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Communicating the sum of sources over a network
Aditya Ramamoorthy,Member, IEEE, and Michael Langberg,Member, IEEE

Abstract—We consider the network communication scenario,
over directed acyclic networks with unit capacity edges in which
a number of sourcessi each holding independent unit-entropy
information Xi wish to communicate the sum

∑
Xi to a set of

terminals tj . We show that in the case in which there are only two
sources or only two terminals, communication is possible if and
only if each source terminal pair si/tj is connected by at least
a single path. For the more general communication problem in
which there are three sources and three terminals, we prove that a
single path connecting the source terminal pairs does not suffice
to communicate

∑
Xi. We then present an efficient encoding

scheme which enables the communication of
∑

Xi for the three
sources, three terminals case, given that each source terminal
pair is connected by two edge disjoint paths.

Index Terms—network coding, function computation, multi-
cast, distributed source coding.

I. I NTRODUCTION

We consider the problem of function computation over
directed acylic networks in this work. Under our setting the
sources are independent and the network links are error-
free, but capacity constrained. However, the topology of the
network can be quite complicated, e.g., an arbitrary directed
acyclic graph. This serves as an abstraction of current-day
computer networks at the higher layers. We investigate the
problem of characterizing thenetwork resourcesrequired to
communicate the sum (over a finite field) of a certain number
of sources over a network to multiple terminals. By network
resources, we mean the number of edge disjoint paths between
various source terminal pairs in the network. Our work can be
considered as using network coding to compute and multicast
sums of the messages, as against multicasting the messages
themselves.

The problem of multicast has been studied intensively
under the paradigm of network coding. The seminal work of
Ahlswede et al. [1] showed that under network coding the
multicast capacity is the minimum of the maximum flows
from the source to each individual terminal node. The work
of Li et al. [2] showed that linear network codes are sufficient
to achieve the multicast capacity. The algebraic approach to
network coding proposed by Koetter and Médard [3] provided
simpler proofs of these results.
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The problem of multicasting sums of sources is an important
component in enabling the multicast of correlated sources over
a network (using network coding). Network coding for corre-
lated sources was first examined by Ho et al. [4]. The work
of Ramamoorthy et al. [5] showed that in general separating
distributed source coding and network coding is suboptimal
except in the case of two sources and two terminals. The work
of Wu et al. [6] presented a practical approach to multicasting
correlated sources over a network. Reference [6] also stated the
problem of communicating sums over networks using network
coding, and called it theNetwork Arithmeticproblem. We
elaborate on related work in the upcoming Section II.

In this work, we present (sometimes tight) upper and lower
bounds on the network resources required for communicating
the sum of sources over a network under certain special cases.

A. Main Contributions

We consider networks that can be modeled as directed
acyclic graphs, with unit capacity edges. LetG = (V,E)
represent such a graph. There is a set of source nodesS ⊂ V
that observe independent unit-entropy sources,Xi, i ∈ S, and
a set of terminal nodesT ⊂ V , that seek to obtain

∑

i∈S Xi,
where the sum is over a finite field. Our work makes the
following contributions.

i) Characterization of necessary and sufficient conditions
when either|S| = 2 or |T | = 2.
Suppose thatG is such that there are either two sources
(|S| = 2) and an arbitrary number of terminals or an
arbitrary number of sources and two terminals (|T | = 2).
The following conditions are necessary and sufficient for
recovery of

∑

i∈S Xi at all terminals inT .

max-flow(si − tj) ≥ 1 for all si ∈ S and tj ∈ T.

Our proofs are constructive, i.e., we provide efficient
algorithms for the network code assignment.

ii) Unit connectivity does not suffice when|S| and |T | are
both greater than 2.
We present a networkG such that|S| = |T | = 3 in
which the maximum flow between each source terminal
pair is at least 1 and (as opposed to that stated above)
communicating the sum of sources is not possible.

iii) Sufficient conditions when|S| = |T | = 3.
Suppose thatG is such that|S| = |T | = 3. The following
condition is sufficient for recovery of

∑

i∈S Xi at all tj ∈
T .

max-flow(si − tj) ≥ 2 for all si ∈ S and tj ∈ T.

Efficient algorithms for network code assignment are
presented in this case as well. Note however, that the
algorithms may be randomized in some cases, with a
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probability of success that can be made arbitrarily close
to one.

This paper is organized as follows. We discuss background
and related work in Section II and our network coding
model in Section III. The characterization for the case of
|S| = 2, |T | = n and |S| = n, |T | = 2 is discussed in Section
IV. Our counter-example demonstrating that unit-connectivity
does not suffice for three sources and three terminals can
be found in Section V. Sections VI and VII discuss the
sufficient characterization in the case of three sources and
three terminals, and Section VIII presents the conclusionsand
possibilities for future work.

II. BACKGROUND AND RELATED WORK

Prior work of an information theoretic flavor in the area
of function computation has mainly considered the case of
two correlated sourcesX and Y , with direct links between
the sources and the terminal, where the terminal is interested
in reconstructing a functionf(X,Y ). In these works, the
topology of the network is very simple, however the structure
of the correlation betweenX and Y may be arbitrary. In
this setting, Korner & Marton [7] determine the rate region
for encoding the modulo-2 sum ofX andY when they are
uniform, correlated binary sources. The work of Orlitsky &
Roche [8] determines the required rate for sendingX to a
decoder with side informationY that must reliably compute
f(X,Y ). The result of [8] was extended to the case when both
X andY need to be encoded (under certain conditions) in [9].
Yamamoto [10] (generalizing the Wyner-Ziv result [11]) found
the rate-distortion function for sendingX to a decoder with
side informationY , that wants to computef(X,Y ) within a
certain distortion level (see also [12] for an extension). Nazer
et al. [13] consider the problem of reliably reconstructinga
function over a multiple-access channel (MAC) and finding
the capacity of finite-field multiple access networks. In the
majority of these works, the sources and the terminal are
connected by direct links or by simple networks (such as
a MAC). A work closer in spirit to our work is [14] that
considers functional compression over tree-networks.

In this work we consider a problem setting in which the
sources are independent and the network links are error-free,
but capacity constrained. However, the topology of the network
can be quite complicated, such as an arbitrary directed acyclic
graph. This is well motivated since it is a good abstraction
of current-day computer networks (at the higher layers). We
investigate the problem of characterizing thenetwork resources
required to communicate the sum of a certain number of
sources over a network to multiple terminals. Network re-
sources can be measured in various ways. For example, one
may specify the maximum flow between the subsets of the
source nodes and subsets of the terminal nodes in the network.
In the current work, all of our characterizations are in terms of
the maximum flow between varioussi−tj pairs, wheresi (tj)
denotes a source (terminal) node. Previous work in this area,
includes the work of Ahlswede et al. [1], who introduced the
concept of network coding and showed the capacity region for
multicast. In multicast, the terminals are interested in recon-
structing the actual sources. Numerous follow-up works have

extended and improved the results of [1], in different ways.For
example, [2], [3] considered multicast with linear codes. Ho
et al. [4] proposed random network coding and examined the
multicast of correlated sources over a network and showed
a tight capacity region for it that can be achieved by using
random network codes. Follow-up works [5], [6] investigated
practical approaches for the multicast of correlated sources. As
shown in [6], the problem of communicating (multicasting)
the sum (over a finite field) of sources over a network is a
subproblem that can help facilitate practical approaches to the
problem of multicasting correlated sources.

In this work we consider function computation under net-
work coding. Specifically, we present network code assign-
ment algorithms for the problem of multicasting the sum of
sources over a network. As one would expect, one needs
fewer resources in order to support this. To the best of our
knowledge, the first work to examine function computation in
this setting is the work of Ramamoorthy [15], that considered
the problem of multicasting sums of sources, when there are
either two sources or two terminals in the network. Subse-
quently, the work of Langberg and Ramamoorthy [16] showed
that the characterization of [15] does not hold in the case of
three sources and three terminals. Reference [16], proposed
an alternate characterization in this case. The current paper
is a revised and extended version of [15], [16] and [17] that
contains all the proofs and additional observations.

We note, as presented by Rai and Dey in [18], that the
task of finding a network coding scheme in the setting
of sum-networks is strongly connected to the problem of
finding a network coding solution in the multiple-unicast
communication setting. Specifically, for any mutiple unicast
network, [18] constructs a sum-network which is solvable if
and only if the original multiple unicast network is solvable
(the reduction of [18] increases the number of sources and
terminals in the network). Rai and Dey [19] independently
found the same counter-example found in our work [16];
however, their proof only shows that linear codes do not suffice
for multicasting sums under the characterization of [15]. The
work of Appuswamy et al. [20], [21] also considers the
problem of computing general functions in the setting of error-
free directed acyclic networks. In [20], [21], the emphasisis on
considering the rate of the computation, where the rate refers
to the maximum number of times a function can be computed
per network usage. While their setting is significantly more
general, their results are mostly in the context of only single
terminal networks.

Finally, the work most related to our result on three
source/three terminal networks is the conference publication
of Shenvi and Dey [22] (and its extended version avail-
able as [23]) which proposes (in this case) a combinatorial
characterization for sum computation via network coding.
In our work, for three source/three terminal networks, we
present a simple sufficient combinatorial condition for sum-
communication based on flow requirements. Our result is not
proven to be necessary, and indeed in the subsequent work
of [22], [23], our flow condition is refined (and weakened) to
obtain a tight characterization. The characterization of [22],
[23] implies a significant improvement in the understandingof
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3s/3t sum-networks. Nevertheless, we believe that our results
(obtained independently and prior to [22], [23]) are of interest
due to the natural and simple nature of our sufficient condition.

III. N ETWORK CODING MODEL

Our model and terminology follow those common in the
network coding literature, e.g. [3]. We represent the network
as a directed acyclic graph G = (V,E). The network contains
a set of source nodesS ⊂ V that are observing independent,
discrete unit-entropy sources and a set of terminalsT ⊂ V .
We assume that each edge in the network has unit capacity and
can transmit one symbol from a finite field of sizeq per unit
time. We are free to chooseq large enough. In addition, as we
shall see in the later discussion, in some cases we may need
to chooseq to be an odd prime. If a given edge has a higher
capacity, it can be treated as multiple unit capacity edges.
A directed edgee between nodesvi and vj is represented
as (vi → vj). Thus head(e) = vj and tail(e) = vi. A
path between two nodesvi and vj is a sequence of edges
{e1, e2, . . . , ek} such thattail(e1) = vi, head(ek) = vj and
head(ei) = tail(ei+1), i = 1, . . . , k − 1.

Our counter-example in Section V considers arbitrary net-
work codes. However, our constructive algorithms in Sections
IV and VI shall use linear network codes. In linear network
coding, the signal on an edge(vi → vj), is a linear com-
bination of the signals on the incoming edges onvi and the
source signal atvi (if vi ∈ S). In this paper we assume that the
source (terminal) nodes do not have any incoming (outgoing)
edges from (to) other nodes. If this is not the case one can
always introduce an artificial source (terminal) connectedto
the original source (terminal) node by an edge of sufficiently
large capacity that has no incoming (outgoing) edges. We shall
only be concerned with networks that are directed acyclic in
which internal nodes have sufficient memory. Such networks
can be treated as delay-free networks. LetYei (such that
tail(ei) = vk and head(ei) = vl) denote the signal on the
ith edge inE and letXj denote thejth source. Then, we
have

Yei =
∑

{ej |head(ej)=vk}

fj,iYej if vk ∈ V \S, and

Yei =
∑

{j|Xj observed atvk}

aj,iXj if vk ∈ S,

where the coefficientsaj,i andfj,i are fromGF (q). Note that
since the graph is directed acyclic, it is possible to express
Yei for an edgeei in terms of the sourcesXj ’s. Suppose that
there aren sourcesX1, . . . , Xn. If Yei =

∑n
k=1 βei,kXk then

we say that the global coding vector of edgeei is βei
=

[βei,1 · · · βei,n]. For brevity we shall mostly use the term
coding vector instead of global coding vector in this paper.
We say that a nodevi (or edgeei) is downstream of another
nodevj (or edgeej) if there exists a path fromvj (or ej) to
vi (or ei).

IV. N ETWORKS WITH EITHER TWO SOURCES/n
TERMINALS OR n SOURCES/TWO TERMINALS

In this section we state and prove the result for (a) networks
with two sources andn terminals, and (b) networks withn

sources and two terminals. Before embarking on this proof,
we overview the concept of greedy encoding that will be used
throughout the paper when considering two source networks.

Definition 1: Greedy encoding.Consider a graphG =
(V,E), with two source nodess1 and s2 and an edgee′ =
(u → v) ∈ E. Suppose that the coding vector on each edge
e enteringu, has only0 or 1 entries, i.e.,βe = [βe,1 βe,2],
whereβe,i ∈ {0, 1}, for all i = 1, 2. We say that the encoding
on edgee′ is greedy, if fori = 1, 2 we have

βe′,i =

{

0 if βe,i = 0, ∀e enteringu

1 otherwise.
(1)

A coding vector assignment forG, is said to be greedy if the
encoding on each edge inG is greedy.

Consider a vertexu that is downstream of a subset of the
source nodes,B ⊆ {1, 2}. Under greedy coding it can be seen
that the outgoing edges ofu will carry the sum

∑

i∈B Xi.
Namely, if a node only receives eitherX1 or X2, it just
forwards them. Alternatively, if it receives both of them or
X1 +X2, then it just transmitsX1 +X2.
The first result of this section is the following.

Theorem 1:Consider a directed acylic graphG = (V,E)
with unit capacity edges, two source nodess1 and s2 andn
terminal nodest1, . . . , tn such that

max-flow(si − tj) ≥ 1 for all i = 1, 2 andj = 1, . . . , n.

Assume that at each source nodesi, there is a unit-rate source
Xi, and that theXi’s are independent. Then, there exists an
assignment of coding vectors to all edges such that eachtj , j =
1, . . . , n can recoverX1 +X2.
Proof of Theorem 1. Consider any terminal nodetj . As we
assume that max-flow(si − tj) ≥ 1 for all i = 1, 2, it holds
that tj is downstream of boths1 ands2. Thus, (using greedy
encoding) by the observation above,tj can recoverX1 +X2.

Note that if any of the conditions in the statement of
Theorem 1 are violated then some terminal will be unable
to computeX1 +X2. For example, if max-flow(s1 − tj) < 1
then any decoded signalY at tj will have H(Y |X2) < 1 (as
Y is solely a function ofX1 andX2). We conclude thatY
cannot beX1 +X2.

Next, consider the class of networks withn sources and
two terminals. The original proof of this result (obtained in
[15]) was obtained via a series of graph-theoretic operations
on the network. However, subsequently it was shown in [19]
that this result follows in a simpler manner by using the idea
of network reversibility. We state the result below.

Theorem 2:Consider a directed acylic graphG = (V,E)
with unit capacity edges,n source nodess1, s2, . . . , sn and
two terminal nodest1 and t2 such that

max-flow(si − tj) ≥ 1 for all i = 1, . . . , n andj = 1, 2.

Assume that the source nodes observe independent unit-
entropy sourcesXi, i = 1, . . . , n. Then, there exists an
assignment of coding vectors such that each terminal can
recover the sum of the sources

∑n

i=1 Xi.
Proof. Given a directed acyclic networkG = (V,E), its
reverse networkG̃ is defined as the network that has the
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same set of verticesV , but the orientation of each edge is
reversed. Moreover the sources inG become terminals iñG
and the terminals inG become the sources iñG. Reference
[19] shows if the sum of sources inG can be multicast to
all the terminals (inG), the sum of sources iñG can also be
multicast to all the terminals (iñG). Our proof now follows
from using reversibility and Theorem 1.

V. I NSUFFICIENCY OF UNIT-CONNECTIVITY FOR

3-SOURCE/3-TERMINAL NETWORKS

In the discussion below we show an instance of a network
with three sources and three terminals, with at least one
path connecting each source terminal pair, in which the sum
of sources cannot (under any network code) be transmitted
(with zero error) to all three terminals. Consider the network
shown in Figure 1, with three source nodes and three terminal
nodes such that the source nodes observe unit entropy sources
X1, X2 andX3 that are also independent. All edges are unit
capacity. As showed in Figure 1 the incoming edges into
terminal t3 contain the valuesf(X1, X2) and f ′(X2, X3)
wheref andf ′ are some functions of the sources.

Suppose thatX3 = 0. This implies thatt1 should be
able to recoverX1 + X2 (that has entropy 1) from just
f(X1, X2). Moreover note that each edge is unit capacity.
Therefore, the entropy off(X1, X2) also has to be 1, i.e.,
there exists a one-to-one mapping between the set of values
that f(X1, X2) takes and the values ofX1 + X2. In a
similar manner we can conclude that there exists a one-to-
one mapping between the set of values thatf ′(X2, X3) takes
and the values ofX2+X3. At terminalt3, there needs to exist
some functionh(f(X1, X2), f

′(X2, X3)) =
∑3

i=1 Xi. By the
previous observations, this also implies the existence of a
functionh′(X1+X2, X2+X3) that equals

∑3
i=1 Xi. However,

this is a contradiction. Consider the following sets of inputs:
X1 = a,X2 = 0, X3 = c andX ′

1 = a−b,X ′
2 = b,X ′

3 = c−b.
In both cases the inputs to the functionh′(·, ·) are the same.
However

∑3
i=1 Xi = a + c, while

∑3
i=1 X

′
i = a − b + c,

that are in general different. Therefore such a functionh′(·, ·)
cannot exist.

Note that we have presented the proof in the context of
scalar nonlinear network codes. However, even if we consider
vector sources along with vector network codes, the same idea
of the proof can be used.

VI. CASE OF THREE SOURCES AND THREE TERMINALS

It is evident from the counter-example discussed in Section
V, that the characterization of the required resources for
networks with three sources and three terminals is different
from the cases discussed in Section IV. In this section, we
show that as long as each source is connected bytwo edge
disjoint paths to each terminal, the terminals can recover the
sum. We present efficient linear encoding schemes, i.e., linear
codes that can be found in time polynomial in the number of
nodes, that allow communication in this case. The main result
of this section can be summarized as follows.

Theorem 3:Let G = (V,E) be a directed acyclic network
with three sourcess1, s2, s3 and three terminalst1, t2, t3.

Fig. 1. Example of a network with three sources and three terminals, such
that there exists at least one path between each source and each terminal.
However all the terminals cannot compute

∑
3

i=1
Xi.

Let Xi be the (unit entropy) information present at source
si. If there exist two edge disjoint paths between each
source/terminal pair, then there exists a network coding
scheme in which the sumX1 +X2 +X3 is obtained at each
terminal tj . Moreover, such a network code can be found
efficiently.

Remark 1:Our example in Section V, shows that a single
path between eachsi − tj pair does not suffice. At the other
extreme, if there are three edge-disjoint paths between each
si − tj pair, then one can actually multicastX1, X2 andX3

to each terminal [3]. Our results show thattwo edge disjoint
paths between each source terminal pair are sufficient for
multicasting sums.

We start by giving an overview of our proof. Our approach
for determining the desired network code has three steps. In
the first step, we turn our graphG into a graphĜ = (V̂ , Ê) in
which each internal nodev ∈ V̂ is of total degree (in-degree +
out-degree) at most three. We refer to such graphs asstructured
graphs. Our efficient reduction follows that appearing in [24],
and has the following properties: (a)̂G is acyclic. (b) For
every source (terminal) inG there is a corresponding source
(terminal) in Ĝ. (c) For any two edge disjoint pathsP1 and
P2 connecting a source terminal pair inG, there exist two
vertexdisjoint paths inĜ connecting the corresponding source
terminal pair. Here and throughout we say two paths between
a source terminal pair are vertex disjoint even though they
share their first and last vertices (i.e., the source and terminal
at hand). (d) Any feasible network coding solution in̂G can
be efficiently turned into a feasible network coding solution
in G. We note that the same reduction has facilitated a study
of three-source, three-terminal multiple unicast networks [25],
[26].

It is not hard to verify that proving Theorem 3 on structured
graphs implies a proof for general graphsG as well. Indeed,
given a networkG satisfying the requirements of Theorem 3
construct the corresponding network̂G. By the properties
above,Ĝ also satisfies the requirements of Theorem 3. Assum-
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ing Theorem 3 is proven for structured graphsĜ, we conclude
the existence of a feasible network code in̂G. Finally, this
network code can be converted (by property (d) above) into a
feasible network code forG as desired. The mapping between
G andĜ is presented in detail in [24]. For notational reasons,
from this point on in the discussion we will assume that our
input graphG is structured — which is now clear to be w.l.o.g.

In the second step of our proof, we give edges and vertices
in the graphG certain labels depending on the combinatorial
structure ofG. This step can be viewed as a decomposition
of the graphG (both the vertex set and the edge set) into
certainclasssets that will play a major role in our analysis.
The decomposition ofG is given in detail in Section VI-A.

Finally, in the third and final step of our proof, using the
labeling above we perform a case analysis for the proof of The-
orem 3. Namely, based on the terminology set in Section VI-A,
we identify several scenarios, and prove Theorem 3 assuming
they hold. As the different scenarios we consider will coverall
possible ones, we will conclude our proof. Our detailed case
analysis is given in Section VI-B and Section VII.

A. Graph decomposition

As justified in our previous discussions, we assume through-
out that any internal vertex inV (namely, any vertex which is
neither a source or a sink) has total degree at most3. Moreover,
we assumeG satisfies the connectivity requirements specified
in Theorem 3.

We start by labeling the vertices ofG. A vertex v ∈ V
is labeled by a pair(cs, ct) specifying how many sources
(terminals) it isconnectedto. Specifically,cs(v) equals the
number of sourcessi for which there exists a path connecting
si andv in G. Similarly, ct(v) equals the number of terminals
tj for which there exists a path connectingv and tj in G.
For example, any source is labeled by the pair(1, 3), and any
terminal by the pair(3, 1). An internal vertexv labeled(·, 1)
is connected to a single terminal only. This implies that any
information leavingv will reach at most a single terminal.

B. Case analysis

Our proof methodology involves a classification of networks
based on the node labeling procedure presented above. For
each class of networks we shall argue that each terminal can
compute the sum of the sources(X1 +X2 +X3). Our proof
shall be constructive, i.e., it can be interpreted as an algorithm
for finding the network code that allows each terminal to
recover(X1 +X2 +X3).

1) Case 0: There exists a node of type(3, 3) in G.
Suppose nodev is of type (3, 3). This implies that there
exist path(si − v), for i = 1, . . . , 3 and path(v − tj), for
j = 1, . . . , 3. Consider the subgraph induced by these paths
and color each edge on∪3

i=1path(si − v) red and each edge
on ∪3

j=1path(v − tj) blue. We claim that asG is acyclic, at
the end of this procedure each edge gets only one color. To see
this suppose that a red edge is also colored blue. This implies
that it lies on a path from a source tov and a path fromv
to a terminal, i.e. its existence implies a directed cycle inthe
graph.

Now, we can find an inverted tree that is a subset of the
red edges directed intov and similarly a tree rooted atv with
t1, t2 and t3 as leaves using the blue edges. Finally, we can
compute(X1 +X2+X3) at v over the red tree and multicast
it to t1, t2 and t3 over the blue subgraph. More specifically,
one may use an encoding scheme in which internal nodes of
the red tree receivingY1 andY2 send on their outgoing edge
the sumY1 + Y2.

2) Case 1: There exists a node of type(2, 3) in G. Note
that it is sufficient to consider the case when there does not
exist a node of type(3, 3) in G. We shall show that this case
is equivalent to a two sources, three terminals problem.

W.l.o.g. we suppose that there exists a(2, 3) nodev that
is connected tos2 ands3. We color the edges onpath(s2 −
v) and path(s3 − v) blue. Next, consider the set of paths
∪3
i=1path(s1 − ti). We claim that these paths do not have

any intersection with the blue subgraph. This is because the
existence of such an intersection would imply that there exists
a path betweens1 andv which in turn implies thatv would
be a (3, 3) node. We can now compute(X2 + X3) at v by
finding a tree consisting of blue edges that are directed intov.
Suppose that the blue edges are removed fromG to obtain a
graphG′. SinceG is directed acyclic, we have that there still
exists a path fromv to each terminal after the removal. Now,
note that (a)G′ is a graph such that there exists at least one
path froms1 to each terminal and at least one path fromv to
each terminal, and (b)v can be considered as a source that
contains(X2 +X3). Now, G′ satisfies the condition given in
Theorem 1 (which addresses the two sources version of the
problem at hand), therefore we are done.

3) Case 2: There exists a node of type(3, 2) in G. As
before it suffices to consider the case when there do not exist
any (3, 3) or (2, 3) nodes in the graph. Suppose that there
exists a (3,2) nodev and w.l.o.g. assume that it is connected
to t1 and t2. We consider the subgraphG′ induced by the
union of the following sets of paths

1) ∪3
i=1path(si − v),

2) ∪2
i=1path(v − ti), and

3) ∪3
i=1path(si − t3).

Note that as argued previously, a subset of edges of
∪3
i=1path(si−v) can be found so that they form a tree directed

into v. For the purposes of this proof, we will assume that this
has already been done, i.e., the graph∪3

i=1path(si − v) is a
tree directed intov.

The basic idea of the proof is to show that the paths from
the sources to terminalt3, i.e., ∪3

i=1path(si − t3) are such
that their overlap with the other paths is very limited. Thus,
the entire graph can be decomposed into two parts, one over
which the sum is transmitted tot1 and t2 and another over
which the sum is transmitted tot3.

Towards this end, note thatpath(s1 − t3) cannot have an
intersection with eitherpath(s2 − v) or path(s3 − v), for if
such an intersection occurred at a nodev′, thenv′ would be a
node of type(2, 3) contradicting our assumption. Likewise, it
can be noted that (a)path(s2−t3) cannot have an intersection
with eitherpath(s1−v) or path(s3−v), and (b)path(s3−t3)
cannot have an intersection with eitherpath(s1 − v) or
path(s2 − v). In a similar manner, we observe that the paths
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path(s1 − t3), path(s2 − t3) and path(s3 − t3) cannot have
an intersection with eitherpath(v − t1) or path(v − t2) as
this would imply thatv is a (3, 3) node contradicting our
assumption.

We now discuss the coding solution onG′. Let vi be the
node closest tov that belongs to bothpath(si − v) and
path(si − t3) (notice that vi may equalsi but it cannot
equalv). On the pathspath(si − vi) sendXi. On the paths
path(vi − v) send information that will allowv to obtain
X1 + X2 + X3. This can be easily done, as these (latter)
paths form a tree intov. Namely, one may use an encoding
scheme in which internal nodes receivingY1 andY2 send on
their outgoing edge the sumY1+Y2. By the discussion above
(and the fact thatG′ is acyclic) it holds that the information
flowing on edgese in path(vi− t3), i = 1, . . . , 3 has not been
specified by the encoding defined above. Thus, one may send
information on the pathspath(vi − t3) that will allow t3 to
obtainX1+X2+X3. Here we assume the pathspath(vi−t3)
form a tree intot3, if this is not the case we may find a subset
of edges in these paths with this property. Once more, by the
discussion above (and the fact thatG′ is acyclic) it holds that
the information flowing on edgese in the pathspath(v − t1)
and path(v − t2) has not been specified (by the encodings
above). On these edges we may transmit the sumX1+X2+X3

present atv.
4) Case 3:There do not exist(3, 3), (2, 3) and(3, 2) nodes

in G. Note that thus far we have not utilized the fact that
there exist two edge-disjoint paths from each source to each
terminal inG. In previous cases, the problem structure that has
emerged due to the node labeling, allowed us to communicate
(X1 +X2 +X3) by using just one path between eachsi − tj
pair. However, for the case at hand we will indeed need to use
the fact that there exist two paths between eachsi − tj pair.
As we will see, this significantly complicates the analysis,and
we present it in the upcoming section.

The following definitions are required for this case. An edge
e = (u, v) for which v is labeled(·, 1) will be referred to as
a terminal edge. Namely, any information flowing one can
reach at most a single terminal. If this terminal istj then we
will say that e is a tj-edge. Clearly, the set oft1-edges is
disjoint from the set oft2-edges (and similarly for any pair
of terminals). An edge which is not a terminal edge will be
referred to as aremainingedge or anr-edge for short.

Note that there exists an ordering of edges inE in which any
r-edge comes before any terminal edge, and in addition there
is no path from a terminal edge to anr-edge. This is obtained
by an appropriate topological order inG. Moreover, for any
terminal tj , the set oftj-edges form a connected subgraph
of G with tj as its sink. To see this note that by definition
eachtj-edgee is connected totj and all the edges on a path
betweene andtj aretj-edges. Finally, the head of anr-edge
is either of type(·, 2) or (·, 3) (as otherwise it would be a
terminal edge).

For each terminaltj we define a set of vertices referred to
as the leaf setLj of tj .

Definition 2: Leaf set of a terminal.The leaf set of terminal
tj is the set of nodes of in-degree 0 in the subgraph consisting
of tj-edges.

We note that a source node can be a leaf node for a given
terminal.

VII. A NALYSIS OF CASE 3

Note that the node labeling procedure presented above
assigns a label(cs(v), ct(v)) to a nodev wherecs(v) (ct(v)) is
the number of sources (terminals) thatv is connected to. This
labeling ignores the actual identity of the sources and terminals
that have connections tov. It turns out that we need to use an
additional, somewhat finer notion of node connectivity when
we want to analyze case 3. We emphasize that throughout this
section, we still operate under the assumption the graph is
structured (cf. reduction discussed in Section VI).

Towards this end, for case 3 (i.e., in a graphG without
(3, 3), (2, 3) and (3, 2) nodes) we introduce the notion of the
source-terminal label (orst-label for short) of a node. For each
(2, 2) node inG, thest-label of the node is defined as the4-
tuple of sources and terminals it is connected to, e.g., ifv is
connected to sourcess1 ands2 and terminalst1 and t2, then
its st-label, denotedst-lab(v) is (s1, s2, t1, t2). We shall also
say that the source label ofv is (s1, s2) and the terminal label
of v is (t1, t2). The following claim is immediate.

Claim 1: If there is a(2, 2) nodev in G of st-label, st-
lab(v) , then each terminal in the terminal label ofv has at
least one leaf withst-label st-lab(v) . For example, ifst-
lab(v) = (s1, s2, t1, t2), then botht1 and t2 have leaves with
st-label (s1, s2, t1, t2).

Proof: W.l.o.g, letst-lab(v) = (s1, s2, t1, t2). This implies
that there exists a pathP betweenv and t1. Let ℓ be a leaf
of t1 on P . It follows directly from the definition of a leaf
that ℓ is the last node onP with terminal label at least2,
namelyct(ℓ) ≥ 2. Namely, ifct(ℓ) = 1 then the incoming link
of ℓ on P would be at1-edge (contradicting the assumption
that ℓ is a leaf). Moreover,ct(ℓ) is exactly2 and no larger
as otherwisect(v) would also be greater than 2 contradicting
our assumptions in the claim. This implies that the terminal
label of ℓ is exactly(t1, t2). As ℓ is downstream ofv it holds
that cs(ℓ) ≥ cs(v) = 2. Here also, it holds thatcs(ℓ) is
exactly 2, otherwiseℓ would be a(3, 2) node (contradicting
our assumption for case 3). This implies that the source label
of ℓ is (s1, s2). Therefore,t1 has a leaf of label(s1, s2, t1, t2).
A similar argument holds fort2.

The notion of anst-label is useful for the set of graphs
under case 3, since we can show that there can never be an
edge between nodes of differentst-labels.

Claim 2: Consider a graphG, with sources, si, i =
1, . . . , 3, and terminalstj , j = 1, . . . 3, such that it does not
have any(3, 3), (2, 3) or (3, 2) nodes. There does not exist an
edge between(2, 2) nodes of differentst-labels inG.

Proof: Assume otherwise and consider two(2, 2) nodes
v1 and v2 such thatst-lab(v1) 6= st-lab(v2), for which there
is an edge(v1, v2) in G. Note that if the source labels ofst-
lab(v1) andst-lab(v2) are different, thenv2 has to be a(3, 2)
node, which is a contradiction. Likewise, if the terminal labels
of st-lab(v1) andst-lab(v2) are different, thenv1 has to be a
(2, 3) node, which is also a contradiction.

Claim 2 implies that we are free to assign any coding
coefficients on a subgraph induced by nodes of onest-label,
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without having to worry about the effect of this on another
subgraph induced by nodes of a differentst-labels (simply
because there is no such effect).

Our approach is as follows. We divide the set of graphs
under case 3, into various classes, depending on the number
of distinct st-labels that exist in the graph. It turns out that
as long as the number ofst-labels in the graph is not 2, i.e.,
either 0,1 or 3 and higher, then there is a simple argument
which shows that each terminal can be satisfied. The argument
in the case of two distinctst-labels is a bit more involved
and is developed separately. It can be shown that our counter-
example in Section V is a case where there are twost-labels.
Note however, that in our counter-example there are certain
si − tj pairs that have only one path between them (and thus
the sumX1+X2+X3 cannot be computed at all terminals).

Claim 3: Consider the subgraph induced by the vertices
with a certainst-label, w.l.o.g.(s1, s2, t1, t2) in G, denoted by
G(s1,s2,t1,t2). There exists an assignment of encoding vectors
over G(s1,s2,t1,t2), such that any (unit entropy) function of
the sourcesX1 and X2 can be multicasted to all nodes in
G(s1,s2,t1,t2). Moreover, such encoding vector assignments can
be done independently over subgraphs of differentst-labels.

Proof: Note that we are working with directed acyclic
graphs. Thus, there is a nodev∗ in G(s1,s2,t1,t2), such that it
has no incoming edges inG(s1,s2,t1,t2). Next, note that the
path froms1 to v∗ has no intersection with a path froms2 or
s3. To see this, suppose that there was such an intersection at
nodev′. If there is a path froms3 to v′, thenv∗ is a(3, 2) node
(which contradicts the assumption thatv∗ is a (2, 2) node). If
there is a path froms2 to v′, thenv′ and the remaining vertices
connectingv′ to v∗ on the path froms1 to v∗ havest-label
(s1, s2, t1, t2). Contradicting the fact thatv∗ has no incoming
edges inG(s1,s2,t1,t2). Likewise, we see that the path froms2
to v∗ has no intersection with a path froms1 or s3.

Therefore, the path froms1 to v∗ carriesX1 exclusively,
and likewise for the path froms2 to v∗. Thus,v∗ can obtain
bothX1 andX2 and can compute any (unit entropy) function
of them. Moreover,v∗ can transmit this function to all nodes
of G(s1,s2,t1,t2) downstream ofv∗. As the argument above can
be repeated for any nodev∗ of in-degree 0 inG(s1,s2,t1,t2) it
follows that all nodes ofG(s1,s2,t1,t2) can obtain the desired
function ofX1 andX2.

Finally, we note that the encoding functions assigned to
edges in subgraphs of differentst-labels can be done inde-
pendently, since there does not exist any edge between nodes
of different st-labels (from Claim 2), and all(1, ·) edges use
the same encoding scheme regardless of thest-label at hand.

Lemma 1:Consider a graphG, with sources,si, i =
1, . . . , 3, and terminalstj , j = 1, . . . 3, such that (a) it does
not have any(3, 3), (2, 3) or (3, 2) nodes, and (b) there exists
at least onesi− tj path for alli andj. Consider the set of all
(2, 2) nodes inG and their correspondingst-labels. If there
exist nost-labels, exactly onest-label or at least three distinct
st-labels inG, then there exists a set of coding vectors such
that each terminal can recover

∑3
i=1 Xi.

Proof: Note that all leaves inG are of type(1, 2), (1, 3)
or (2, 2). This implies that any terminaltj that does not have

Legend

Fig. 2. A possible instance ofGaux when the degree sequence of the
terminals is (2, 2, 2). The encoding specified in the legend denotes the
encoding to be used on the appropriate subgraphs.

a (2, 2) leaf with sourcest-label includingsi, must have a
(1, ·) leaf (i.e., a leaf connected to a single source) at which
Xi can be recovered, for instance by simply forwarding the
source information along the path to the leaf. We refer to such
leaves assingletonXi leaves. The above follows directly by
the connectivity assumption (b) stated in the Lemma. Recall
that in Section III, we presented the network coding model as
one where each symbol flowing on an edge is from a field of
sizeq. In cases 2 and 3 in the analysis below, we assume that
the characteristic of the field of operation is> 2. This can for
instance be done by choosingq = 3.

(0) Case 0.There are nost-labels inG.
This implies that there are no(2, 2) nodes inG and thus
all terminalstj have distinct leaves holdingX1, X2, and
X3 respectively. It suffices to design a simple code on the
paths from those leaves totj which enablestj to recover
the sumX1 +X2 +X3.

(i) Case 1.There is only onest-label inG.
In this case perform greedy encoding (cf. Definition 1)
on ther-edges. We show that each terminal can recover
∑3

i=1 Xi from the content of its leaves. W.l.o.g, suppose
that the st-label is (s1, s2, t1, t2). Using Claim 1, this
means that botht1 andt2 have leaves of thisst-label. The
greedy encoding implies thatt1 andt2 can obtainX1+X2

from the corresponding leaves. Moreover, botht1 and
t2 have a singleton leaf containingX3, because of the
connectivity requirements. Therefore, they can compute
∑3

i=1 Xi. The terminalt3 has only singleton leaves, such
that there exists at least oneX1, X2 andX3 leaf. Thus
it can compute their sum.

(ii) Case 2.There exist exactly three distinctst-labels inG.
It is useful to introduce an auxiliary bipartite graph that
denotes the existence of thest-labels at the leaves of
the different terminals. This bipartite graph denotedGaux

is constructed as follows. There are three nodest′i, i =
1, . . . , 3 that denote the terminals on one side and three
nodesc′i, i = 1, . . . , 3 that denote thest-labels on the
other side. If thest-label c′i has tj in its support, then
there is an edge betweenc′i and t′j , i.e., tj has a leaf
of st-label c′i. See Figure 2. The following properties of
Gaux are immediate.

– Eachc′i has degree-2.
– Eacht′i has degree at most 3 (as there are 3 distinct

st-labels).
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Legend

Fig. 3. A possible instance ofGaux when the degree sequence of the
terminals is (3, 2, 1). The encoding specified in the legend denotes the
encoding to be used on the appropriate subgraphs.

– Multiple edges between nodes are disallowed.
Note that there are exactly three possible sourcest-labels
((s1, s2), (s2, s3) and(s3, s1)) and three possible terminal
st-labels ((t1, t2), (t2, t3) and (t3, t1)). We now perform
a case analysis depending upon the degree sequence of
nodest′j , j = 1, . . . , 3 in Gaux. The degree sequence is
specified by a 3-tuple, where we note that the sum of the
entries has to be 6.
a) The degree sequence is a permutation of(0, 3, 3).

This only happens if the terminal label of allst-
labels,c′i, i = 1, . . . , 3 is the same and in turn implies
that the source label of eachst-label is distinct,
i.e., the sourcest-labels include(s1, s2), (s2, s3) and
(s1, s3). In this case, greedy encoding (cf. Definition
1) works for the two terminals in thest-label support.
This is because each terminal will obtainX1 +X2,
X2 +X3 andX1 +X3 at its leaves (using Claims
1 and 3) from which the terminal can compute
2
∑3

i=1 Xi. The remaining terminal is not connected
to any (2,2) leaf, which implies that all its leaves
contain singleton values, from which it can compute
∑3

i=1 Xi.
b) The degree sequence is(2, 2, 2).

This only happens if all the terminal labels of thest-
labels are distinct, i.e., the terminal labels are(t1, t2),
(t2, t3) and (t1, t3). Now consider the possibilities
for the source labels.
If there is only one source label, then greedy encod-
ing ensures that the sum of exactly two of the sources
reaches each terminal. The connectivity condition
guarantees that the remaining source is available as
a singleton at a leaf of each terminal. Therefore we
are done.
If there are exactly two distinct sourcest-labels,
then we argue as follows (see Figure 2). On the
subgraphs induced by thest-labels with the same
source label, perform greedy encoding. On the re-
maining subgraph, propagate the remaining useful
source. We illustrate this with an example that is
w.l.o.g. Suppose that thest-labels are(s1, s2, t1, t2),
(s1, s2, t2, t3) and(s2, s3, t1, t3). We perform greedy
encoding on the subgraphs of the first twost-labels,
and only propagateX3 on the subgraph of the
third st-label. As shown in Figure 2, this means
that terminalst1 and t3 are satisfied. Note that the

TABLE I
ENCODING ON SUBGRAPHS OF DIFFERENT SOURCEst-LABELS.

RECOVERY OF
∑

3

i=1
Xi IS POSSIBLE FROM ANY TWO OF THE RECEIVED

VALUES, USING ADDITIONS OR SUBTRACTIONS.

Sourcest-label Encoding
(s1, s2) 2X1 +X2

(s2, s3) X2 + 2X3

(s1, s3) X1 −X3

connectivity condition dictates thatt2 has to have a
leaf that has a singletonX3, therefore it is satisfied
as well.
Finally, suppose that there are three distinct source
st-labels. In this case we use the encoding specified
in Table I on the subgraphs of each sourcest-label. It
is clear on inspection that

∑3
i=1 Xi can be recovered

from any two of the received values (as from any two
of the linear combinations stated, one can deduce the
sumX1 +X2 +X3).

c) The degree sequence is a permutation of(1, 2, 3).
In this case (see Figure 3), the degree sequence
dictates that there have to be two terminals that
share twost-labels (namely, two terminals that to-
gether appear in two differentst-labels). This implies
that the source label of thosest-labels has to be
different. For the subgraphs induced by thesest-
labels, we use the encoding proposed in Table I. For
the subgraph induced by the remainingst-label, we
perform greedy encoding. For example, suppose that
the st-labels are(s1, s2, t1, t2), (s2, s3, t1, t2) and
(s2, s3, t1, t3). As shown in Figure 3,t1 and t2 are
clearly satisfied (even without using the information
from st-label(s2, s3, t1, t3)). Terminalt3 has to have
a singleton leaf containingX1 by the connectivity
condition and is therefore satisfied.

Together, these arguments establish that in the case when
there are threest-labels, all terminals can be satisfied.

(ii) Case 3.There exist more than three distinctst-labels in
G.
Note that if there are at least fourst-labels inG, then
(a) there are twost-labels with the same terminal label,
since there are exactly three possible terminal labels, and
(b) for the st-labels with the same terminal labels, the
source labels necessarily have to be different. Our strategy
is as follows. For the terminals that share twost-labels,
use the encoding proposed in Table I. If the remaining
terminal has access to only one sourcest-label, then use
greedy encoding and note that this terminal has to have
a singleton leaf. If it has access to at least two source
st-labels, simply use the encoding in Table I for it as
well.

It remains to develop the argument in the case when there
are exactly two distinctst-labels inG. For this we need to
explicitly use the fact that there are two edge-disjoint paths
between eachsi − tj pair.

Lemma 2:Consider a graphG, with sources,si, i =
1, . . . , 3, and terminalstj , j = 1, . . . 3, such that (a) it does
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Legend

Fig. 4. An instance ofGaux when there exist exactly two distinctst-labels
under case 3, such that the terminal labels of thest-labels are the same.

not have any(3, 3), (2, 3) or (3, 2) nodes, and (b) there exist
at least twosi − tj paths for all i and j. Consider the set
of all (2, 2) nodes inG and their correspondingst-labels. If
there exist exactly two distinctst-labels inG, then there exists
a set of coding vectors such that each terminal can recover
∑3

i=1 Xi.
Proof: As in the proof of Lemma 1, we argue based on

the content of the leaves of the terminals. Suppose that the
auxiliary bipartite graphGaux is formed. If both thest-labels
have the same terminal label (see Figure 4 for an example),
then it is clear that the encoding in Table I on the subgraphs
induced by thest-labels suffices for the corresponding termi-
nals. The third terminal has singleton leaves corresponding to
each source and can compute

∑3
i=1 Xi.

Another possibility is that the terminal labels of thest-labels
are different, but the source labels are the same. It should be
clear that this case can be handled by greedy encoding on the
st-labels.

The situation is more complicated when the terminal and
source labels of thest-labels are different, see for example
Figure 5. In the case depicted, greedy encoding does not work
since it satisfiest1 andt3 but nott2. W.l.o.g., we assume that
the st-labels are(s1, s2, t1, t2) and (s2, s3, t2, t3). Now, we
know that there exist two vertex-disjoint paths betweens1 (a
similar argument can be made fors3) and t2. Each of these
paths has a leaf fort2. If one of the leaves is a(1, ·) leaf that
contains a singletonX1, then performing greedy encoding on
the two st-labels works sincet2 obtainsX1 + X2, X1 and
X2 +X3 and the other terminals will obtain singleton leaves
that satisfy their demand. Likewise, if there is a singletonleaf
containingX3 on the vertex disjoint paths froms3 to t2, then
greedy encoding works.

Thus, the corresponding leaves oft2 must be of type(2, 2).
This implies that there are at least four distinct leaves oft2
of type (2, 2), two of st-label (s1, s2, t1, t2) and two of st-
label (s2, s3, t2, t3). Our proof is concluded by the following
claims.

Consider the subgraph induced by nodes labeled by one of
thest-labels above, w.l.o.g.(s1, s2, t1, t2), in G together with
the (1, ·) nodes connected to eithers1 or s2 in G. Denote this
subgraph byG′. Consider a random linear network code on
the nodes ofG′ (namely, each node outputs a random linear
combination of its incoming information over the underlying
finite field of size q). Let q = 2m. We show, with high
probability (given m is large enough), that such a code

Fig. 5. An instance ofGaux when there exist exactly two distinctst-labels
under case 3, such that both the source labels and the terminal labels of the
st-labels are different.

allows both t1 and t2 to receive two linearly independent
combinations ofX1 and X2 at their leaves. An analogous
argument also holds fort2 and t3 when considering thest-
label (s2, s3, t2, t3) and the informationX2 and X3. This
suffices to conclude our assertion. Our proof is based on the
following two claims.

Claim 4: Let u be any leaf inG′. Let U = αX1 + βX2

be the incoming information ofu. With probability (1 −
2−m+1)|V | bothα andβ are not zero.

Proof: Denote byC = {ci} the multiset of coefficients
used in the random linear network code onG′. Namely, each
ci is uniformly distributed inGF (2m), and the information
on each edgee is a linear combination of it’s incoming
information using coefficients fromC (each coefficient inC
is used only once).

It is not hard to verify thatα is a multivariate polynomial
in the variables inC of total degreeℓ, whereℓ is the length
of the longest path betweensi andu (herei = 1, 2). Namely,
ℓ ≤ n = |V |. Moreover, each variableci in α is of degree
at most1. As u is a (2, 2) leaf and is connected tos1, there
is a setting for the variables inC such thatα 6= 0 (consider
for example setting the values of variables inC to match the
greedy encoding function discussed previously). Thus,α is not
the zero polynomial. We conclude, using Lemma 4 of [4], that
α obtains that value0 with probability at most1−(1−2−m)n

(over the choice of the values of variables inC). (We note that
Lemma 4 of [4] is a slightly refined version of the Schwartz-
Zippel lemma.) The same analysis holds forβ. Finally, to
study the probability that eitherα or β are zero we study the
polynomialα ·β, of total degree2ℓ, where each variableci in
α · β is of degree at most2. Our assertion now follows from
Lemma 4 of [4].

Claim 5: Consider the terminalt2 and its two edge disjoint
paths froms1 denotedP1 andP2. Let u1 andu2 be the corre-
sponding leaves on pathsP1 andP2. Let U1 = α1X1+β1X2

be the incoming information ofu1, andU2 = α2X1+β2X2 the
incoming information ofu2. With probability (1 − 2−m+1)n

the vectors{(αi, βi)}i=1,2 are independent.
Proof: We first note that, as the leaves oft2 are of type

(2, 2) and as bothu1 andu2 are connected tos1 it holds that
both u1 andu2 are ofst-label (s1, s2, t1, t2) and inG′. Our
proof now follows the line of proof given in Claim 4. Namely,
let C = {ci} be the multiset of coefficients used in the random
linear network code onG′. As before,α1, α2, β1 andβ2 are
multivariate polynomials in the variables inC. To study the
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independence betweenU1 andU2 we study the determinant
Γ of the 2 × 2 matrix with rows(α1, β1), and (α2, β2). The
determinantΓ is of total degree2ℓ, where each variableci in
Γ is of degree at most2. So to conclude our assertion (via
Lemma 4 of [4]) it suffices to prove thatΓ is not the zero
polynomial.

To this end, we present an encoding function (a setting of
assignments for the variables inC) for which Γ will be 1.
Consider the two disjoint paths connectings1 and terminal
t2 (denoted asP1 and P2). Recall thatu1 and u2 are the
corresponding leaves ofst-label (s1, s2, t1, t2), whereui ∈
Pi. Let v be the vertex closest tos1 on these paths that is
connected tos2 (ties broken arbitrarily), assume w.l.o.g. that
v ∈ P2. Let P3 be the path connectings2 andv. Consider the
subgraphH of G′ consisting of the pathsP1, P2 andP3. Using
the edges ofH alone, one can design a routing scheme such
thatu1 will receive the informationX1 andu2 the information
X2. This will imply that (α1, β1) = (1, 0), (α2, β2) = (0, 1),
andΓ = 1. Indeed, just forwardX1 on P1 and forwardX2

on P3 until it reachesv and then fromv to u2 on P2.
We are now ready to complete the proof of Lemma 2 for

the case thatt2 has 4 type(2, 2) leaves. Namely, we show that
in this case Claims 4 and 5 allow sum communication when
random linear network coding is applied over the network.
We start with terminalt2. By Claim 5, with high probability
t2 will obtain two linearly independent linear combination of
X1 andX2 on two of its leaves and two linearly independent
linear combination ofX2 andX3 on the other pair of leaves.
This will now allow t2 to obtain the summationX1+X2+X3

by an appropriate encoding over the reversed tree oft2-edges
in G.

Next, we address terminalt1. Consider its two edge disjoint
paths froms1 denotedP1 and P2. Let u1 and u2 be the
corresponding leaves on pathsP1 andP2 (to simplify notation
we use the same notation as previously used fort2). Here, we
consider two cases, if bothu1 andu2 are(2, 2) nodes, then by
Claim 5 we are done (with high probability), as in the analysis
of terminal t2 above. Namely, with high probability (given
m large enough)t1 will receive two linearly independent
combinations ofX1 andX2 atu1 andu2. Otherwise,t1 has at
least one singleton leaf withX1 exclusively. Denote this leaf
asv1. Notice thatt1 must have at least a single(2, 2) leaf (by
Claim 1), denote this leaf byv2. Finally, by Claim 4 it holds
that with high probability the information present atv1 and at
v2 is independent.

To conclude, notice that the discussion above (when applied
symmetrically fort3 and thest-label (s2, s3, t2, t3)) implies
that all terminals are able to obtain the desired sumX1 +
X2 +X3 (by an appropriate setting of the encoding functions
on their (·, 1) edges).

VIII. D ISCUSSION ANDFUTURE WORK

In this work, we have introduced the problem of multi-
casting the sum of sources over a network. We have shown
that in networks with unit capacity edges, and unit-entropy
sources, with at most two sources or two terminals, the sum

Fig. 6. Example of a network with two sources and two terminals, such that
there exist two edge-disjoint paths between each source andeach terminal.
Source nodeS1 (S2) observes a source of entropy 2,[a a′] ([b b′]). The
terminals seek to reconstruct[a+ b a′+ b′]. However, this is impossible with
linear codes.

can be recovered at the terminals, as long as there exists
a path between each source-terminal pair. Furthermore, we
demonstrate that this characterization does not hold for three
sources (3s)/three terminal (3t) networks. For the3s/3t case
we show that if each source terminal pair is connected by at
least two edge disjoint paths, sum recovery is possible at the
terminals. In each of these cases we present efficient network
code assignment algorithms.

Several questions remain open, that we discuss below.

• As our techniques do not seem to extend to the case of
a higher number of sources and terminals, at present, the
case of|S| > 3 and |T | > 3 is completely open.

• In our problem formulation, we have considered unit-
entropy sources over unit-capacity networks. However, in
general, one could consider sources of arbitrary entropies,
by considering vector-sources (as considered in [20]), and
requiring the terminals to recover a vector that contains
component-wise function evaluations. This version of
the problem is also open for the most part. In fact, in
this case even our characterization for|S| = 2 does
not hold. For example, consider the two-sources, two-
terminals network shown in Figure 6, where each edge is
of unit-entropy. Each source node observes a source of
entropy two, that is denoted by a vector of length two.
The terminals need to recover the vector sum.
In this network there are two sources, and based on our
result in Section IV it is natural to conjecture that if max-
flow (si − tj) = 2, holds fori, j = 1, 2, then a network
coding assignment exists. The network in Figure 6 has
this connectivity requirement. However, as shown in the
Appendix, using linear codes to recover the vector sum
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at both the terminals is not possible.
• We have exclusively considered the case of directed

acyclic networks. An interesting direction to pursue
would be to examine whether these characterizations hold
in the case of networks where directed cycles are allowed.

• Our work has been in the context of zero-error recovery
of the sum of the sources. It would be interesting to
examine whether the conclusion changes significantly if
one allows for recovery with some (small) probability of
error.
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APPENDIX

A. Discussion about network in Figure 6

We prove that under linear network coding, recovering[a+
b a′ + b′] at T1 and T2 is impossible. We use the notation

of Figure 6. LetA1 and B1 be matrices such that

[

a1
a2

]

=

A1

[

a
a′

]

and

[

b1
b2

]

= B1

[

b
b′

]

. Without loss of generality, we

can express the received vectors at terminalsT1 andT2 as

zT1
=

[

α1 α2 β1 0
0 α2 β1 β2

]









a1
a2
b1
b2









zT2
=

[

α′
1 0 β′

1 0
0 α′

2 0 β′
2

]









a1
a2
b1
b2









Using simple computations it is not hard to see that for both
the terminals to be able to recover[a+ b a′ + b′]T we need

[

α1 α2

0 α2

]

A1 =

[

β1 0
β1 β2

]

B1, and
[

α′
1 0
0 α′

2

]

A1 =

[

β′
1 0
0 β′

2

]

B1, and

require all these matrices to be full-rank. Note that
the full-rank condition requires that all the coefficients
α1, α2, β1, β2, α

′
1, α

′
2, β

′
1 andβ′

2 be non-zero and the matrices
A1 andB1 to be full-rank. In particular, the required condition
is equivalent to requiring that

[

α1 α2

0 α2

]−1 [
β1 0
β1 β2

]

=

[

α′
1 0
0 α′

2

]−1 [
β′
1 0
0 β′

2

]

⇒
1

α1α2

[

α2 −α2

0 α1

] [

β1 0
β1 β2

]

=

[

1/α′
1 0

0 1/α′
2

] [

β′
1 0
0 β′

2

]

⇒

[

0 − β2

α1

β1

α2

β2

α2

]

=

[

β′

1

α′

1

0

0
β′

2

α′

2

]

For the above equality to hold, we definitely needβ2 = 0,
but this would contradict the requirement thatβ2 6= 0 that is
needed for the full rank condition.
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