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Abstract—Since the invention of space-time coding numerous where H € M,,, «»,(C) is the channel matrix whose entries
algebraic methods have been applied in code design. In pactilar  are independent identically distributed (i.i.d.) zeroam&om-
algebraic number theory and central simple algebras have BB 16y circular Gaussian random variables with the variance 1
on the forefront of the research. . . ; .

In this paper we are turning the table and asking whether f"l,ndN € M"TXT((C) IS the, noise matr'x, whose enmes_are
information theory can be used as a tool in algebra. We will fist 1-1.d. zero-mean complex circular Gaussian random veegbl
derive some corollaries from diversity-multiplexing gain (DMT)  with the variance 1. Her& € M, x7(C) is the transmitted
bounds by Zheng and Tse and later show how these results cancodeword andS N R presents the signal to noise ratio.
be used to analyze the unit group of orders of certain divisin In order to shorten the notation we denSt R with p. Let

algebras. The authors do not claim that the algebraic resuft are h di h h f h val f
new, but we do find that this interesting relation between algbra us Suppose we have coding scheme where for each value o

and information theory is quite surprising and worth pointing © We have a cod€'(p) having|C(p)| matrices inM,,»7(C).

out. The rateR(p) is thenlog (|C(p))|/T. Let us suppose that the
scheme fulfills the constraint
I. INTRODUCTION
. . . b 2T 1
The performance of a lattice code in the Gaussian channel IC(p)] Z X1l < Tne. @
can be reduced to the considerationdHafrmite constanand XeC(p)

kissing numberin principle capacity results can be used to \We then have the following definition from![3].
derive information of achievable Hermite constants andikip Definition 2.1: The scheme is said to achiespatial mul-

numbers. However, for a given lattice @', with a givenn, tiplexing gainr anddiversity gaind if the data rate
these results can not be expected to give, for example, tight
bounds for Hermite constants. This is due to the asymptotic lim R(p) =
nature of the classical ergodic capacity results. Perfaoma p—o log(p)
of codes with relatively small length is strictly boundedeaw and the average error probability
from capacity.
In the case of fading channels the situation is considerably lim log(Pe(p)) — _d.
different. In particular, codes with limited length can st p—oo  log(p)
the diversity-multiplexing tradeoff bounds. Thereforeriis  Theorem 2.1 [[B]): AssumeT > m + n — 1. The optimal
hope that results considering DMT can be transformed inf@ydeoff curved*(r) is achieved by the piecewise-linear func-

non-trivial mathematical statements considering lattiodes tion connecting(r, d* (1)), = 0, ..., min(n, m), where
with limited length.
In this paper we are giving some examples how the infor- d*(r) =(m—r)(n—r),

mation theoretic DMT-bounds can be turned into statements o . : . :
. . ) . and wherer is the multiplexing gain.
spread of determinants in matrix lattices and how these m

: 8% et us now consider a coding scheme based ok-a
formulas can then be used to analyze unit groupsrdérsof . : : L .
) o dimensional latticeL inside M, .1 (C) where for a given
Q(i)-central division algebras.

positive real numberR the finite code is

Il. BASIC DEFINITIONS L(R) = {ala € L, ||a||r < R}.

Let us now consider a slow fading channel where we have ] ) ) ]
n, transmit andh,. receiving antennas and where the decodin;%"e following lemma is a well known result from basic lattice

delay isT  time units. The channel equation can be now writtef€0"Y: _ _ o
as Lemma 2.2:Let L be ak-dimensional lattice inV/,,x7(C)
SNR and

V=[5 —HX+N L(R)={ala€ L, |la|lr <R},
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then and lower bounds for the asymptotic behavior of the sums

|L(R)| = cR* + f(R), > XeL(R) W'

wherec is some real constant and(R)| € o(R*~1/2). Minkowski inequality gives us that

In particular it follows that we can choose real numb&rs \det(X)] < <||X||F>n

and K5 so that vn
K1R* > |L(R)| > K,RF. 2) We then have that
If we then consider a coding scheme where the finite codes Z % > vn —
are sets XeL(R) |det(X)] [|X||r<R,X€L X117
CL(p"™/*) = p=rTIRL(prT/F), @A)

The right side of this equality is now the beginning of
we will get a correct number of codewords for egetievel the Epstein’s zeta-functionf the lattice L. The asymptotic
and the sets>;, (p"7/*) clearly do fulfill the average energybehavior of this function is well known and we therefore have
constraints[{il) expected in the DMT-analysis (note thaeher 1 N mn
we have not yet added thgp needed in the channel equation. > [det (X" = > X[ > MR ;
Here and in the following we simply forget the tergn in the ~ X€L(R) IXIlr<R,XeL r
channel equation as it is irrelevant in DMT calculations.  where M is a constant independent &

If we have that det(X)| > b, for all nonzeraX € Landfor ~ On the other hand, let us now consider the worst case and
some constant, we say that the latticé, hasnon-vanishing suppose thaldet(X) = 1| for all nonzeroX € L (remember

determinant(NVD) property [5]. we are working with NVD-lattices). In this case we have
IIl. DIVERSITY AND MULTIPLEXING GAIN TRADE -OFF Z 1 _ Z 1=|L(R)| < NRF
AND UPPER AND LOWER BOUNDS FOR DETERMINANT SUMS |det(X)|™ - ’

XeL(R) XeL(R)

OVER MATRIX LATTICES
Let us suppose that we havekadimensional latticel, C
M, (C). The finite codes attached to the spherical codi
scheme are then

where N is a constant independent & and where the last
r%nequality follows from [(2).
9We can now conclude that

k 1 k—mn
Cr(p™*) = p~ "k L(p™/"). NEE = XEZL%R) Tder(xyp = M

In the following and in the rest of the paper we alwayﬁ/herek —mn > 0.
suppose that we do not include determinant of the zero matrix -
to the sum.

Let us now suppose that we hang receiving antennas. By
considering the error probability of transmitting an arduiy
codewordX € Cp,(p"™/*) and using the union bound together
with PEP based determinant inequallty [2], we get the fO-”OV\Hi
ing bound for average error probability for codg (p™/*)

Let us now consider the situation whete is a 2n?-
dimensional lattice in\Z,,(C).
In the following proposition we will use the Landau symbol

Proposition 3.1:Let us suppose that we have n?-
mensional NVD-latticeL in M,,(C) and that2|n. We then

have that
—nn,(1-2rn/k) 1

P, < Z W, SL(R) = Z W ¢ O(Rn276)a

XeL(2prm/k) X€eL(R)

where we have used the knowledge of the lattice structuims anyn, > n and positivee.
of the codeL. In order to take into account that we are  Proof: Let us use the previously mentioned coding
considering differences between codewords we also took tgheme for the latticd. Just as previously, the union bound

sum over a ball with double radius. We now have gives us that
_ _ 1 1
P, <p nn,(1—2nr/k) Z P <p7nnr(lfr/n) Z
- det(X)[?7’ e = 2n, "
XeL(2pmm/F) [det(X)| XeL(2pm/2m) [det(X)|
and we can see that the deciding factor here is the sum teThe optimal diversity-multiplexing gain given by Zheng and
on right. Tse, however, gives us that for integer valuesroie have
To simplify the situation, we will be considering sums  that
1 Pe Z pf(nfr)(anr)'
SL(R) - Z |d€t(X)|m i T/2n
XEL(R) (For dotted notation se¢l[3]). It follows th&tl, (2p"/*™) can

not be bounded b
Le us now suppose that we have kadimensional NVD- y

lattice L in M,(C). Let us first give some easy upper p~(=r)(nr=r)=nn,(1=r/n)te) _ =(r*=nr+te)



for any positivee, for integ2er values of. We can now see that The unit groupA™ of an orderA consists of elements € A
the maximum value gf~ (" ~""*¢) is achieved when = n/2.  such that there exists anc A, such thatry = 1. We refer to

We then have that the unit group of an ordek by A*.
1 1 The unit groupOj;, of the ring of algebraic integer®x is
Z det(X)[2 Z [det(X) 2" very well known and has simple structure. However, this is

XeL(2pn/2)/2m) XeL(2pt/*) not the case for the group*. In most cases it is extremely

can not be bounded by any*’/4~<. When we sep!/* = R, mystical [3] _ . .
we got thatS (R) can not be bounded Wit ¢ for any Lemma 4.1:The groupO7 is a normal subgroup of a unit
positive e m JroupA” of a any orderA that includesOg.

We can now see that the f@n2-dimensional lattices there Proof:k Clearly 2(Op)" = (Op)*z, whena & E. For
exists arbitrarily large values dt such thatSy,(R) > R™ ¢, elementsu” we have that
for any e. The most interesting thing here is that no matter uF(05) = ¥ (05 = (0L)u,
how largen,. we choose this result is valid. We also see that
in some sense the behavior of the sum is almost the woy4iere the last equality follows from the fact that Galoisigro

possible. operates bijectively on the unit grodp;,. As all the elements
of D are linear combinations of these elements we can see
IV. SOME RESULTS ON THE UNIT GROUP OF AN ORDER IN that O% is indeed a normal group inside*. m
A Q(i)-CENTRAL DIVISION ALGEBRA Due to the normality of the grou@, we can for example
A. Problem statement consider the number of elemenfad* : Of] in the factor
Let us suppose that we have a degreeyclic extension groupA*/O%. In this section we are using the simple results

E/Q(i) with Galoi's groupG(E/Q(i)) =< o > concerning sums of matrix lattices derived from DMT and we
We can now define a cyclic algebra will prove that v
[A*: OF] = 0.
D= (E/Q(i),0,7) =E@®uESu’E® - -du"'E, ,
(E/Q(),0,7) “ " “ Remark 4.1:The authors do not suggest that this result

whereu € D is an auxiliary generating element subject to thig new and it likely follows as a corollary from some more
relationszu = uo(x) for all z € E andu™ = v € F'*. Let us general algebraic result. However, we point out that itkelii
now suppose thaP is a division algebra. not a trivial one. Let us compare it to another result. Thil we
We can consideP as a right vector space ovérand every known and simple result gives us that* : O] < oo (K is
elements = zo+uz1+- - -+u""'z,_1 € D has the following the center) if and only ifD is a totally definite quaternion
representation as a matrix(a) = algebra over a totally real field. The most simple way to
prove this easy result is to reduce it to the fact that already

2 e n—1
zo ’YC;((I;T) 7325?723 Vgnqgl; (0% : O3] = oo (WhereE is a maximal subfield). The result
Il U(IO) 7 02(;31 yan_l(;)) we are going to prove is considerably stronger and there is no
.2 ' ’ ! _ 31- (4)  bigger subfield to use as a help.

: : The main idea of our proof is to compare the number of
Tno1 0(Tp_2) o*Hwp-3z) - " zo) elements ofy(A*) ¢ M, (C) andy(0},) C M,(C) inside
a hypersphere of radiug. We will see thaty(O%,) is not

Definition 4.1: A Z-orderA in D is a subring ofD, having "dense” enough to be a subgroup of finite index;itA).

the same identity element &3, and such that\ is a finitely
generated module ovet and generate® as a linear space B, Density of units ino%,
over Q.

- . . . Let us suppose that we have an indexdivision algebra
A simple and easily describable order is thetural order us supp W N ! VIS g

D = (E/Q(i),0,v). As previously described ifJ(4) if we
Aot = Op DuOp W20 ® - du" '0g, now restrict the mapping to the elements o0g, we get an

) ) o ) embedding of0g into M,,(C) by
where Og is the ring of algebraic integers if.

This reveals that we can consider that the rifig is a Y(z) = diag(o(2),...,0"(2)),
subring of the ringA,,.;, in particular from the form of the
cyclic representatioi[4) we can see th@® ) is a sublattice
of ¥»(A) consisting of diagonal elements.

From our perspective the most important properties of the
Z-orders are the following IfA is an Z-order in a division Y(Og) =Y(wi1)Z + - - + Y(wan)Z,

algebraD, then ¥(A) is 2n?-dimensional NVD lattice in . ) . . . .
Mg ©), with P(A) n is a 2n-dimensional lattice of matrices in/,,(C). For each

det(X)| > 1 nonzero element € Ok, we have thatdet(¢(a))| > 1.
- The unit groupD3, of the ringOF consists of such elements
for all the nonzero element¥ in ¢ (A). u € Og, that|det(¢(u))| = 1.

wherez is an element ir0g.
The ring of algebraic integer®g has aZ-basisW =
gtevl, ..., wsap } and therefore



The following lemma is an elementary corollary from well Combining equatior{6) anfiy'(u)¥ (z)||r < R now gives

known results. We will skip the proof. us that|[)(u)||r < R™
Lemma 4.2:Let us suppose that we have a cyclic extension ]
E/Q(i), where[E : Q(i)] = n. Proposition 4.5: Let us suppose that we havé)éi)-central
We then have that indexn division algebraD and thatA is a Z-order inD. We
then have
[¥(OF) N B(R)| < Mlog(R)"™, 1

> e <M BE.

[l (x)|[F<RzeA

where M is independent of?.
Proof: The sum

where M is a constant independent &

This result proves that the units insid2z are not par-
ticularly dense in the lattice(Og). If we consider the
lattice 1(Ox) we have that)(Ox) N B(R) has roughlyR*"

elements. The same hypersphé&€R) on the other hand has 1
only roughlylog(R)™~" units. (@) Riaes [T @)
C. Density of the group\* can be written as

In this section the main main result is Proposition| 4.5, but Z $7
we need first some results and concepts. Let us suppose that r€X |det (4 (a:))[2mm

we have an index Q(i)-central division algebr&® and that
A is an order inD. The (left) zeta-functior{8] of the orderA
is

where X is some collection of elemenis € A, ||¥(x;)||r <
R, such that each generate a separate ideal. The nurdbers
1 present the number of elements insiBéR) each generating
(als) = > T the same ideat; A. We then see that
Ielp ’ 1 1
whereRs > 1 and I, is the set of left ideals oA. The fact IXE;X |det(v(xz;))[2nnr Z [A: Azg;]nr’

that we need from this function is that it is indeed a conveggi ] rieX .
series [10]. is a part of the zeta-function of the ordarat pointn, > 2.

The result that will connect this sum to our matrix latticd Nerefore it is always bounded by some constahtndepen-

considerations is the following dent of R. _
From the ideal theory of orders we have thatif, = Azy/,
|det(v(z))[*™ = [A : Ax]. (5) thenz; andz) must differ by a unit. Therefore we can now

. ) apply Lemmd 414 that gives us that for all we haveA; <
Lemma 4.3:[4] Let us suppose that and B are invertible [W(A*) N B(R™)|. It follows that

matrices inM,,(C) and thata; > - - - > a,, are the eigenvalues

of AAT andb;, < --- < b, are the eigenvalues d8B'. We Z Ai
then have that . Lo A A
|AB|[% > Zaibi- <y [P (A*) N B(R™)|
i=1 S [A: Az

Lemma 4.4:Let us suppose that we have@:)-central

< * n
division algebraD with indexn» and thatA is an order inside < MIp(A") N B(R")),

D. If z € A, where||1)(z)||r < R, is a non-zero element wewhere M is a constant independent &f. [
have that Let us now combine this result with Proposition]3.1.
. . Proposition 4.6:Let us suppose that is an order in an
(A x) N B(R)| = [{ul|[[¢(zu)||r < R,u € A"} indexn = 2m Q(i)-central division algebr®. We then have
that
< |p(A*) N B(R™)|. . e
=@ n Bl V(A BR)| ¢ O(R"),
Proof: Let us suppose that the eigenvalues/¢f)y ()t ¢, anye.
are Av s An. ‘The condition||¢(z)|[r < R then gives us Proof: We have that)(A) is a2n2-dimensional lattice in
that A; < R* Vi. We also have thath,[---[A.| > 1. It now 57 (). According to PropositioR3l1 we therefore have that
follows that ) 1
712—6
Al 2 iy Vi (6) > el (@) ¢ O(R" ~)

el [[¢(@)||F<R
Let us now suppose that is such a unit that/:(uz)||r = for any positivee. On the other hand PropositiBn .5 gives us
[[Y(w)y(x)||F < R and letu; > --- > u, be the eigenvalues 4
of ¢ (u)y(u)'. According to Lemmé4]3 we then have that 1

e < MIG(A) N B(RY),
()l > 3 A i T



for some constant independent Bf It then follows that
[ (A") N B(R)| ¢ O(R"™).
|
This simply means that we can find arbitrarily bigysuch
that hyperspheré3(R) with radius R in M, (C) has close

to R™ elements ofy)(A*). On the other handj(A) has
approximately R2"*

elements inside the same hypersphersf an order is quite ”

V. DISCUSSION

The algebraic results we achieved, while interesting, are
likely not new. However, the route we used to achieve these
results is surprising. In our derivation we started with the
diversity multiplexing-gain bounds given by Zheng and Tse,
which led to some simple results concerning determinantial
sums over matrix lattices and to statement that a unit group
dense”. The density result was then

While the number of units is small compared to the WhOIgpplied to derive algebraic results of this group.While som

number of points of the lattice, it is still remarkably lardglean
in the case of number fields where it is in cldgsgR)" .

D. A proof that[A* : O3] =

steps where technical the only deep step was taken first.
The lower bound for asymptotic error probability in the
diversity-multiplexing gain tradeoff is coming from thetage

In this section we are finally giving the proof for the claimedprobability of the Rayleigh faded multiple antenna channel
result. We now have the estimates for the number of elemeM{#1at is needed here is the capacity expression for a MIMO

in ¥ (A*) andy(O3,) inside a hypersphere with radius in

channel and the knowledge of the probability density fuorcti

M, (C). Now we only need some simple results before tHf¢f singular values of some random matrices. The final state-

finale.

Lemma 4.7:Let us suppose thaX is a set of matrices in
M, (C) and thatA is an invertible matrix inM,,(C). If f is
such a function that

|IB(R) N X| < f(R), VR
then there is such a constahf that
|IB(R)yNAX| < f(MR),VR.

ments of DMT are then gotten by cleverly choosing correct
level of approximation that allows one to calculate needed
probabilities, but which still gives us nontrivial inforian
of the behavior of the error probabilities of codes in MIMO
channel.

It appears as a lucky accident that we can derive totally
algebraic statement from such probabilistic results. likisly
that there exists a more direct and probably more effective
way to connect these two areas, but as now the connection

Proof: Let us suppose that; is the smallest eigenvalueappear as mystery.

of ATA. According to Lemma 413 we now have that for all

the elementsdz € AX, ||Az||3 > Ai||z||%. It follows that
for a matrix Az, where

|Az[[r < R,

we must have thafjz|| <

—£_ \We can now see thatlT1 is
suitable for a constant/.

VAL VL
[ |
Proposition 4.8:Let us suppos® = (E/Q(i),o,v) is a
cyclic division algebra. Let us suppose thats such an order
that it includes the natural ordéy,,... We then have thad7,
is a normal subgroup of* and that

[A*: OF] = 0.

Proof: Let us suppose thgi\* : O3] = m. For certain
elementsiy, . .., a,,, we can now write thafa; O3, UaOF U
-+ UagOp}t = A*. According to Lemma_4]2 there exists
constant) such that

[(0%) N B(R)| < M(log(R))" .

Lemma [4Y now gives us that there exists constants

M, ..., Mg such that

1¥(a;O0%) N B(R)| < Mlog(M;R)"*.

As we suppose that* is a union ofa; O}, we then have that

8
[W(A*) N B(R)| <> Mlog(M;R)™"") < Klog(R)" ™",
=1
where K is a constant independent &f. However, this is a
contradiction against Proposition %.6. [ |

a
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