t2,t3). Now, we greedy encoding function discussed previously). Thus, not
know that there exist two vertex-disjoint paths betwaer(a the zero polynomial. We conclude, using Lemma 4_0f [4], that
similar argument can be made fef) andt,. Each of these « obtains that valué with probability at mostl — (1 —2-")"
paths has a leaf far,. If one of the leaves is &l, -) leaf that (over the choice of the values of variablegi). (We note that
contains a singletok’;, then performing greedy encoding orLemma 4 of [4] is a slightly refined version of the Schwartz-
the two st-labels works since, obtains X; + X», X; and  Zippel lemma.) The same analysis holds for Finally, to
X3 + X3 and the other terminals will obtain singleton leavestudy the probability that either or 3 are zero we study the
that satisfy their demand. Likewise, if there is a singlefeaf polynomiala - 3, of total degree?, where each variable in
containingX3 on the vertex disjoint paths fromy to 5, then « . g is of degree at most. Our assertion now follows from
greedy encoding works. Lemma 4 of [4]. u
Thus, the corresponding leavestefmust be of typeg2, 2). Claim 5: Consider the terminak and its two edge disjoint
This implies that there are at least four distinct leave$,0f paths froms; denotedP; and . Let u; andus be the corre-
of type (2,2), two of st-label (s, s2,t1,12) and two ofst- sponding leaves on patliy and P,. Let U; = a1 X + 31 X5
label (s2, s3, t2,t3). Our proof is concluded by the following be the incoming information af;, andUs; = a» X+ 532 X5 the

claims. incoming information ofu,. With probability (1 — 2= +1)n
Consider the subgraph induced by nodes labeled by onetloé vectors{(«;, 5;)}i=1,2 are independent.
the st-labels above, w.l.0.qs1, s2, t1, t2), in G together with Proof: We first note that, as the leaves wfare of type

the (1,-) nodes connected to either or s, in G. Denote this (2,2) and as both,; andus are connected te it holds that
subgraph byG’. Consider a random linear network code oiothu; andus are of st-label (s1, s2,t1,t2) and inG’. Our
the nodes ofG’ (namely, each node outputs a random lineaaroof now follows the line of proof given in Claild 4. Namely,
combination of its incoming information over the underlyin let C' = {¢;} be the multiset of coefficients used in the random
finite field of sizeq). Let ¢ = 2™. We show, with high linear network code oid’. As before,ay, az, 31 and 3, are
probability (given m is large enough), that such a codenultivariate polynomials in the variables ifi. To study the



independence betwedr, and Us we study the determinant a’ b v
T of the 2 x 2 matrix with rows (a1, 51), and (az, 82). The \ / \ /
determinant’ is of total degree/, where each variable; in S, O S,
T" is of degree at mos2. So to conclude our assertion (via
Lemma 4 of [4]) it suffices to prove thdt is not the zero
polynomial.

To this end, we present an encoding function (a setting
assignments for the variables @) for which T" will be 1.
Consider the two disjoint paths connecting and terminal
to (denoted asP; and P). Recall thatu; and u, are the
corresponding leaves oft-label (s1, so,t1,t2), whereu; €
P;. Let v be the vertex closest te; on these paths that is ?292 + Biby ——
connected tos, (ties broken arbitrarily), assume w.l.0.g. tha
v € Py. Let P3 be the path connecting. andwv. Consider the
subgraphi of G’ consisting of the path®;, P, andP;. Using
the edges offf alone, one can design a routing scheme su
thatwu; will receive the informationX; andus the information  «aja; + asas + (5101

ahag + B5bo

X,. This will imply that (s, 81) = (1,0), (as, B2) = (0, 1),
andI" = 1. Indeed, just forwardX; on P; and forward X, TlO \ Q T
on P; until it reachesy and then fromw to uy on Ps. n agaz + B1b1 + P2bo

We are now ready to complete the proof of Lemima 2 for
the case that; has 4 typg2, 2) leaves. Namely, we show thatFig. 6. Example of a network with two sources and two ternsinalich that

; ; ; inati re exist two edge-disjoint paths between each sourceeadd terminal.
in this case ClaimEl4 arid 5 allow sum communication Wh%‘fmce nodeS; (S») observes a source of entropy @ a'] ([b b']). The

random linear network coding is applied over the networkeminals seek to reconstrut +b o’ +']. However, this is impossible with
We start with terminat,. By Claim[8, with high probability linear codes.

to will obtain two linearly independent linear combination of
X, and X, on two of its leaves and two linearly independent ) )
linear combination ofX» and X3 on the other pair of leaves. €&" be recovered at the terminals, as long as there exists

This will now allow £, to obtain the summatiof; + X, + X5 & path between each source-terminal pair. Furthermore, we
by an appropriate encoding over the reversed trefg-eflges demonstrate that this characterization does not hold feeth

in G. sources (3s)/three terminal (3t) networks. For 38¢3¢ case
Consider its two edge disjoint W& show that if each source terminal pair is connected by at
least two edge disjoint paths, sum recovery is possibleet th

corresponding leaves on patRs and P, (to simplify notation terminals_. In each of th_ese cases we present efficient nletwor
we use the same notation as previously used4prHere, we C€0de assignment algorithms. _

consider two cases, if bothy, andu, are(2,2) nodes, then by Several questions remain open, that we discuss below.
Claim[3 we are done (with high probability), as in the analysi « As our techniques do not seem to extend to the case of
of terminal £, above. Namely, with high probability (given a higher number of sources and terminals, at present, the

Next, we address terming.
paths froms; denotedP; and P». Let u; and uy be the

m large enough)t; will receive two linearly independent case of|S| > 3 and|T| > 3 is completely open.
combinations ofX; and X, atu; andus. Otherwise¢; has at o In our problem formulation, we have considered unit-
least one singleton leaf witl(; exclusively. Denote this leaf entropy sources over unit-capacity networks. However, in
aswv;. Notice thatt; must have at least a sing(e, 2) leaf (by general, one could consider sources of arbitrary entropies
Claim[1), denote this leaf by,. Finally, by Claim[% it holds by considering vector-sources (as considered in [20]), and
that with high probability the information presentatand at requiring the terminals to recover a vector that contains
vy is independent. component-wise function evaluations. This version of
To conclude, notice that the discussion above (when applied the problem is also open for the most part. In fact, in
symmetrically fortz and thest-label (sz, s3,to,t3)) implies this case even our characterization f¢f| = 2 does
that all terminals are able to obtain the desired si¥m+ not hold. For example, consider the two-sources, two-
X, + X5 (by an appropriate setting of the encoding functions ~ terminals network shown in Figuieé 6, where each edge is
on their(-,1) edges). of unit-entropy. Each source node observes a source of
m entropy two, that is denoted by a vector of length two.

The terminals need to recover the vector sum.

In this network there are two sources, and based on our

result in Sectiofi TV it is natural to conjecture that if max-
In this work, we have introduced the problem of multi-  flow (s; —¢;) = 2, holds fori, j = 1,2, then a network

casting the sum of sources over a network. We have shown coding assignment exists. The network in Figlile 6 has

that in networks with unit capacity edges, and unit-entropy this connectivity requirement. However, as shown in the

sources, with at most two sources or two terminals, the sum Appendix, using linear codes to recover the vector sum

VIIl. DI1scussION ANDFUTURE WORK
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