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Abstract—Since the invention of space-time coding numerous
algebraic methods have been applied in code design. In particular
algebraic number theory and central simple algebras have been
on the forefront of the research.

In this paper we are turning the table and asking whether
information theory can be used as a tool in algebra. We will first
derive some corollaries from diversity-multiplexing gain (DMT)
bounds by Zheng and Tse and later show how these results can
be used to analyze the unit group of orders of certain division
algebras. The authors do not claim that the algebraic results are
new, but we do find that this interesting relation between algebra
and information theory is quite surprising and worth pointi ng
out.

I. I NTRODUCTION

The performance of a lattice code in the Gaussian channel
can be reduced to the considerations ofHermite constantand
kissing number. In principle capacity results can be used to
derive information of achievable Hermite constants and kissing
numbers. However, for a given lattice inCn, with a givenn,
these results can not be expected to give, for example, tight
bounds for Hermite constants. This is due to the asymptotic
nature of the classical ergodic capacity results. Performance
of codes with relatively small length is strictly bounded away
from capacity.

In the case of fading channels the situation is considerably
different. In particular, codes with limited length can achieve
the diversity-multiplexing tradeoff bounds. Therefore there is
hope that results considering DMT can be transformed into
non-trivial mathematical statements considering latticecodes
with limited length.

In this paper we are giving some examples how the infor-
mation theoretic DMT-bounds can be turned into statements of
spread of determinants in matrix lattices and how these mass
formulas can then be used to analyze unit groups ofordersof
Q(i)-central division algebras.

II. BASIC DEFINITIONS

Let us now consider a slow fading channel where we have
nt transmit andnr receiving antennas and where the decoding
delay isT time units. The channel equation can be now written
as

Y =

√

SNR

nt
HX +N

whereH ∈ Mnr×nt(C) is the channel matrix whose entries
are independent identically distributed (i.i.d.) zero-mean com-
plex circular Gaussian random variables with the variance 1,
andN ∈ Mnr×T (C) is the noise matrix whose entries are
i.i.d. zero-mean complex circular Gaussian random variables
with the variance 1. HereX ∈ Mnt×T (C) is the transmitted
codeword andSNR presents the signal to noise ratio.

In order to shorten the notation we denoteSNR with ρ. Let
us suppose we have coding scheme where for each value of
ρ we have a codeC(ρ) having|C(ρ)| matrices inMn×T (C).
The rateR(ρ) is thenlog (|C(ρ))|/T . Let us suppose that the
scheme fulfills the constraint

1

|C(ρ)|
∑

X∈C(ρ)

||X ||2F ≤ Tnt. (1)

We then have the following definition from [3].
Definition 2.1: The scheme is said to achievespatial mul-

tiplexing gainr anddiversity gaind if the data rate

lim
ρ→∞

R(ρ)

log(ρ)
= r

and the average error probability

lim
ρ→∞

log(Pe(ρ))

log(ρ)
= −d.

Theorem 2.1 ([3]):AssumeT ≥ m + n − 1. The optimal
tradeoff curved∗(r) is achieved by the piecewise-linear func-
tion connecting(r, d∗(r)), r = 0, . . . ,min(n,m), where

d∗(r) = (m− r)(n − r),

and wherer is the multiplexing gain.
Let us now consider a coding scheme based on ak-

dimensional latticeL inside Mn×T (C) where for a given
positive real numberR the finite code is

L(R) = {a|a ∈ L, ||a||F ≤ R}.

The following lemma is a well known result from basic lattice
theory.

Lemma 2.2:Let L be ak-dimensional lattice inMn×T (C)
and

L(R) = {a | a ∈ L, ||a||F ≤ R },
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then
|L(R)| = cRk + f(R),

wherec is some real constant and|f(R)| ∈ o(R(k−1/2)).
In particular it follows that we can choose real numbersK1

andK2 so that

K1R
k ≥ |L(R)| ≥ K2R

k. (2)

If we then consider a coding scheme where the finite codes
are sets

CL(ρ
rT/k) = ρ−rT/kL(ρrT/k), (3)

we will get a correct number of codewords for eachρ level
and the setsCL(ρrT/k) clearly do fulfill the average energy
constraints (1) expected in the DMT-analysis (note that here
we have not yet added the

√
ρ needed in the channel equation.

Here and in the following we simply forget the term1nt
in the

channel equation as it is irrelevant in DMT calculations.
If we have that| det(X)| ≥ b, for all nonzeroX ∈ L and for

some constantb, we say that the latticeL hasnon-vanishing
determinant(NVD) property [5].

III. D IVERSITY AND MULTIPLEXING GAIN TRADE -OFF

AND UPPER AND LOWER BOUNDS FOR DETERMINANT SUMS

OVER MATRIX LATTICES

Let us suppose that we have ak-dimensional latticeL ⊆
Mn(C). The finite codes attached to the spherical coding
scheme are then

CL(ρ
rn/k) = ρ−rn/kL(ρrn/k).

In the following and in the rest of the paper we always
suppose that we do not include determinant of the zero matrix
to the sum.

Let us now suppose that we havenr receiving antennas. By
considering the error probability of transmitting an arbitrary
codewordX ∈ CL(ρ

rn/k) and using the union bound together
with PEP based determinant inequality [2], we get the follow-
ing bound for average error probability for codeCL(ρrn/k)

Pe ≤
∑

X∈L(2ρrn/k)

ρ−nnr(1−2rn/k)

|det(X)|2nr
,

where we have used the knowledge of the lattice structure
of the codeL. In order to take into account that we are
considering differences between codewords we also took the
sum over a ball with double radius. We now have

Pe ≤ ρ−nnr(1−2nr/k)
∑

X∈L(2ρrn/k)

1

|det(X)|2nr
,

and we can see that the deciding factor here is the sum term
on right.

To simplify the situation, we will be considering sums

SL(R) =
∑

X∈L(R)

1

|det(X)|m .

Le us now suppose that we have ak-dimensional NVD-
lattice L in Mn(C). Let us first give some easy upper

and lower bounds for the asymptotic behavior of the sums
∑

X∈L(R)
1

|det(X)|m .
Minkowski inequality gives us that

|det(X)| ≤
( ||X ||F√

n

)n

.

We then have that
∑

X∈L(R)

1

|det(X)|m ≥
∑

||X||F≤R,X∈L

√
n
mn

||X ||nmF
.

The right side of this equality is now the beginning of
the Epstein’s zeta-functionof the latticeL. The asymptotic
behavior of this function is well known and we therefore have

∑

X∈L(R)

1

|det(X)|m ≥
∑

||X||F≤R,X∈L

√
n
mn

||X ||nmF
≥MRk−mn,

whereM is a constant independent ofR.
On the other hand, let us now consider the worst case and

suppose that|det(X) = 1| for all nonzeroX ∈ L (remember
we are working with NVD-lattices). In this case we have

∑

X∈L(R)

1

|det(X)|m =
∑

X∈L(R)

1 = |L(R)| ≤ NRk,

whereN is a constant independent ofR and where the last
inequality follows from (2).

We can now conclude that

NRk ≥
∑

X∈L(R)

1

|det(X)|m ≥MRk−mn,

wherek −mn ≥ 0.
Let us now consider the situation whereL is a 2n2-

dimensional lattice inMn(C).
In the following proposition we will use the Landau symbol

O.
Proposition 3.1:Let us suppose that we have a2n2-

dimensional NVD-latticeL in Mn(C) and that2|n. We then
have that

SL(R) =
∑

X∈L(R)

1

|det(x)|2nr
/∈ O(Rn

2−ǫ),

for anynr ≥ n and positiveǫ.
Proof: Let us use the previously mentioned coding

scheme for the latticeL. Just as previously, the union bound
gives us that

Pe ≤ ρ−nnr(1−r/n)
∑

X∈L(2ρr/2n)

1

|det(X)|2nr
.

The optimal diversity-multiplexing gain given by Zheng and
Tse, however, gives us that for integer values ofr we have
that

Pe
.
≥ ρ−(n−r)(nr−r).

(For dotted notation see [3]). It follows thatSL(2ρr/2n) can
not be bounded by

ρ−((n−r)(nr−r)−nnr(1−r/n)+ǫ) = ρ−(r2−nr+ǫ)



for any positiveǫ, for integer values ofr. We can now see that
the maximum value ofρ−(r2−nr+ǫ) is achieved whenr = n/2.
We then have that

∑

X∈L(2ρ(n/2)/2n)

1

|det(X)|2nr
=

∑

X∈L(2ρ1/4)

1

|det(X)|2nr

can not be bounded by anyρn
2/4−ǫ. When we setρ1/4 = R,

we got thatSL(R) can not be bounded withRn
2−ǫ for any

positiveǫ.
We can now see that the for2n2-dimensional lattices there

exists arbitrarily large values ofR such thatSL(R) ≥ Rn
2−ǫ,

for any ǫ. The most interesting thing here is that no matter
how largenr we choose this result is valid. We also see that
in some sense the behavior of the sum is almost the worst
possible.

IV. SOME RESULTS ON THE UNIT GROUP OF AN ORDER IN

A Q(i)-CENTRAL DIVISION ALGEBRA

A. Problem statement

Let us suppose that we have a degreen cyclic extension
E/Q(i) with Galoi’s groupG(E/Q(i)) =< σ >.

We can now define a cyclic algebra

D = (E/Q(i), σ, γ) = E ⊕ uE ⊕ u2E ⊕ · · · ⊕ un−1E,

whereu ∈ D is an auxiliary generating element subject to the
relationsxu = uσ(x) for all x ∈ E andun = γ ∈ F ∗. Let us
now suppose thatD is a division algebra.

We can considerD as a right vector space overE and every
elementa = x0+ux1+· · ·+un−1xn−1 ∈ D has the following
representation as a matrixψ(a) =














x0 γσ(xn−1) γσ2(xn−2) · · · γσn−1(x1)
x1 σ(x0) γσ2(xn−1) γσn−1(x2)
x2 σ(x1) σ2(x0) γσn−1(x3)
...

...
xn−1 σ(xn−2) σ2(xn−3) · · · σn−1(x0)















. (4)

Definition 4.1: A Z-orderΛ in D is a subring ofD, having
the same identity element asD, and such thatΛ is a finitely
generated module overZ and generatesD as a linear space
overQ.

A simple and easily describable order is thenatural order

Λnat = OE ⊕ uOE ⊕ u2OE ⊕ · · · ⊕ un−1OE ,

whereOE is the ring of algebraic integers inE.
This reveals that we can consider that the ringOE is a

subring of the ringΛnat, in particular from the form of the
cyclic representation (4) we can see thatψ(OE) is a sublattice
of ψ(Λ) consisting of diagonal elements.

From our perspective the most important properties of these
Z-orders are the following IfΛ is an Z-order in a division
algebraD, then ψ(Λ) is 2n2-dimensional NVD lattice in
Mn(C), with

|det(X)| ≥ 1,

for all the nonzero elementsX in ψ(Λ).

The unit groupΛ∗ of an orderΛ consists of elementsx ∈ Λ
such that there exists any ∈ Λ, such thatxy = 1. We refer to
the unit group of an orderΛ by Λ∗.

The unit groupO∗
E of the ring of algebraic integersOE is

very well known and has simple structure. However, this is
not the case for the groupΛ∗. In most cases it is extremely
mystical [9].

Lemma 4.1:The groupO∗
E is a normal subgroup of a unit

groupΛ∗ of a any orderΛ that includesOE .
Proof: Clearly x(OE)

∗ = (OE)
∗x, when x ∈ E. For

elementsuk we have that

uk(O∗
E) = σk(O∗

E)u
k = (O∗

E)u
k,

where the last equality follows from the fact that Galois group
operates bijectively on the unit groupO∗

E . As all the elements
of D are linear combinations of these elements we can see
thatO∗

E is indeed a normal group insideΛ∗.
Due to the normality of the groupO∗

E , we can for example
consider the number of elements[Λ∗ : O∗

E ] in the factor
groupΛ∗/O∗

E . In this section we are using the simple results
concerning sums of matrix lattices derived from DMT and we
will prove that

[Λ∗ : O∗
E ] = ∞.

Remark 4.1:The authors do not suggest that this result
is new and it likely follows as a corollary from some more
general algebraic result. However, we point out that it is likely
not a trivial one. Let us compare it to another result. This well
known and simple result gives us that[Λ∗ : O∗

K ] < ∞ (K is
the center) if and only ifD is a totally definite quaternion
algebra over a totally real field. The most simple way to
prove this easy result is to reduce it to the fact that already
[O∗

E : O∗
K ] = ∞ (whereE is a maximal subfield). The result

we are going to prove is considerably stronger and there is no
bigger subfield to use as a help.

The main idea of our proof is to compare the number of
elements ofψ(Λ∗) ⊂ Mn(C) andψ(O∗

E) ⊂ Mn(C) inside
a hypersphere of radiusR. We will see thatψ(O∗

E) is not
”dense” enough to be a subgroup of finite index inψ(Λ∗).

B. Density of units inO∗
E

Let us suppose that we have an indexn division algebra
D = (E/Q(i), σ, γ). As previously described in (4) if we
now restrict the mappingψ to the elements ofOE , we get an
embedding ofOE into Mn(C) by

ψ(x) = diag(σ(x), . . . , σn(x)),

wherex is an element inOE .
The ring of algebraic integersOE has aZ-basisW =

{w1, . . . , w2n} and therefore

ψ(OE) = ψ(w1)Z+ · · ·+ ψ(w2n)Z,

is a 2n-dimensional lattice of matrices inMn(C). For each
nonzero elementa ∈ OK , we have that|det(ψ(a))| ≥ 1.

The unit groupO∗
E of the ringOE consists of such elements

u ∈ OE , that |det(ψ(u))| = 1.



The following lemma is an elementary corollary from well
known results. We will skip the proof.

Lemma 4.2:Let us suppose that we have a cyclic extension
E/Q(i), where[E : Q(i)] = n.

We then have that

|ψ(O∗
E) ∩B(R)| ≤Mlog(R)n−1,

whereM is a constant independent ofR.
This result proves that the units insideOE are not par-

ticularly dense in the latticeψ(OE). If we consider the
latticeψ(OE) we have thatψ(OE) ∩B(R) has roughlyR2n

elements. The same hypersphereB(R) on the other hand has
only roughly log(R)n−1 units.

C. Density of the groupΛ∗

In this section the main main result is Proposition 4.5, but
we need first some results and concepts. Let us suppose that
we have an indexn Q(i)-central division algebraD and that
Λ is an order inD. The (left)zeta-function[8] of the orderΛ
is

ζΛ(s) =
∑

I∈IΛ

1

[Λ : I]s
,

whereℜs > 1 and IΛ is the set of left ideals ofΛ. The fact
that we need from this function is that it is indeed a converging
series [10].

The result that will connect this sum to our matrix lattice
considerations is the following

|det(ψ(x))|2n = [Λ : Λx]. (5)

Lemma 4.3:[4] Let us suppose thatA andB are invertible
matrices inMn(C) and thata1 ≥ · · · ≥ an are the eigenvalues
of AA† and b1 ≤ · · · ≤ bn are the eigenvalues ofBB†. We
then have that

||AB||2F ≥
n
∑

i=1

aibi.

Lemma 4.4:Let us suppose that we have aQ(i)-central
division algebraD with indexn and thatΛ is an order inside
D. If x ∈ Λ, where||ψ(x)||F ≤ R, is a non-zero element we
have that

|ψ(Λ∗x) ∩B(R)| = |{u | ||ψ(xu)||F ≤ R, u ∈ Λ∗}|

≤ |ψ(Λ∗) ∩B(Rn)|.

Proof: Let us suppose that the eigenvalues ofψ(x)ψ(x)†

are λ1, . . . , λn. The condition||ψ(x)||F ≤ R then gives us
that λi ≤ R2 ∀i. We also have that|λ1| · · · |λn| ≥ 1. It now
follows that

|λi| ≥
1

R2(n−1)
∀i. (6)

Let us now suppose thatu is such a unit that||ψ(ux)||F =
||ψ(u)ψ(x)||F ≤ R and letu1 ≥ · · · ≥ un be the eigenvalues
of ψ(u)ψ(u)†. According to Lemma 4.3 we then have that

||ψ(u)ψ(x)||2F ≥
∑

λiui

Combining equation (6) and||ψ(u)ψ(x)||F ≤ R now gives
us that||ψ(u)||F ≤ Rn.

Proposition 4.5:Let us suppose that we have aQ(i)-central
indexn division algebraD and thatΛ is aZ-order inD. We
then have

∑

||ψ(x)||F≤R,x∈Λ

1

|det(ψ(x))|2nnr
≤M |ψ(Λ∗) ∩B(Rn)|,

whereM is independent ofR.
Proof: The sum

∑

||ψ(a)||F≤R,a∈Λ

1

|det(ψ(a))|2nnr

can be written as
∑

xi∈X

Ai
|det(ψ(xi))|2nnr

,

whereX is some collection of elementsxi ∈ Λ, ||ψ(xi)||F ≤
R, such that each generate a separate ideal. The numbersAi
present the number of elements insideB(R) each generating
the same idealxiΛ. We then see that

∑

xi∈X

1

|det(ψ(xi))|2nnr
=

∑

xi∈X

1

[Λ : Λxi]nr
,

is a part of the zeta-function of the orderΛ at pointnr ≥ 2.
Therefore it is always bounded by some constantM indepen-
dent ofR.

From the ideal theory of orders we have that ifΛxk = Λxk′ ,
thenxk andx′k must differ by a unit. Therefore we can now
apply Lemma 4.4 that gives us that for allAi we haveAi ≤
|ψ(Λ∗) ∩B(Rn)|. It follows that

∑

xi∈X

Ai
[Λ : Λxi]nr

≤
∑

xi∈X

|ψ(Λ∗) ∩B(Rn)|
[Λ : Λxi]

≤M |ψ(Λ∗) ∩B(Rn)|,
whereM is a constant independent ofR.

Let us now combine this result with Proposition 3.1.
Proposition 4.6:Let us suppose thatΛ is an order in an

indexn = 2m Q(i)-central division algebraD. We then have
that

|ψ(Λ∗) ∩B(R)| /∈ O(Rn−ǫ),

for any ǫ.
Proof: We have thatψ(Λ) is a2n2-dimensional lattice in

Mn(C). According to Proposition 3.1 we therefore have that
∑

x∈Λ, ||ψ(x)||F≤R

1

|det(ψ(x))|2nnr
/∈ O(Rn

2−ǫ)

for any positiveǫ. On the other hand Proposition 4.5 gives us
that

∑

x∈Λ, ||ψ(x)||F≤R

1

|det(ψ(x))|2nnr
≤M |ψ(Λ∗) ∩B(Rn)|,



for some constant independent ofR. It then follows that

|ψ(Λ∗) ∩B(R)| /∈ O(Rn−ǫ).

This simply means that we can find arbitrarily bigR such
that hypersphereB(R) with radiusR in Mn(C) has close
to Rn elements ofψ(Λ∗). On the other handψ(Λ) has
approximatelyR2n2

elements inside the same hypersphere.
While the number of units is small compared to the whole
number of points of the lattice, it is still remarkably larger than
in the case of number fields where it is in class(logR)n−1.

D. A proof that[Λ∗ : O∗
E ] = ∞

In this section we are finally giving the proof for the claimed
result. We now have the estimates for the number of elements
in ψ(Λ∗) andψ(O∗

E) inside a hypersphere with radiusR in
Mn(C). Now we only need some simple results before the
finale.

Lemma 4.7:Let us suppose thatX is a set of matrices in
Mn(C) and thatA is an invertible matrix inMn(C). If f is
such a function that

|B(R) ∩X | ≤ f(R), ∀R
then there is such a constantM that

|B(R) ∩ AX | ≤ f(MR), ∀R.
Proof: Let us suppose thatλ1 is the smallest eigenvalue

of A†A. According to Lemma 4.3 we now have that for all
the elementsAx ∈ AX , ||Ax||2F ≥ λ1||x||2F . It follows that
for a matrixAx, where

||Ax||F ≤ R,

we must have that||x|| ≤ R√
λ1

. We can now see that1√
λ1

is
suitable for a constantM .

Proposition 4.8:Let us supposeD = (E/Q(i), σ, γ) is a
cyclic division algebra. Let us suppose thatΛ is such an order
that it includes the natural orderΛnat. We then have thatO∗

E

is a normal subgroup ofΛ∗ and that

[Λ∗ : O∗
E ] = ∞.

Proof: Let us suppose that[Λ∗ : O∗
E ] = m. For certain

elementsa1, . . . , am, we can now write that{a1O∗
E ∪a2O∗

E ∪
· · · ∪ a8O∗

E} = Λ∗. According to Lemma 4.2 there exists a
constantM such that

|ψ(O∗
E) ∩B(R)| ≤M(log(R))n−1.

Lemma 4.7 now gives us that there exists constants
M1, . . . ,M8 such that

|ψ(aiO∗
E) ∩B(R)| ≤Mlog(MiR)

n−1.

As we suppose thatΛ∗ is a union ofaiO∗
E , we then have that

|ψ(Λ∗) ∩B(R)| ≤
8

∑

i=1

Mlog(MiR)
(n−1) ≤ Klog(R)n−1,

whereK is a constant independent ofR. However, this is a
contradiction against Proposition 4.6.

V. D ISCUSSION

The algebraic results we achieved, while interesting, are
likely not new. However, the route we used to achieve these
results is surprising. In our derivation we started with the
diversity multiplexing-gain bounds given by Zheng and Tse,
which led to some simple results concerning determinantial
sums over matrix lattices and to statement that a unit group
of an order is quite ”dense”. The density result was then
applied to derive algebraic results of this group.While some
steps where technical the only deep step was taken first.

The lower bound for asymptotic error probability in the
diversity-multiplexing gain tradeoff is coming from the outage
probability of the Rayleigh faded multiple antenna channel.
What is needed here is the capacity expression for a MIMO
channel and the knowledge of the probability density function
of singular values of some random matrices. The final state-
ments of DMT are then gotten by cleverly choosing correct
level of approximation that allows one to calculate needed
probabilities, but which still gives us nontrivial information
of the behavior of the error probabilities of codes in MIMO
channel.

It appears as a lucky accident that we can derive totally
algebraic statement from such probabilistic results. It islikely
that there exists a more direct and probably more effective
way to connect these two areas, but as now the connection
appear as mystery.
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