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Abstract—In this paper, capacity inner and outer bounds are 
established for multiuser channels with Channel State 
Information (CSI) known non-causally at the transmitters: The 
Multiple Access Channel (MAC), the Broadcast Channel (BC) 
with common information, and the Relay Channel (RC). For each 
channel, the actual capacity region is also derived in some special 
cases. Specifically, it is shown that for some deterministic models 
with non-causal CSI at the transmitters, similar to Costa’s 
Gaussian channel, the availability of CSI at the deterministic 
receivers does not affect the capacity region. 

I. INTRODUCTION 
Channels with Channel State Information (CSI) known at the 

transmitters have been investigated in many papers. This study 
was initiated by Shannon [1] where he considered a single-user 
channel with CSI known causally at the transmitter and derived 
its capacity. The capacity of the scenario where the transmitter 
has access to CSI non-causally was established in [2]. In [3] Costa 
considered a Gaussian channel with additive interference which is 
known non-causally at the transmitter and modeled as CSI. He 
showed that for this channel the capacity is the same as when the 
receiver is also informed of CSI, thereby, a full interference 
cancellation is achieved and the capacity is similar to the case of 
no interference. Up to now, many researchers have attempted to 
establish capacity results for multiuser channels with CSI. 
Specifically, Shannon’s result for the case of causal CSI [1] was 
extended to some multiuser scenarios [4], [5] wherein capacity 
theorems were also established. Moreover, in [6] it was shown 
that Costa’s result [3] regarding achieving full interference 
cancellation when the interference is known non-causally at the 
transmitter, can be extended to some multiuser channels. For the 
case of non-causal CSI, capacity inner and upper bounds have 
been also established for the discrete multiuser channels [4], [7], 
[8]; however, there exist only a few cases for which a full 
characterization of the capacity region has been derived. For a 
comprehensive review of the existent results regarding capacity 
bounds for different communication scenarios with CSI, see [9], 
[10] and the literature therein. 

In this paper, we show that for the deterministic single-user 
channel with CSI known non-causally at the transmitter, similar 
to Costa’s Gaussian channel, the capacity is the same as when the 
receiver is also informed of CSI. Then, we study capacity bounds 
for multiuser channels with non-causal CSI. Firstly, we consider 
the Multiple Access Channel (MAC) with asymmetric and 
correlated CSI at the transmitters. We establish the capacity 
region for the deterministic orthogonal MAC with correlated CSI 
at the transmitters, and demonstrate that in this case the capacity 
region is the same as when the receiver is also informed of CSI. 
Also, we derive a new outer bound on the capacity region of the 
(general) MAC with correlated CSI at the transmitters. 

As a second multiuser scenario, we consider the two-user 
Broadcast Channel (BC) with common message and with CSI 
known non-causally at the transmitter. We first derive a new inner 
bound on the capacity region of this channel. The main 
framework of our achievability scheme is based on applying a 
(multivariate) random binning technique. We also prove that our 
achievable rate region strictly contains previously derived ones in 
[11, Sec. V] and [12, p. 7-53] for the channel, as a subset.  

 
Figure 1. The single-user channel with non-causal CSI. 

Moreover, we derive an outer bound for the capacity region of 
the channel. When there is no CSI, our outer bound reduces to 
that one derived by Nair and El Gamal in [13] for the BC without 
CSI. Then, we establish new capacity theorems for the channel in 
the following cases: 1) Two classes of deterministic BCs with CSI 
known only at the transmitter, 2) The semi-deterministic BC with 
CSI known at the transmitter and also at the non-deterministic 
receiver, 3) The more-capable BC with CSI known at the 
transmitter and both receivers, 4) A special case of the degraded 
BC with CSI known only at the transmitter, wherein the non-
degraded receiver receives a deterministic function of channel 
input and channel state. Moreover, in those cases where a receiver 
receives a deterministic function of channel input and channel 
state, we show that assuming this receiver to be informed of CSI 
does not affect the capacity region. 

Finally, we study the Relay Channel (RC) with CSI. We first 
consider the case where both the transmitter and the relay have 
access to perfect CSI non-causally. We derive a new achievable 
rate for this channel using the partial decode-and-forward 
technique. Then, we consider the case of degraded CSI wherein 
CSI at the relay is a degraded version of CSI at the transmitter. 
We derive an achievable rate for this scenario using the decode-
and-forward technique. As the last scenario, we study the 
degraded Gaussian RC with asymmetric additive interferences. 
We consider an interesting scenario regarding the availability of 
the interferences at the users, as follows. The CSI is composed of 
two parts: One part is the interference added to the relay received 
signal, and the other is the interference added to the received 
signal at the receiver (destination). We assume that the transmitter 
has access non-causally to both interferences, the relay has access 
non-causally to the part of interference which is added to the 
received signal at the receiver, and the receiver has access to the 
part of interference which is added to the received signal at the 
relay. In this scenario, no interference subtraction can be 
performed at the relay and the receiver; nonetheless, we show that 
a full interference cancellation can be achieved, which yields the 
capacity of the channel. 

The main results are stated in Section II. In Appendix, we have 
provided an outline of the proofs for most of our theorems. The 
proof of the remaining results will be reported in [14]. 

II. MAIN RESULTS 
In this section, we state the main results of the paper. Notations 
are as follows: Random Variables (RV) and their realization are 
denoted by upper case and lower case letters, respectively. For a 
RV ܺ with the range set ࣲ, the Probability Distribution Function 
(PDF) is represented by ௑ܲሺݔሻ , where ݔ  א ܺ . A Gaussian 
distributed RV, e.g., ܺ , with zero mean and variance ߩଶ  is 
denoted by ܺ~ࣨሺ0,  .ଶሻߩ



A. The single-user channel with CSI 
Definition: The single-user channel with CSI, denoted by 

ሼ࣭, ௌܲሺݏሻ, ࣲ, ࣳ, Զሺݔ|ݕ,  ሻሽ, is a channel with input alphabet ࣲ andݏ
output alphabet ࣳ. The RV ܵ denotes the channel state which is 
distributed over the alphabet ࣭ according to the known PDF ௌܲሺݏሻ. 
For discrete channels all alphabets are finite sets. The transition 
probability function Զሺݔ|ݕ, ሻݏ  describes the relation of channel 
input, channel state and channel output. The channel model has 
been depicted in Fig. 1. In this paper, we assume that the state 
process is non-causally known at the transmitter. The definition of 
the code and also the capacity for the channel can be found in the 
literature [9]. Here, due to limited space, they will be omitted. 

As mentioned, the capacity of this channel was derived in [2] 
which is given by the following: 

max
௉೉ೆ|ೄ

;ሺܷܫ ܻሻ െ ;ሺܷܫ ܵሻ                             ሺ1ሻ 

Also, for the case where the CSI is available at both transmitter 
and receiver, the capacity is expressed as [15]: 

max
௉೉|ೄ

;ሺܺܫ ܻ|ܵሻ                                       ሺ2ሻ 

Now, let us assume that the channel is deterministic: There exists 
a deterministic function ݂: ࣲ ൈ ࣭ ՜ ࣳ such that ܻ ൌ ݂ሺܺ, ܵሻ. For 
this model, we show that similar to Costa’s Gaussian channel with 
additive interference [3], the capacity when CSI is only available 
at the transmitter is the same as when it is available at both 
transmitter and receiver. 

Observation: The capacity of the deterministic single-user 
channel with non-causal CSI at the transmitter is similar to the 
case where CSI is available at both transmitter and receiver and 
is given by: 

max
௉೉|ೄ

 ሺܻ|ܵሻ                                          ሺ3ሻܪ

Proof: The achievability is derived from (1) by setting ܷ ൌ ܻ. On 
the one hand, for deterministic channel, (2) reduces to (3). ■ 

As the channel is deterministic (noiseless), this scenario may be 
well named as “clean writing on dirty paper”. Subsequently, we 
demonstrate a same result for some multiuser channels with non-
causal CSI at the transmitters. 

B. The MAC with CSI 
Now, consider the MAC with non-causal CSI at the 

transmitters, as depicted in Fig. 2. 

Definition: The two-user MAC with CSI, denoted by 
൛ ଵ࣭, ࣭ଶ, ௌܲభௌమሺݏଵ, ,ଶሻݏ ଵࣲ, ଶࣲ, ࣳ, Զሺݔ|ݕଵ, ,ଶݔ ,ଵݏ ଶሻൟݏ , is a channel 
with input alphabets ଵࣲ, ଶࣲ  and output alphabet ࣳ. The channel 
state is the random pair ሺ ଵܵ, ܵଶሻ which is distributed over the set 

ଵ࣭ ൈ ࣭ଶ  according to ௌܲభௌమሺݏଵ, ଶሻݏ . The transition probability 
function Զሺݔ|ݕଵ, ,ଶݔ ,ଵݏ ଶሻݏ  describes the relation of channel 
inputs, channel state and channel output. As depicted in Fig. 2., the 
first transmitter has access to ଵܵ and the second one has access to 
ܵଶ, both non-causally. Each transmitter sends a private message 
over the channel and the receiver decodes both messages. 

The MAC with CSI has been investigated in [5], [7], [16]; 
specifically, for the case of correlated ଵܵ, ܵଶ , an achievable rate 
region has been reported for the channel in [16]: 

Lemma 1 [16]: The following rate region is achievable for the 
MAC with non-causal CSI at the transmitters: 

ራ

ە
۔

ۓ
ሺܴଵ, ܴଶሻ א Թା

ଶ :                                               
ܴଵ ൑ ሺܫ ଵܸ; ܻ| ଶܸሻ െ ሺܫ ଵܸ; ଵܵ| ଶܸሻ                 
ܴଶ ൑ ሺܫ ଶܸ; ܻ| ଵܸሻ െ ሺܫ ଶܸ; ܵଶ| ଵܸሻ                 
ܴଵ ൅ ܴଶ ൑ ሺܫ ଵܸ, ଶܸ; ܻሻ െ ሺܫ ଵܸ, ଶܸ; ଵܵ, ܵଶሻۙ

ۘ

ۗ

௉೉భೇభ|ೄభ௉೉మೇమ|ೄమ

 

ሺ4ሻ 

 
Figure 2. The MAC with asymmetric non-causal CSI. 

In [6], it was shown that for Gaussian MAC with additive 
interference known non-causally at both transmitters the capacity 
region is the same as when the interference is known also at the 
receiver. Now the question is that if this property holds for the 
deterministic MAC, similar to the single-user channel? 
Unfortunately, using the achievable rate region (4), the capacity 
region of the deterministic MAC with non-causal CSI at the 
transmitters cannot be derived in general. Due to this, we restrict 
our attention to a subclass of MACs called orthogonal MAC. 

Definition: The two-user MAC with CSI is said to be orthogonal 
if the receiver alphabet ࣳ ൌ ଵࣳ ൈ ࣳଶ and the channel transition 
probability function satisfies: 

Զሺݔ|ݕଵ, ,ଶݔ ,ଵݏ ଶሻݏ ൌ Զሺݕଵ|ݔଵ, ,ଶݔ|ଶݕଵሻԶሺݏ  ଶሻݏ
ሺ5ሻ 

For the orthogonal MAC with non-causal CSI at the transmitters, 
when ଵܵ, ܵଶ are independent, one can show that the capacity region 
is given by: 

ራ ቐ
ሺܴଵ, ܴଶሻ א Թା

ଶ :                     
ܴଵ ൑ ሺܫ ଵܸ; ଵܻሻ െ ሺܫ ଵܸ; ଵܵሻ
ܴଶ ൑ ሺܫ ଶܸ; ଶܻሻ െ ሺܫ ଶܸ; ܵଶሻ

ቑ
௉೉భೇభ|ೄభ௉೉మೇమ|ೄమ

 

ሺ6ሻ 

For the case of correlated ଵܵ, ܵଶ, the channel is not decomposed in 
two separate ones and hence establishing the capacity region in 
general case is still difficult. Nevertheless, in the following, we 
derive the capacity region of the deterministic orthogonal MAC 
with CSI for the case of correlated ଵܵ, ܵଶ . In this model, there 
exist deterministic functions ଵ݂: ଵࣲ ൈ ଵ࣭ ՜ ଵࣳ and ଶ݂: ଶࣲ ൈ ࣭ଶ ՜
ࣳଶ such that ଵܻ ൌ ଵ݂ሺ ଵܺ, ଵܵሻ and ଶܻ ൌ ଶ݂ሺܺଶ, ܵଶሻ.  

Proposition 1: The capacity region of the deterministic 
orthogonal MAC with non-causal CSI at the transmitters, where 

ଵܵ, ܵଶ  are correlated, is the same as when both ଵܵ, ܵଶ  are also 
available at the receiver and is given by: 

ራ ൜
ሺܴଵ, ܴଶሻ א Թା

ଶ :                            
ܴଵ ൑ ሺܪ ଵܻ| ଵܵሻ, ܴଶ ൑ ሺܪ ଶܻ|ܵଶሻൠ

௉೉భ|ೄభ௉೉మ|ೄమ

 

ሺ7ሻ 
Proof: Refer to Appendix. ■ 

To the best of our knowledge, there is no capacity outer bound for 
the general MAC with non-causal CSI at the transmitters. In the 
next theorem, we present an outer bound on the capacity region of 
this channel. 

Theorem 1: The following rate region is an outer bound for the 
capacity region of the two-user MAC with non-causal CSI at the 
transmitters ( ଵܵ, ܵଶ are correlated): 

ራ

ە
۔

ۓ
ሺܴଵ, ܴଶሻ א Թା

ଶ :                                                          
ܴଵ ൑ ሺܫ ଵܸ; ܻ| ଶܸሻ ൅ ሺܫ ଶܸ; ܵଶሻ െ ሺܫ ଵܸ, ଶܸ; ଵܵ, ܵଶሻ
ܴଶ ൑ ሺܫ ଶܸ; ܻ| ଵܸሻ ൅ ሺܫ ଵܸ; ଵܵሻ െ ሺܫ ଵܸ, ଶܸ; ଵܵ, ܵଶሻ
ܴଵ ൅ ܴଶ ൑ ሺܫ ଵܸ, ଶܸ; ܻሻ െ ሺܫ ଵܸ, ଶܸ; ଵܵ, ܵଶሻ           ۙ

ۘ

ۗ

௉೉భ೉మೇభೇమ|ೄభೄమ

 

ሺ8ሻ 
Proof: Refer to Appendix. ■ 



 
Figure 3. The BC with non-causal CSI. 

Remark: Consider the following rate region: 

ራ

ە
۔

ۓ
ሺܴଵ, ܴଶሻ א Թା

ଶ :                                               
ܴଵ ൑ ሺܫ ଵܸ; ܻ| ଶܸሻ െ ሺܫ ଵܸ; ଵܵ| ଶܸሻ                 
ܴଶ ൑ ሺܫ ଶܸ; ܻ| ଵܸሻ െ ሺܫ ଶܸ; ܵଶ| ଵܸሻ                 
ܴଵ ൅ ܴଶ ൑ ሺܫ ଵܸ, ଶܸ; ܻሻ െ ሺܫ ଵܸ, ଶܸ; ଵܵ, ܵଶሻۙ

ۘ

ۗ

௉೉భ೉మೇభೇమ|ೄభೄమ

 

ሺ9ሻ 
The mutual information functions in the rate region (9) are 
identical to the achievable rate region (4). However, the union in 
(9) is taken over a larger set of joint PDFs. It can be easily seen 
that the derived outer bound (8) is a subset of the rate region (9). 
Therefore, the rate region (9) also constitutes an outer bound 
(weaker than (8)) on the capacity region. 

C. The BC with CSI 
Then, consider the BC with common message and with CSI 

known non-causally at the transmitter. 

Definition: The two-user BC with CSI, denoted by 
ሼ࣭, ௌܲሺݏሻ, ࣲ, ଵࣳ, ࣳଶ, Զሺݕଵ, ,ݔ|ଶݕ ሻሽݏ , is a channel with input 
alphabet ࣲ and output alphabets ଵࣳ, ࣳଶ. The channel state is the 
RV ܵ which is distributed over the set ࣭ according to ௌܲሺݏሻ. The 
transition probability function Զሺݕଵ, ,ݔ|ଶݕ  ሻ describes the relationݏ
of channel input, channel state and channel outputs. The 
transmitter has access to CSI non-causally. The channel model 
has been depicted in Fig. 3. The transmitter sends two private 
messages, as well as a common message over the channel. Each 
receiver decodes its respective private message and also the 
common message. 

Firstly, we derive a new achievable rate region for this channel. 

Theorem 2: The following rate region is achievable for the two-
user BC with common message and with CSI known non-causally 
at the transmitter: 

ራ

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ

ሺܴ଴, ܴଵ, ܴଶሻ א Թା
ଷ :                                               

ܴ଴ ൅ ܴଵ ൑ ,ሺܹܫ ܸ; ଵܻሻ െ ,ሺܹܫ ܸ; ܵሻ             
ܴ଴ ൅ ܴଶ ൑ ,ሺܹܫ ܷ; ଶܻሻ െ ,ሺܹܫ ܷ; ܵሻ             
ܴ଴ ൅ ܴଵ ൅ ܴଶ ൑ ,ሺܹܫ ܸ; ଵܻሻ ൅ ;ሺܷܫ ଶܻ|ܹሻ  

                      െܫሺܸ; ܷ|ܹሻ െ ,ሺܸܫ ܷ, ܹ; ܵሻ
ܴ଴ ൅ ܴଵ ൅ ܴଶ ൑ ;ሺܸܫ ଵܻ|ܹሻ ൅ ,ሺܹܫ ܷ; ଶܻሻ   

                      െܫሺܸ; ܷ|ܹሻ െ ,ሺܸܫ ܷ, ܹ; ܵሻ
2ܴ଴ ൅ ܴଵ ൅ ܴଶ ൑ ,ሺܹܫ ܸ; ଵܻሻ ൅ ,ሺܹܫ ܷ; ଶܻሻ
        െܫሺܸ; ܷ|ܹሻ െ ,ሺܸܫ ܷ, ܹ; ܵሻ െ ;ሺܹܫ ܵሻۙ

ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۗ

௉೉ೇೆೈ|ೄ

 

ሺ10ሻ 
Proof: Refer to [14]. ■ 

Remarks: 
1. By setting ܵ ؠ  the achievable rate region (10) reduces to ,׎
Marton’s achievable rate region for the two-user BC [17], [18]. 
2. Our achievable rate region (10) strictly contains both those 
ones derived in [11, Sec. V] and [12, p. 7-53], as a subset. The 
proof can be found in Appendix. 

The achievable rate region (10) is optimal in some special cases. 
Specifically, consider the deterministic BC with CSI known non-
causally at the transmitter: There exist deterministic functions 

ଵ݂: ࣲ ൈ ࣭ ՜ ଵࣳ  and ଶ݂: ࣲ ൈ ࣭ ՜ ࣳଶ  such that ଵܻ ൌ ଵ݂ሺܺ, ܵሻ  and 
ଶܻ ൌ ଶ݂ሺܺ, ܵሻ . In [6] and [11], it was shown that the capacity 

region of the two-user Gaussian BC (without common message) 
with additive interferences is the same as when the interferences 
(CSI) are also known at both receivers. In the next theorem we 
derive a similar result for the deterministic BC with CSI. 

Theorem 3: The capacity region of the deterministic BC (without 
common message) with CSI known non-causally at the transmitter 
is the same as when CSI is also known at both receivers and is 
given by: 

ራ

ە
۔

ۓ
ሺܴଵ, ܴଶሻ א Թା

ଶ              ׷
ܴଵ ൑ ሺܪ ଵܻ|ܵሻ               
ܴଶ ൑ ሺܪ ଶܻ|ܵሻ               
ܴଵ ൅ ܴଶ ൑ ሺܪ ଵܻ, ଶܻ|ܵሻۙ

ۘ

ۗ

௉೉|ೄ

 

ሺ11ሻ 

Proof: The achievability is obtained from (10) by setting ܴ଴ ൌ 0, 
ܹ ؠ ܸ ,׎ ൌ ଵܻ  and ܷ ൌ ଶܻ . The converse part is derived using 
the cut-set outer bound for channels with CSI [14]. ■ 

Remark: This is the first class of BCs with CSI known non-
causally only at the transmitter for which the capacity region is 
characterized. 

For the case of transmitting both common and private messages, 
we derive the capacity region of the deterministic BC with CSI 
satisfying: 

ሺܫ ଵܻ; ଶܻ|ܵሻ ൌ 0                                  ሺ12ሻ 

for all joint PDFs ௑ܲ|ௌ. 

Proposition 2:  The capacity region of the deterministic BC with 
common message and with CSI known non-causally only at the 
transmitter which satisfies the condition (12) is given by: 

ራ ቐ
ሺܴଵ, ܴଶሻ א Թା

ଶ        ׷
ܴ଴ ൅ ܴଵ ൑ ሺܪ ଵܻ|ܵሻ
ܴ଴ ൅ ܴଶ ൑ ሺܪ ଶܻ|ܵሻ

ቑ
௉೉|ೄ

                         ሺ13ሻ 

Proof: Refer to Appendix. 

Remarks: 

1. Proposition 2 generalizes the result of [19, Sec. IV.A] to the 
case of both common and private messages. 

2. In general, the capacity result established in Proposition 2, 
cannot be deduced by the achievable rate region previously 
derived in [11, Sec. V]. 

We also derive an outer bound on the capacity region of the 
channel.  
Theorem 4: The following rate region is an outer bound for the 
two-user BC with non-causal CSI at the transmitter: 

ራ

ە
ۖ
۔

ۖ
ۓ

ሺܴ଴, ܴଵ, ܴଶሻ א Թା
ଷ :                                             

ܴ଴ ൅ ܴଵ ൑ ;ሺܸܫ ଵܻ|ܵሻ                                      
ܴ଴ ൅ ܴଶ ൑ ;ሺܷܫ ଶܻ|ܵሻ                                      
ܴ଴ ൅ ܴଵ ൅ ܴଶ ൑ ;ሺܺܫ ଵܻ|ܷ, ܵሻ ൅ ;ሺܷܫ ଶܻ|ܵሻ
ܴ଴ ൅ ܴଵ ൅ ܴଶ ൑ ;ሺܺܫ ଶܻ|ܸ, ܵሻ ൅ ;ሺܸܫ ଵܻ|ܵሻۙ

ۖ
ۘ

ۖ
ۗ

௉೉ೆೇ|ೄ

 

ሺ14ሻ 
Proof: Refer to Appendix. ■ 

Remarks: 
1. The rate region (14) continues to be an outer bound for the 
channel when CSI is also available at both receivers. 
2. By setting ܵ ؠ  the rate region (14) reduces to Nair-El Gamal ׎
outer bound [13] on the capacity region of the two-user BC. 

Now, we present some classes of channels for which the 
achievability scheme (10) and the outer bound (14) agree, which 
yields the capacity region. As the first scenario, in the next 
theorem, we establish the capacity region of the two-user BC with 
non-causal CSI at the transmitter where one receiver receives a 
deterministic function of the channel input and the channel state, 
and the other has access to CSI. 



Theorem 5: Consider the semi-deterministic BC (without common 
message) with CSI known non-causally at the transmitter, 
wherein there exists a deterministic function ଵ݂: ࣲ ൈ ࣭ ՜ ଵࣳ such 
that ଵܻ ൌ ଵ݂ሺܺ, ܵሻ. Moreover, assume that the CSI is also known 
at the second receiver. In this case, the capacity region is the 
same as when both receivers have access to CSI and is given by: 

ራ

ە
۔

ۓ
ሺܴଵ, ܴଶሻ א Թା

ଶ :                                     
ܴଵ ൑ ሺܪ ଵܻ|ܵሻ                                       
ܴଶ ൑ ;ሺܷܫ ଶܻ|ܵሻ                                   
ܴଵ ൅ ܴଶ ൑ ሺܪ ଵܻ|ܷ, ܵሻ ൅ ;ሺܷܫ ଶܻ|ܵሻۙ

ۘ

ۗ

௉೉ೆ|ೄ

 

ሺ15ሻ 

Proof: The achievability is obtained from (10) by setting ܹ ؠ  ,׎
ܸ ൌ ଵܻ and replacing ଶܻ with ሺ ଶܻ, ܵሻ. The converse part is derived 
from (14) by considering that ܫሺܸ; ଵܻ|ܵሻ ൑ ሺܪ ଵܻ|ܵሻ , and ଵܻ ൌ

ଵ݂ሺܺ, ܵሻ. ■ 

As another scenario, we also determine the capacity region of the 
more-capable BC with non-causal CSI at the transmitter, for the 
case where both receivers have access to CSI. 

Definition: The BC with CSI known non-causally at the 
transmitter is said to be more-capable if 

;ሺܺܫ ଶܻ|ܵሻ ൑ ;ሺܺܫ ଵܻ|ܵሻ                            ሺ16ሻ 

for all joint PDFs ௑ܲ|ௌሺݏ|ݔሻ. 

Proposition 3: The capacity region of the two-user more-capable 
BC (16) with common message and with CSI known non-causally 
at the transmitter and also at both receivers is given by: 

ራ

ە
۔

ۓ
ሺܴ଴, ܴଵ, ܴଶሻ א Թା

ଷ :                                            
ܴ଴ ൅ ܴଶ ൑ ;ሺܷܫ ଶܻ|ܵሻ                                      
ܴ଴ ൅ ܴଵ ൅ ܴଶ ൑ ;ሺܺܫ ଵܻ|ܷ, ܵሻ ൅ ;ሺܷܫ ଶܻ|ܵሻ
ܴ଴ ൅ ܴଵ ൅ ܴଶ ൑ ;ሺܺܫ ଵܻ|ܵሻ                            ۙ

ۘ

ۗ

௉೉ೆ|ೄ

 

ሺ17ሻ 

Proof: The achievability is derived from (10) by setting ܹ ؠ ܷ, 
ܸ ؠ ܺ, and also replacing ଵܻ with ሺ ଵܻ, ܵሻ and ଶܻ with ሺ ଶܻ, ܵሻ. The 
converse part is obtained from the outer bound (14) where the 
relation (16) is also exploited. ■ 

In [4] an achievable rate region was derived for the degraded BC 
with non-causal CSI at the transmitter using superposition coding 
technique. However, the capacity region remains still unknown. 
In the following, we derive the capacity region of this channel 
under the condition that the signal of the stronger receiver is a 
deterministic function of the channel input and the channel state. 

Definition: The two-user BC with CSI is said to be degraded if  

Զሺݕଵ, ,ݔ|ଶݕ ሻݏ ൌ Զሺݕଵ|ݔ,  ଵሻݕ|ଶݕሻԶሺݏ
ሺ18ሻ 

It can be easily verified that the degraded BC with CSI (18), also 
satisfies the more-capable condition (16). 

Theorem 6: The capacity region of the degraded BC (18) with 
common message and with non-causal CSI at the transmitter, 
wherein there exists a deterministic function ଵ݂: ࣲ ൈ ࣭ ՜ ଵࣳ such 
that ଵܻ ൌ ଵ݂ሺܺ, ܵሻ, is given by the following: 

ራ ቐ
ሺܴ଴, ܴଵ, ܴଶሻ א Թା

ଷ :                    
ܴଵ ൑ ሺܪ ଵܻ|ܷ, ܵሻ                       
ܴ଴ ൅ ܴଶ ൑ ;ሺܷܫ ଶܻሻ െ ;ሺܷܫ ܵሻ

ቑ
௉೉ೆ|ೄ

 

ሺ19ሻ 

Moreover, the availability of CSI at the stronger receiver, i.e., ଵܻ, 
does not affect the capacity region.  

Proof: Refer to Appendix. ■ 

D. The RC with CSI 
Finally, consider the RC with non-causal CSI. 

 
Figure 4. The RC with non-causal CSI. 

Definition: The RC with CSI denoted by 
ሼ࣭, ௌܲሺݏሻ, ࣲ, ௥ࣲ, ࣳ௥, ࣳ, Զሺݕ, ,ݔ|௥ݕ ,௥ݔ ሻሽݏ , is a channel with the 
source input alphabet ࣲ, the relay input alphabet ௥ࣲ , the relay 
output alphabet ࣳ௥ and the receiver (destination) output alphabet 
ࣳ. The channel state is the RV ܵ which is distributed over the set 
࣭  according to ௌܲሺݏሻ. The transition probability function of the 
channel Զሺݕ, ,ݔ|௥ݕ ,௥ݔ  ,ሻ describes the relation of channel inputݏ
channel state and channel outputs. The channel model has been 
depicted in Fig. 4. The transmitter sends a message over the 
channel and the relay assists the transmission of information to 
the receiver. The receiver is required to decode the transmitted 
message.  

In [6], the case where perfect CSI is known non-causally at the 
transmitter and also at the relay node was considered and an 
achievable rate was derived for the channel using the decode-and-
forward technique. In the next theorem, we establish a new 
achievable rate for this channel based on the partial decode-and-
forward technique [20].  

Proposition 4: The following is an achievable rate for the RC 
with CSI known non-causally at the transmitter and at the relay 
node: 

sup min ቐ
,ሺܸܫ ܷ, ௥ܷ; ܻሻ െ ,ሺܸܫ ܷ, ௥ܷ; ܵሻ,                              
,ሺܸܫ ܷ; ܻ| ௥ܷሻ ൅ ;ሺܷܫ ௥ܻ| ௥ܷ , ܵሻ െ ,ሺܸܫ ܷ; ܵ| ௥ܷሻ,
;ሺܸܫ ܻ|ܷ, ௥ܷሻ ൅ ;ሺܷܫ ௥ܻ| ௥ܷ , ܵሻ െ ;ሺܸܫ ܵ|ܷ, ௥ܷሻ

ቑ 

ሺ20ሻ 

where the supremum in (20) is taken over all joint PDFs 
௑ܲೝ௎ೝ௑௏௎|ௌሺݔ௥, ,௥ݑ ,ݔ ,ݒ  :ሻ that factor asݏ|ݑ

௑ܲೝ௎ೝ௑௏௎|ௌ ൌ ௑ܲೝ௎ೝ|ௌ ௑ܲ௏௎|௎ೝௌ                         ሺ21ሻ 
and subjected to: 

൜ܫሺܸ, ܷ; ܻ| ௥ܷሻ ൐ ,ሺܸܫ ܷ; ܵ| ௥ܷሻ
;ሺܸܫ ܻ|ܷ, ௥ܷሻ ൐ ;ሺܸܫ ܵ|ܷ, ௥ܷሻ                       ሺ22ሻ 

Proof: Refer to [14]. ■ 

Note that the capacity of the deterministic and orthogonal RC 
without CSI is obtained using the achievable rate derived based 
on the partial decode-and-forward technique [20], [21], [22]; 
unfortunately, for the channel with CSI it does not seem that the 
achievable rate (20) leads to the capacity for the deterministic or 
orthogonal RC with CSI. 

As the second scenario, we consider the RC with CSI where CSI 
is a correlated pair ܵ ൌ ሺ ଵܵ, ܵଶሻ: The transmitter has access non-
causally to both ଵܵ and ܵଶ, while the relay has access non-causally 
only to ଵܵ. In the next theorem, we derive an achievable rate for 
this channel using the decode-and-forward technique. 

Theorem 7: Consider the RC with CSI ܵ ൌ ሺ ଵܵ, ܵଶሻ wherein the 
transmitter has access non-causally to both ଵܵ  and ܵଶ , but the 
relay has access non-causally only to ଵܵ . The following is an 
achievable rate: 

sup min ൜ ,ሺܷܫ ௥ܷ; ܻሻ െ ,ሺܷܫ ௥ܷ; ଵܵ, ܵଶሻ,
;ሺܷܫ ௥ܻ| ௥ܷ , ଵܵሻ െ ;ሺܷܫ ܵଶ| ௥ܷ, ଵܵሻൠ            ሺ23ሻ 

where the supremum in (23) is taken over all joint PDFs 
௑ܲೝ௎ೝ௑௎|ௌభௌమሺݔ௥, ,௥ݑ ,ݔ ,ଵݏ|ݑ  :ଶሻ that factor asݏ

௑ܲೝ௎ೝ௑௎|ௌభௌమ ൌ ௑ܲೝ௎ೝ|ௌభ ௑ܲ௎|௎ೝௌభௌమ                   ሺ24ሻ 



Proof: Refer to [14]. ■ 

Remark: The achievable rate (23) will be used in Theorem 8 to 
prove a capacity result for the Gaussian channel with additive 
interferences. 

Finally, consider the degraded Gaussian RC with additive 
interferences. The channel is formulated as follows: 

൜ ௥ܻ ൌ ܺ ൅ ܵ௥ ൅ ܼ௥                     
ܻ ൌ ܺ ൅ ܺ௥ ൅ ܵௗ ൅ ܼ௥ ൅ ܼௗ

                     ሺ25ሻ 

where ܺ  and ܺ௥  are the transmitter input and the relay input, 
respectively; ௥ܻ and ܻ are the received signals at the relay and the 
receiver, respectively; ܼ௥~ࣨሺ0, ௥ܰሻ  and ܼௗ~ࣨሺ0, ௗܰሻ  are 
independent Gaussian noises and ܵ௥~ࣨ൫0, ௌܲೝ൯  and 
ܵௗ~ࣨ൫0, ௌܲ೏൯ are additive Gaussian interferences. The Gaussian 
noises ܼ௥ and ܼௗ are independent of ሺܵ௥, ܵௗሻ, but ܵ௥ and ܵௗ can be 
correlated. The input signals are power constrained, i.e., ॱሾܺଶሿ ൑
ܲ and ॱሾܺ௥

ଶሿ ൑ ௥ܲ.  

Note that the channel (25) when ܵ௥ ؠ ܵௗ ؠ ׎  reduces to the 
degraded Gaussian RC for which the capacity was established in 
[20]. This channel was considered in [6] for the case of ܵ௥ ؠ ܵௗ ؠ
ሚܵ, where ሚܵ is non-causally known at the transmitter and at the 
relay. It was shown that in this case the capacity is the same as 
when the interference ሚܵ is also available at the receiver; in other 
words, the capacity is the same as when there is no additive 
interference in the channel. In the following, by considering the 
generalized model (25) we derive new results. 

Firstly, we consider the case where the relay node knows (non-
causally) the pair ሺܵ௥, ܵௗሻ, but the transmitter knows only the part 
ܵௗ . Since the relay knows ܵ௥ , this part of interference can be 
subtracted from the received signal at the relay; thereby the 
channel is equivalent to the following: 

൜ ௥ܻ ൌ ܺ ൅ ܼ௥                              
ܻ ൌ ܺ ൅ ܺ௥ ൅ ܵௗ ൅ ܼ௥ ൅ ܼௗ

                       ሺ26ሻ 

Again, because the relay knows ܵௗ , it can add this part of the 
interference to its received signal; thereby, the channel is 
equivalent to the following: 

൜ ௥ܻ ൌ ܺ ൅ ܵௗ ൅ ܼ௥                    
ܻ ൌ ܺ ൅ ܺ௥ ൅ ܵௗ ൅ ܼ௥ ൅ ܼௗ

                        ሺ27ሻ 

where ܵௗ is available non-causally at the transmitter and the relay 
node. On the other hand, the model (27) is similar to that one 
considered in [6]. Therefore, the following result is established. 

Proposition 5: The capacity of the degraded Gaussian RC with 
additive interferences (25) in which the relay has access non-
causally to the pair ሺܵ௥, ܵௗሻ, but the transmitter has access non-
causally only to the part ܵௗ , is the same as when there is no 
additive interference in the channel and is given by: 

sup
଴ஸ஑ஸଵ

min ቊܥ ቆ
ܲ ൅ ௥ܲ ൅ 2ඥ തܽܲ ௥ܲ

௥ܰ ൅ ௗܰ
ቇ , ܥ ൬

ܲߙ
௥ܰ

൰ቋ         ሺ28ሻ 

where ܥሺݔሻ ؜ ଵ
ଶ

logሺ1 ൅  .ሻݔ

In the previous scenario to achieve a full interference cancellation 
it was required that the relay knows both interferences, i.e., 
ሺܵ௥, ܵௗሻ.  Now, let us consider an interesting scenario regarding 
the availability of the interferences at the users, as follows. We 
assume that the transmitter has access non-causally to both 
interferences ሺܵ௥, ܵௗሻ, the relay has access non-causally to the part 
of interference which is added to the received signal at the 
receiver, i.e., ܵௗ , and the receiver has access to the part of 
interference which is added to the received signal at the relay, i.e., 
ܵ௥. Note that in this scenario no interference subtraction can be 
performed at the relay and the receiver; nonetheless, in the 
following theorem we show that a full interference cancellation 
can be achieved. 

Theorem 8: The capacity of the degraded Gaussian RC with 
additive interferences (25) wherein the transmitter knows non-
causally both interferences ܵ௥, ܵௗ , the relay knows non-causally 
ܵௗ  and the receiver knows ܵ௥ , is the same as when there is no 
interference in the channel and is given by (28). 

Proof: Refer to Appendix. ■ 

III. CONCLUSION 
In this paper, new capacity inner and outer bounds were 

established for the multiuser channels with non-causal CSI at the 
transmitters, and also the actual capacity region was derived in 
some special cases. It seems that for discrete deterministic 
channels with non-causal CSI at the transmitters, the availability of 
CSI at the deterministic receivers does not affect the capacity 
region. This result is similar to Gaussian channel with additive 
interference wherein the capacity when the transmitter has access 
to CSI non-causally is the same as when the receiver also knows it. 
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APPENDIX 
 Proof of proposition 1: 

The achievability is obtained from (4) by setting ௜ܸ ൌ ௜ܻ, ݅ ൌ 1,2, where the equations ܪሺ ଵܻ| ଶܻ, ଵܵሻ ൌ ሺܪ ଵܻ| ଵܵሻ and ܪሺ ଶܻ| ଵܻ, ܵଶሻ ൌ
ሺܪ ଶܻ|ܵଶሻ are applied. For the converse part, let us assume that the CSI ሺ ଵܵ, ܵଶሻ is available at the receiver. Consider a length-݊ code 
with vanishing average error probability for the channel. By Fano’s inequality, one can show: 

ܴ݊ଵ ൑ ෍ ;൫ܺଵ,௧ܫ ௧ܻหܺଶ,௧, ଵܵ,௧, ܵଶ,௧൯
௡

௧ୀଵ

൅ ߳ଵ,௡ 

        ൌ
ሺ௔ሻ

෍ ൫ܪ ଵܻ,௧, ଶܻ,௧หܺଶ,௧, ଵܵ,௧, ܵଶ,௧൯
௡

௧ୀଵ

൅ ߳ଵ,௡ 

        ൌ
ሺ௕ሻ

෍ ൫ܪ ଵܻ,௧หܺଶ,௧, ଵܵ,௧, ܵଶ,௧൯
௡

௧ୀଵ

൅ ߳ଵ,௡ 

         ൑ ෍ ൫ܪ ଵܻ,௧ห ଵܵ,௧൯
௡

௧ୀଵ

൅ ߳ଵ,௡ 

ሺܣ. 1ሻ 

where ߳ଵ,௡ ՜ 0 as ݊ ՜ ∞, equality (a) holds because ௧ܻ ൌ ൫ ଵܻ,௧, ଶܻ,௧൯ is a deterministic function of ൫ ଵܺ,௧, ܺଶ,௧, ଵܵ,௧, ܵଶ,௧൯, and equality 
(b) holds because ଶܻ,௧ is a deterministic function of ൫ܺଶ,௧, ܵଶ,௧൯. Similarly, we have: 

ܴ݊ଶ ൑ ෍ ൫ܪ ଶܻ,௧หܵଶ,௧൯
௡

௧ୀଵ

൅ ߳ଶ,௡ 

ሺܣ. 2ሻ 

where ߳ଶ,௡ ՜ 0 as ݊ ՜ ∞. Note that the PDF ܲ൫ݔଵ,௧, ,ଵ,௧ݏଶ,௧หݔ ,ଶ,௧൯ݏ ݐ ൌ 1, … , ݊, does not factor as ܲ൫ݔଵ,௧หݏଵ,௧൯ܲ൫ݔଶ,௧หݏଶ,௧൯; however, 
due to the orthogonal property of the channel the expressions appeared in ሺܣ. 1ሻ and ሺܣ. 2ሻ depend only on the marginal PDFs 
ܲ൫ݔଵ,௧หݏଵ,௧, ଶ,௧൯ݏ ൌ ܲ൫ݔଵ,௧หݏଵ,௧൯ and ܲ൫ݔଶ,௧หݏଵ,௧, ଶ,௧൯ݏ ൌ ܲ൫ݔଶ,௧หݏଶ,௧൯, respectively. Therefore, without loss of generality we can consider 
the bounds ሺܣ. 1ሻ and ሺܣ. 2ሻ under the PDFs of the form ܲ൫ݔଵ,௧หݏଵ,௧൯ܲ൫ݔଶ,௧หݏଶ,௧൯, ݐ ൌ 1, … , ݊, as desired. ■ 

 

 Proof of Theorem 1: 

Consider a length-݊ code with vanishing error probability for the channel. Define new RVs ଵܸ,௧ , ଶܸ,௧, ݐ ൌ 1, … , ݊, as follows: 

௜ܸ,௧ ؜ ൫ܻ௧ିଵ, ,௜ܯ ௜ܵ,௧ାଵ
௡ ൯, ݅ ൌ 1,2 

ሺܣ. 3ሻ 

Using Fano’s inequality we can write: 

ܴ݊ଵ ൑ ;ଵܯሺܫ ܻ௡, ଶሻܯ ൅ ݊߳ଵ,௡ 

         ൌ ෍ ;ଵܯሺܫ ௧ܻ|ܻ௧ିଵ, ଶሻܯ
௡

௧ୀଵ

൅ ݊߳ଵ,௡ 

         ൑ ෍ ,ଵܯ൫ܫ ଵܵ,௧ାଵ
௡ , ܵଶ,௧ାଵ

௡ ; ௧ܻหܻ௧ିଵ, ଶ൯ܯ
௡

௧ୀଵ

െ ෍ ൫ܫ ଵܵ,௧ାଵ
௡ , ܵଶ,௧ାଵ

௡ ; ௧ܻหܻ௧ିଵ, ,ଵܯ ଶ൯ܯ
௡

௧ୀଵ

൅ ݊߳ଵ,௡ 

         ൌ ෍ ,ଵܯ൫ܫ ଵܵ,௧ାଵ
௡ ; ௧ܻหܻ௧ିଵ, ,ଶܯ ܵଶ,௧ାଵ

௡ ൯
௡

௧ୀଵ

൅ ෍ ൫ܵଶ,௧ାଵܫ
௡ ; ௧ܻหܻ௧ିଵ, ଶ൯ܯ

௡

௧ୀଵ

െ ෍ ൫ܫ ଵܵ,௧ାଵ
௡ , ܵଶ,௧ାଵ

௡ ; ௧ܻหܻ௧ିଵ, ,ଵܯ ଶ൯ܯ
௡

௧ୀଵ

൅ ݊߳ଵ,௡ 

ሺܣ. 4ሻ 

where ߳ଵ,௡ ՜ ∞ as ݊ ՜ ∞. Now, using the Csiszar-Korner lemma, we have: 

෍ ൫ܵଶ,௧ାଵܫ
௡ ; ௧ܻหܻ௧ିଵ, ଶ൯ܯ

௡

௧ୀଵ

ൌ ෍ ;൫ܻ௧ିଵܫ ܵଶ,௧หܯଶ, ܵଶ,௧ାଵ
௡ ൯

௡

௧ୀଵ

ൌ ෍ ,൫ܻ௧ିଵܫ ,ଶܯ ܵଶ,௧ାଵ
௡ ; ܵଶ,௧൯

௡

௧ୀଵ

ൌ ෍ ൫ܫ ଶܸ,௧; ܵଶ,௧൯
௡

௧ୀଵ

 

ሺܣ. 5ሻ 

and also, 



෍ ൫ܫ ଵܵ,௧ାଵ
௡ , ܵଶ,௧ାଵ

௡ ; ௧ܻหܻ௧ିଵ, ,ଵܯ ଶ൯ܯ
௡

௧ୀଵ

ൌ ෍ ൫ܫ ଵܵ,௧, ܵଶ,௧; ܻ௧ିଵห ଵܵ,௧ାଵ
௡ , ܵଶ,௧ାଵ

௡ , ,ଵܯ ଶ൯ܯ
௡

௧ୀଵ

 

                                                                   ൌ ෍ ,൫ܻ௧ିଵܫ ଵܵ,௧ାଵ
௡ , ܵଶ,௧ାଵ

௡ , ,ଵܯ ;ଶܯ ଵܵ,௧, ܵଶ,௧൯
௡

௧ୀଵ

 

                                                                   ൌ ෍ ൫ܫ ଵܸ,௧, ଶܸ,௧; ଵܵ,௧, ܵଶ,௧൯
௡

௧ୀଵ

 

ሺܣ. 6ሻ 

By substituting ሺܣ. 5ሻ and ሺܣ. 6ሻ in ሺܣ. 4ሻ, we obtain: 

ܴ݊ଵ ൑ ෍ ൫ܫ ଵܸ,௧; ௧ܻห ଶܸ,௧൯ ൅ ൫ܫ ଶܸ,௧; ܵଶ,௧൯ െ ൫ܫ ଵܸ,௧, ଶܸ,௧; ଵܵ,௧, ܵଶ,௧൯
௡

௧ୀଵ

൅ ݊߳ଵ,௡ 

ሺܣ. 7ሻ 

Symmetrically, we can derive: 

ܴ݊ଶ ൑ ෍ ൫ܫ ଶܸ,௧; ௧ܻห ଵܸ,௧൯ ൅ ൫ܫ ଵܸ,௧; ଵܵ,௧൯ െ ൫ܫ ଵܸ,௧, ଶܸ,௧; ଵܵ,௧, ܵଶ,௧൯
௡

௧ୀଵ

൅ ݊߳ଶ,௡ 

ሺܣ. 8ሻ 

where ߳ଶ,௡ ՜ ∞ as ݊ ՜ ∞. For the sum-rate by following the same lines as single-user channel [2] one can show: 

݊ሺܴଵ ൅ ܴଶሻ ൑ ෍ ൫ܫ ଵܸ,௧, ଶܸ,௧; ௧ܻ൯ െ ൫ܫ ଵܸ,௧, ଶܸ,௧; ଵܵ,௧, ܵଶ,௧൯
௡

௧ୀଵ

൅ ݊൫߳ଵ,௡ ൅ ߳ଶ,௡൯ 

ሺܣ. 9ሻ 

Then, by applying a standard time-sharing argument the outer bound (8) is derived. ■ 

 

 Proof of Remark 2 of Theorem 2: 

First note that by setting ܹ ؠ and ܴ଴ ׎ ൌ 0 in (10), our achievable rate region reduces to the one reported in [12, p.7-53]. Based on 
the result of [23, Lemma 1], it is readily derived that our achievable rate region (10) strictly contains that of [12, p. 7-53]. In fact, this 
strict inclusion holds even for the case of ԡ࣭ԡ ൌ 1. Now, consider the rate region reported in [11, Sec. V] which is expressed by the 
following constraints: 

                                                            ܴ଴ ൑ ሾminሼܫሺܹ; ଵܻሻ, ;ሺܹܫ ଶܻሻሽ െ ;ሺܹܫ ܵሻሿା                                              ሺܽሻ 

                                                   ܴ଴ ൅ ܴଵ ൑ ,ሺܹܫ ܸ; ଵܻሻ െ ,ሺܹܫ ܸ; ܵሻ                                                                ሺܾሻ 

                                                   ܴ଴ ൅ ܴଶ ൑ ,ሺܹܫ ܷ; ଶܻሻ െ ,ሺܹܫ ܷ; ܵሻ                                                               ሺܿሻ 

                                          ܴ଴ ൅ ܴଵ ൅ ܴଶ ൑ െሾmaxሼܫሺܹ; ଵܻሻ, ;ሺܹܫ ଶܻሻሽ െ ;ሺܹܫ ܵሻሿା                                      ሺ݀ሻ 
                                                                                         ൅ܫሺܹ, ܸ; ଵܻሻ െ ,ሺܹܫ ܸ; ܵሻ 
                                                                                         ൅ܫሺܹ, ܷ; ଶܻሻ െ ,ሺܹܫ ܷ; ܵሻ െ ;ሺܷܫ ܸ|ܹ, ܵሻ 

ሺܣ. 10ሻ 

where ሾܽሿା ൌ maxሼ0, ܽሽ. The achievable rate region of [11, Sec. V] is the set of all triples ሺܴ଴, ܴଵ, ܴଶሻ satisfying ሺܣ. 10ሻ for some 
joint PDFs ௑ܲ௏௎ௐ|ௌሺݔ, ,ݒ ,ݑ ,ሻ. Given such a joint PDF ௏ܲ௎ௐ௑, we first show if ሺܴ଴ݏ|ݓ ܴଵ, ܴଶሻ satisfies ሺܣ. 10ሻ, it also belongs to our 
rate region (10). First note that, for every joint PDF ௑ܲ௏௎ௐௌሺݔ, ,ݒ ,ݑ ,ݓ  :ሻ we haveݏ

,ሺܹܫ ܸ; ܵሻ ൅ ,ሺܹܫ ܷ; ܵሻ ൅ ;ሺܷܫ ܸ|ܹ, ܵሻ ൌ ;ሺܸܫ ܷ|ܹሻ ൅ ,ሺܸܫ ܷ, ܹ; ܵሻ ൅ ;ሺܹܫ ܵሻ 

ሺܣ. 11ሻ 

To see this equality, consider the left hand side of ሺܣ. 11ሻ. We can write: 

,ሺܹܫ ܸ; ܵሻ ൅ ,ሺܹܫ ܷ; ܵሻ ൅ ;ሺܷܫ ܸ|ܹ, ܵሻ ൌ ;ሺܹܫ ܵሻ ൅ ;ሺܸܫ ܵ|ܹሻ ൅ ;ሺܷܫ ܸ|ܹ, ܵሻ ൅ ,ሺܹܫ ܷ; ܵሻ 

                                                                  ൌ ;ሺܹܫ ܵሻ ൅ ;ሺܸܫ ܵ, ܷ|ܹሻ ൅ ,ሺܹܫ ܷ; ܵሻ 

                                                                  ൌ ;ሺܹܫ ܵሻ ൅ ;ሺܸܫ ܷ|ܹሻ ൅ ;ሺܸܫ ܵ|ܹ, ܷሻ ൅ ,ሺܹܫ ܷ; ܵሻ 

                                                                  ൌ ;ሺܹܫ ܵሻ ൅ ;ሺܸܫ ܷ|ܹሻ ൅ ,ሺܸܫ ܷ, ܹ; ܵሻ 

                                                                  ൌ Right Hand side of  ሺܣ. 11ሻ. 



Also, since ሾܽሿା ൒ ܽ, we have: 

െሾmaxሼܫሺܹ; ଵܻሻ, ;ሺܹܫ ଶܻሻሽ െ ;ሺܹܫ ܵሻሿା ൑ െ maxሼܫሺܹ; ଵܻሻ, ;ሺܹܫ ଶܻሻሽ ൅ ;ሺܹܫ ܵሻ 

                                                                   ൌ minሼെܫሺܹ; ଵܻሻ, െܫሺܹ; ଶܻሻሽ ൅ ;ሺܹܫ ܵሻ 

ሺܣ. 12ሻ 

Moreover, by definition of ሾܽሿା, one can easily derive: 

ሾminሼܫሺܹ; ଵܻሻ, ;ሺܹܫ ଶܻሻሽ െ ;ሺܹܫ ܵሻሿା ൑ ሾmaxሼܫሺܹ; ଵܻሻ, ;ሺܹܫ ଶܻሻሽ െ ;ሺܹܫ ܵሻሿା 

ሺܣ. 13ሻ 

Next, from ሺܣ. 10 כ ݀ሻ and ሺܣ. 12ሻ, we have: 

ܴ଴ ൅ ܴଵ ൅ ܴଶ ൑ െܫሺܹ; ଵܻሻ ൅ ;ሺܹܫ ܵሻ 

                           ൅ܫሺܹ, ܸ; ଵܻሻ െ ,ሺܹܫ ܸ; ܵሻ 

                           ൅ܫሺܹ, ܷ; ଶܻሻ െ ,ሺܹܫ ܷ; ܵሻ െ ;ሺܷܫ ܸ|ܹ, ܵሻ 

                       ൌ
ሺ௔ሻ

;ሺܸܫ ଵܻ|ܹሻ ൅ ,ሺܹܫ ܷ; ଶܻሻ െ ;ሺܸܫ ܷ|ܹሻ െ ,ሺܸܫ ܷ, ܹ; ܵሻ 

ሺܣ. 14ሻ 

where equality (a) is obtained by ሺܣ. 11ሻ. Similarly, 

ܴ଴ ൅ ܴଵ ൅ ܴଶ ൑ െܫሺܹ; ଶܻሻ ൅ ;ሺܹܫ ܵሻ 

                           ൅ܫሺܹ, ܸ; ଵܻሻ െ ,ሺܹܫ ܸ; ܵሻ 

                           ൅ܫሺܹ, ܷ; ଶܻሻ െ ,ሺܹܫ ܷ; ܵሻ െ ;ሺܷܫ ܸ|ܹ, ܵሻ 

                       ൌ ,ሺܹܫ ܸ; ଵܻሻ ൅ ;ሺܷܫ ଶܻ|ܹሻ െ ;ሺܸܫ ܷ|ܹሻ െ ,ሺܸܫ ܷ, ܹ; ܵሻ 

ሺܣ. 15ሻ 

Finally, by adding the two sides of ሺܣ. 10 כ ܽሻ and ሺܣ. 1 כ ݀ሻ, and also considering ሺܣ. 13ሻ, we obtain: 

2ܴ଴ ൅ ܴଵ ൅ ܴଶ ൑ ,ሺܹܫ ܸ; ଵܻሻ െ ,ሺܹܫ ܸ; ܵሻ ൅ ,ሺܹܫ ܷ; ଶܻሻ െ ,ሺܹܫ ܷ; ܵሻ െ ;ሺܷܫ ܸ|ܹ, ܵሻ 

                         ൌ
ሺ௔ሻ

,ሺܹܫ ܸ; ଵܻሻ ൅ ,ሺܹܫ ܷ; ଶܻሻ െ ;ሺܸܫ ܷ|ܹሻ െ ,ሺܸܫ ܷ, ܹ; ܵሻ െ ;ሺܹܫ ܵሻ 

ሺܣ. 16ሻ 

where (a) is due to ሺܣ. 11ሻ. Therefore, by ሺܣ. 10 כ ܾሻ, ሺܣ. 10 כ ܿሻ, ሺܣ. 14ሻ, ሺܣ. 15ሻ, and ሺܣ. 16ሻ, we derive that ሺܴ଴, ܴଵ, ܴଶሻ belongs to 
our rate region (10).  

Then, we show that our rate region can strictly contain that of [11, Sec. V]. Consider the scenario of broadcasting only a common 
message, i.e., ܴଵ ൌ ܴଶ ൌ 0. In this case, due to ሺܣ. 10 כ ܽሻ it is readily derived that the maximum common rate which can be achieved 
by the rate region of [11, Sec. V], denoted by ܴ଴

ௌௌ, at most is as follows: 

ܴ଴
ௌௌ ൑ max

௉೉ೈ|ೄ
 ሾminሼܫሺܹ; ଵܻሻ, ;ሺܹܫ ଶܻሻሽ െ ;ሺܹܫ ܵሻሿା ൌ

ሺ௔ሻ
max

௉೉ೈ|ೄ
൫minሼܫሺܹ; ଵܻሻ, ;ሺܹܫ ଶܻሻሽ െ ;ሺܹܫ ܵሻ൯ 

ሺܣ. 17ሻ 

where equality (a) holds because by setting ܹ ؠ  the argument of the maximization given above is zero and hence it can take also ,׎
non-negative values. Now, consider our achievable rate region (10). By setting ܴଵ ൌ ܴଶ ൌ 0 in (10), we obtain that the following rate 
can be achieved: 

ܴ଴ ൌ max
௉೉ೇೆೈ|ೄ

ۉ

ۈ
ۈ
ۈ
ۇ

min 

ۉ

ۈ
ۈ
ۇ

,ሺܹܫ ܸ; ଵܻሻ െ ,ሺܹܫ ܸ; ܵሻ,
,ሺܹܫ ܷ; ଶܻሻ െ ,ሺܹܫ ܷ; ܵሻ,

;ሺܸܫ ଵܻ|ܹሻ ൅ ,ሺܹܫ ܷ; ଶܻሻ െ ;ሺܸܫ ܷ|ܹሻ െ ,ሺܸܫ ܷ, ܹ; ܵሻ,
,ሺܹܫ ܸ; ଵܻሻ ൅ ;ሺܷܫ ଶܻ|ܹሻ െ ;ሺܸܫ ܷ|ܹሻ െ ,ሺܸܫ ܷ, ܹ; ܵሻ,

1
2

൫ܫሺܹ, ܸ; ଵܻሻ ൅ ,ሺܹܫ ܷ; ଶܻሻ െ ;ሺܸܫ ܷ|ܹሻ െ ,ሺܸܫ ܷ, ܹ; ܵሻ െ ;ሺܹܫ ܵሻ൯ی

ۋ
ۋ
ۊ

ی

ۋ
ۋ
ۋ
ۊ

 

ሺܣ. 18ሻ 

On the one hand, by setting ܷ ؠ ܸ ؠ .ܣሺ ,׎ 18ሻ  reduces to ሺܣ. 17ሻ , (note that, for every ܽ  and ܾ , we have min ሺܽ, ܾሻ ൑ ௔ା௕
ଶ

); 
therefore, our lower bound on the common rate is at least as large as ܴ଴

ௌௌ given by ሺܣ. 17ሻ. Now, we show that indeed the common 



rate achievable by our rate region (10) can be strictly larger than ܴ଴
ௌௌ. To prove this, we adapt a recent result derived in [19] for 

broadcasting a common message to two receivers where the transmitter has access to non-causal CSI. Precisely speaking, the authors 
in [19, Th. 1] established the following achievable rate for this scenario, which we denote by ܴ଴

ோீ஼,: 

ܴ଴
ோீ஼ ൌ max

௉೉ೇೆೈ|ೄ

ۉ

ۈ
ۇ

min ൮

,ሺܹܫ ܸ; ଵܻሻ െ ,ሺܹܫ ܸ; ܵሻ,
,ሺܹܫ ܷ; ଶܻሻ െ ,ሺܹܫ ܷ; ܵሻ,

1
2

൫ܫሺܹ, ܸ; ଵܻሻ ൅ ,ሺܹܫ ܷ; ଶܻሻ െ ,ሺܹܫ ܸ; ܵሻ െ ,ሺܹܫ ܷ; ܵሻ െ ;ሺܷܫ ܸ|ܹ, ܵሻ൯
൲

ی

ۋ
ۊ

 

ሺܣ. 19ሻ 

In general, ܴ଴
ோீ஼ is larger than both our lower bound given in ሺܣ. 18ሻ and ܴ଴

ௌௌ given in ሺܣ. 17ሻ. Nevertheless, we demonstrate that 
there exists channels for which our lower bound and ܴ଴

ோீ஼ coincide and achieve the capacity, while ܴ଴
ௌௌ is strictly suboptimal. In fact, 

one example is justly the channel considered in [19, Sec. III]. We do not discuss the details of this example as can be found in [19, 
Sec. III]. For the mentioned example, the authors proved that the capacity can be achieved by setting ܹ ؠ ܸ ,׎ ؠ ଵܻ and ܷ ؠ ଶܻ in 
ሺܣ. 19ሻ; while ܴ଴

ௌௌ is strictly suboptimal. On the one hand, by this choice of auxiliary RVs our lower bound given in ሺܣ. 18ሻ and 
ܴ଴

ோீ஼ coincide, which are equal to: 

max
௉೉|ೄ

min ൜ܪሺ ଵܻ|ܵሻ, ሺܪ ଶܻ|ܵሻ,
1
2

൫ܪሺ ଵܻ, ଶܻ|ܵሻ൯ൠ 

ሺܣ. 20ሻ 

Therefore, for the example given in [19, Sec. III] our lower bound also achieves the capacity, while ܴ଴
ௌௌ is strictly suboptimal. This 

proves the desired result. ■ 

 

 Proof of Proposition 2: 

For the direct part, by setting ܹ ؠ ܸ ,׎ ؠ ଵܻ, ܷ ؠ ଶܻ, in the achievable rate region (10) we derive: 

ܴ଴ ൅ ܴଵ ൑ ሺܪ ଵܻ|ܵሻ 
ܴ଴ ൅ ܴଶ ൑ ሺܪ ଶܻ|ܵሻ 

                                                                                 2ܴ଴ ൅ ܴଵ ൅ ܴଶ ൑ ሺܪ ଵܻ, ଶܻ|ܵሻ 
ሺܣ. 21ሻ 

One the one hand, by the condition (12) we have: ܪሺ ଵܻ, ଶܻ|ܵሻ ൌ ሺܪ ଵܻ|ܵሻ ൅ ሺܪ ଶܻ|ܵሻ. Therefore, the third constraint of ሺܣ. 21ሻ is 
redundant. The converse part is derived using the cut-set outer bound for channels with CSI. ■ 

 

 Proof of Theorem 4: 

Consider a length-݊ code with vanishing average error probability for the channel. Define new RVs ௧ܷ , ௧ܸ , ݐ ൌ 1, … , ݊, as follows: 

௧ܸ ؜ ൫ܯ଴, ,ଵܯ ଵܻ
௧ିଵ, ܵ௧ିଵ, ܵ௧ାଵ

௡ , ଶܻ,௧ାଵ
௡ ൯ 

௧ܷ ؜ ൫ܯ଴, ,ଶܯ ଵܻ
௧ିଵ, ܵ௧ିଵ, ܵ௧ାଵ

௡ , ଶܻ,௧ାଵ
௡ ൯ 

ሺܣ. 22ሻ 

Using Fano’s inequality, one can write: 

݊ሺܴ଴ ൅ ܴଵሻ ൑ ,଴ܯሺܫ ;ଵܯ ଵܻ
௡, ܵ௡ሻ ൅ ݊߳ଵ,௡ 

                  ൌ ෍ ,଴ܯ൫ܫ ;ଵܯ ଵܻ,௧ห ଵܻ
௧ିଵ, ܵ௡൯

௡

௧ୀଵ

൅ ݊߳ଵ,௡ 

                  ൑ ෍ ,଴ܯ൫ܫ ,ଵܯ ଵܻ
௧ିଵ, ܵ௧ିଵ, ܵ௧ାଵ

௡ , ଶܻ,௧ାଵ
௡ ; ଵܻ,௧ห ௧ܵ൯

௡

௧ୀଵ

൅ ݊߳ଵ,௡ 

                  ൌ ෍ ൫ܫ ௧ܸ; ଵܻ,௧หܵ௧൯
௡

௧ୀଵ

൅ ݊߳ଵ,௡ 

ሺܣ. 23ሻ 

where ߳ଵ,௡ ՜ ∞ as ݊ ՜ ∞. Also, we have: 

݊ሺܴ଴ ൅ ܴଶሻ ൑ ,଴ܯሺܫ ;ଶܯ ଶܻ
௡, ܵ௡ሻ ൅ ݊߳ଶ,௡ 



                      ൌ ෍ ,଴ܯ൫ܫ ;ଶܯ ଶܻ,௧ห ଶܻ,௧ାଵ
௡ , ܵ௡൯

௡

௧ୀଵ

൅ ݊߳ଶ,௡ 

                      ൑ ෍ ,଴ܯ൫ܫ ,ଶܯ ଵܻ
௧ିଵ, ܵ௧ିଵ, ܵ௧ାଵ

௡ , ଶܻ,௧ାଵ
௡ ; ଶܻ,௧หܵ௧൯

௡

௧ୀଵ

൅ ݊߳ଶ,௡ 

                      ൌ ෍ ൫ܫ ௧ܷ; ଶܻ,௧ห ௧ܵ൯
௡

௧ୀଵ

൅ ݊߳ଶ,௡ 

ሺܣ. 24ሻ 

where ߳ଶ,௡ ՜ ∞ as ݊ ՜ ∞. For the sum rate, i.e., ܴ଴ ൅ ܴଵ ൅ ܴଶ, we can write: 

݊ሺܴ଴ ൅ ܴଵ ൅ ܴଶሻ ൑ ;ଵܯሺܫ ଵܻ
௡, ,଴ܯ ,ଶܯ ܵ௡ሻ ൅ ,଴ܯሺܫ ;ଶܯ ଶܻ

௡, ܵ௡ሻ ൅ ݊൫߳ଵ,௡ ൅ ߳ଶ,௡൯ 

                                 ൌ ;ଵܯሺܫ ଵܻ
௡|ܯ଴, ,ଶܯ ܵ௡ሻ ൅ ,଴ܯሺܫ ;ଶܯ ଶܻ

௡|ܵ௡ሻ ൅ ݊൫߳ଵ,௡ ൅ ߳ଶ,௡൯ 

                                 ൌ ෍ ;ଵܯ൫ܫ ଵܻ,௧หܯ଴, ,ଶܯ ଵܻ
௧ିଵ, ܵ௡൯

௡

௧ୀଵ

൅ ෍ ,଴ܯ൫ܫ ;ଶܯ ଶܻ,௧ห ଶܻ,௧ାଵ
௡ , ܵ௡൯

௡

௧ୀଵ

൅ ݊൫߳ଵ,௡ ൅ ߳ଶ,௡൯ 

ሺܣ. 25ሻ 

For the first term of ሺܣ. 25ሻ we have: 

෍ ;ଵܯ൫ܫ ଵܻ,௧หܯ଴, ,ଶܯ ଵܻ
௧ିଵ, ܵ௡൯

௡

௧ୀଵ

൑ ෍ ,ଵܯ൫ܫ ଶܻ,௧ାଵ
௡ ; ଵܻ,௧หܯ଴, ,ଶܯ ଵܻ

௧ିଵ, ܵ௡൯
௡

௧ୀଵ

 

                                                           ൌ ෍ ൫ܫ ଶܻ,௧ାଵ
௡ ; ଵܻ,௧หܯ଴, ,ଶܯ ଵܻ

௧ିଵ, ܵ௡൯
௡

௧ୀଵ

൅ ෍ ;ଵܯ൫ܫ ଵܻ,௧หܯ଴, ,ଶܯ ଵܻ
௧ିଵ, ଶܻ,௧ାଵ

௡ , ܵ௡൯
௡

௧ୀଵ

 

ሺܣ. 26ሻ 

Also, for the second term of ሺܣ. 25ሻ we have: 

෍ ,଴ܯ൫ܫ ;ଶܯ ଶܻ,௧ห ଶܻ,௧ାଵ
௡ , ܵ௡൯

௡

௧ୀଵ

൑ ෍ ,଴ܯ൫ܫ ,ଶܯ ଶܻ,௧ାଵ
௡ ; ଶܻ,௧หܵ௡൯

௡

௧ୀଵ

 

                                                     ൌ ෍ ,଴ܯ൫ܫ ,ଶܯ ଶܻ,௧ାଵ
௡ , ଵܻ

௧ିଵ; ଶܻ,௧หܵ௡൯
௡

௧ୀଵ

െ ෍ ൫ܫ ଵܻ
௧ିଵ; ଶܻ,௧หܯ଴, ,ଶܯ ଶܻ,௧ାଵ

௡ , ܵ௡൯
௡

௧ୀଵ

 

ሺܣ. 27ሻ 

By combining ሺܣ. 25ሻ-ሺܣ. 27ሻ, we obtain: 

݊ሺܴ଴ ൅ ܴଵ ൅ ܴଶሻ ൑ ෍ ൫ܫ ଶܻ,௧ାଵ
௡ ; ଵܻ,௧หܯ଴, ,ଶܯ ଵܻ

௧ିଵ, ܵ௡൯
௡

௧ୀଵ

൅ ෍ ;ଵܯ൫ܫ ଵܻ,௧หܯ଴, ,ଶܯ ଵܻ
௧ିଵ, ଶܻ,௧ାଵ

௡ , ܵ௡൯
௡

௧ୀଵ

 

൅ ෍ ,଴ܯ൫ܫ ,ଶܯ ଶܻ,௧ାଵ
௡ , ଵܻ

௧ିଵ; ଶܻ,௧หܵ௡൯
௡

௧ୀଵ

െ ෍ ൫ܫ ଵܻ
௧ିଵ; ଶܻ,௧หܯ଴, ,ଶܯ ଶܻ,௧ାଵ

௡ , ܵ௡൯
௡

௧ୀଵ

൅ ݊൫߳ଵ,௡ ൅ ߳ଶ,௡൯ 

ሺܣ. 28ሻ 

One the one hand, based on the the Csiszar-Korner lemma we have: 

෍ ൫ܫ ଶܻ,௧ାଵ
௡ ; ଵܻ,௧หܯ଴, ,ଶܯ ଵܻ

௧ିଵ, ܵ௡൯
௡

௧ୀଵ

ൌ ෍ ൫ܫ ଵܻ
௧ିଵ; ଶܻ,௧หܯ଴, ,ଶܯ ଶܻ,௧ାଵ

௡ , ܵ௡൯
௡

௧ୀଵ

 

ሺܣ. 29ሻ 

Now, by substituting ሺܣ. 29ሻ in ሺܣ. 28ሻ we derive: 

݊ሺܴ଴ ൅ ܴଵ ൅ ܴଶሻ ൑ ෍ ;ଵܯ൫ܫ ଵܻ,௧หܯ଴, ,ଶܯ ଵܻ
௧ିଵ, ଶܻ,௧ାଵ

௡ , ܵ௡൯
௡

௧ୀଵ

൅ ෍ ,଴ܯ൫ܫ ,ଶܯ ଶܻ,௧ାଵ
௡ , ଵܻ

௧ିଵ; ଶܻ,௧หܵ௡൯
௡

௧ୀଵ

൅ ݊൫߳ଵ,௡ ൅ ߳ଶ,௡൯ 

                                 ൌ ෍ ;൫ܺ௧ܫ ଵܻ,௧ห ௧ܷ, ௧ܵ൯
௡

௧ୀଵ

൅ ෍ ,଴ܯ൫ܫ ,ଶܯ ଶܻ,௧ାଵ
௡ , ଵܻ

௧ିଵ; ଶܻ,௧หܵ௡൯
௡

௧ୀଵ

൅ ݊൫߳ଵ,௡ ൅ ߳ଶ,௡൯ 



                                 ൑ ෍ ;൫ܺ௧ܫ ଵܻ,௧ห ௧ܷ, ܵ௧൯
௡

௧ୀଵ

൅ ෍ ,଴ܯ൫ܫ ,ଶܯ ଶܻ,௧ାଵ
௡ , ଵܻ

௧ିଵ, ܵ௧ିଵ, ௧ܵାଵ
௡ ; ଶܻ,௧หܵ௧൯

௡

௧ୀଵ

൅ ݊൫߳ଵ,௡ ൅ ߳ଶ,௡൯ 

                                 ൌ ෍ ;൫ܺ௧ܫ ଵܻ,௧ห ௧ܷ, ௧ܵ൯ ൅ ൫ܫ ௧ܷ; ଶܻ,௧หܵ௧൯
௡

௧ୀଵ

൅ ݊൫߳ଵ,௡ ൅ ߳ଶ,௡൯ 

ሺܣ. 30ሻ 

Again, for the sum rate we have: 

݊ሺܴ଴ ൅ ܴଵ ൅ ܴଶሻ ൑ ,଴ܯሺܫ ;ଵܯ ଵܻ
௡, ܵ௡ሻ ൅ ;ଶܯሺܫ ଶܻ

௡, ,଴ܯ ,ଵܯ ܵ௡ሻ ൅ ݊൫߳ଵ,௡ ൅ ߳ଶ,௡൯ 

                                 ൌ ,଴ܯሺܫ ;ଵܯ ଵܻ
௡|ܵ௡ሻ ൅ ;ଶܯሺܫ ଶܻ

௡|ܯ଴, ,ଵܯ ܵ௡ሻ ൅ ݊൫߳ଵ,௡ ൅ ߳ଶ,௡൯ 

                                 ൌ ෍ ,଴ܯ൫ܫ ;ଵܯ ଵܻ,௧ห ଵܻ
௧ିଵ, ܵ௡൯

௡

௧ୀଵ

൅ ෍ ;ଶܯ൫ܫ ଶܻ,௧หܯ଴, ,ଵܯ ଶܻ,௧ାଵ
௡ , ܵ௡൯

௡

௧ୀଵ

൅ ݊൫߳ଵ,௡ ൅ ߳ଶ,௡൯ 

ሺܣ. 31ሻ 

For the first term of ሺܣ. 31ሻ, we have: 

෍ ,଴ܯ൫ܫ ;ଵܯ ଵܻ,௧ห ଵܻ
௧ିଵ, ܵ௡൯

௡

௧ୀଵ

൑ ෍ ,଴ܯ൫ܫ ,ଵܯ ଵܻ
௧ିଵ; ଵܻ,௧หܵ௡൯

௡

௧ୀଵ

 

                                                   ൌ ෍ ,଴ܯ൫ܫ ,ଵܯ ଵܻ
௧ିଵ, ଶܻ,௧ାଵ

௡ ; ଵܻ,௧หܵ௡൯
௡

௧ୀଵ

െ ෍ ൫ܫ ଶܻ,௧ାଵ
௡ ; ଵܻ,௧หܯ଴, ,ଵܯ ଵܻ

௧ିଵ, ܵ௡൯
௡

௧ୀଵ

 

ሺܣ. 32ሻ 

Also, for the second term of ሺܣ. 31ሻ, we have: 

෍ ;ଶܯ൫ܫ ଶܻ,௧หܯ଴, ,ଵܯ ଶܻ,௧ାଵ
௡ , ܵ௡൯

௡

௧ୀଵ

൑ ෍ ,ଶܯ൫ܫ ଵܻ
௧ିଵ; ଶܻ,௧หܯ଴, ,ଵܯ ଶܻ,௧ାଵ

௡ , ܵ௡൯
௡

௧ୀଵ

 

                                                            ൌ ෍ ൫ܫ ଵܻ
௧ିଵ; ଶܻ,௧หܯ଴, ,ଵܯ ଶܻ,௧ାଵ

௡ , ܵ௡൯
௡

௧ୀଵ

൅ ෍ ;ଶܯ൫ܫ ଶܻ,௧หܯ଴, ,ଵܯ ଵܻ
௧ିଵ, ଶܻ,௧ାଵ

௡ , ܵ௡൯
௡

௧ୀଵ

 

ሺܣ. 33ሻ 

Then, by combining ሺܣ. 32ሻ and ሺܣ. 33ሻ, we derive: 

݊ሺܴ଴ ൅ ܴଵ ൅ ܴଶሻ ൑ ෍ ,଴ܯ൫ܫ ,ଵܯ ଵܻ
௧ିଵ, ଶܻ,௧ାଵ

௡ ; ଵܻ,௧หܵ௡൯
௡

௧ୀଵ

െ ෍ ൫ܫ ଶܻ,௧ାଵ
௡ ; ଵܻ,௧หܯ଴, ,ଵܯ ଵܻ

௧ିଵ, ܵ௡൯
௡

௧ୀଵ

 

൅ ෍ ൫ܫ ଵܻ
௧ିଵ; ଶܻ,௧หܯ଴, ,ଵܯ ଶܻ,௧ାଵ

௡ , ܵ௡൯
௡

௧ୀଵ

൅ ෍ ;ଶܯ൫ܫ ଶܻ,௧หܯ଴, ,ଵܯ ଵܻ
௧ିଵ, ଶܻ,௧ାଵ

௡ , ܵ௡൯
௡

௧ୀଵ

൅ ݊൫߳ଵ,௡ ൅ ߳ଶ,௡൯ 

ሺܣ. 34ሻ 

                               ൌ
ሺ௔ሻ

෍ ,଴ܯ൫ܫ ,ଵܯ ଵܻ
௧ିଵ, ଶܻ,௧ାଵ

௡ ; ଵܻ,௧หܵ௡൯
௡

௧ୀଵ

൅ ෍ ;ଶܯ൫ܫ ଶܻ,௧หܯ଴, ,ଵܯ ଵܻ
௧ିଵ, ଶܻ,௧ାଵ

௡ , ܵ௡൯
௡

௧ୀଵ

൅ ݊൫߳ଵ,௡ ൅ ߳ଶ,௡൯ 

                               ൑ ෍ ,଴ܯ൫ܫ ,ଵܯ ଵܻ
௧ିଵ, ଶܻ,௧ାଵ

௡ ܵ௧ିଵ, ܵ௧ାଵ
௡ ; ଵܻ,௧หܵ௧൯

௡

௧ୀଵ

൅ ෍ ;൫ܺ௧ܫ ଶܻ,௧ห ௧ܸ, ܵ௧൯
௡

௧ୀଵ

൅ ݊൫߳ଵ,௡ ൅ ߳ଶ,௡൯ 

                               ൌ ෍ ൫ܫ ௧ܸ; ଵܻ,௧หܵ௧൯
௡

௧ୀଵ

൅ ෍ ;൫ܺ௧ܫ ଶܻ,௧ห ௧ܸ, ܵ௧൯
௡

௧ୀଵ

൅ ݊൫߳ଵ,௡ ൅ ߳ଶ,௡൯ 

ሺܣ. 35ሻ 

where equality (a) is due to Csiszar-Korner lemma. Finally, by applying a time-sharing argument, we obtain (14). ■ 

 

 Proof of Theorem 6: 

The achievability of (19) can be obtained from (10) by substituting ܹ ൌ ܷ and ܸ ൌ ଵܻ, (when the channel is degraded, the resulting 
rate region from this substitution includes (19) as a subset). Furthermore, the achievability of (19) can be directly proved using the 
superposition coding similar to [4]. For the converse part, consider a length-݊ code with vanishing error probability for the channel. 



Define the RVs ௧ܷ ؜ ሺܯ଴, ,ଶܯ ଶܻ
௧ିଵ, ܵ௧ାଵ

௡ ሻ, ݐ ൌ 1, … , ݊. The second bound of (19) is derived by following the same lines as [2]. To 
derive the first bound, we can write: 

ܴ݊ଵ ൑ ;ଵܯሺܫ ଵܻ
௡, ଶܻ

௡, ܵ௡|ܯ଴, ଶሻܯ ൅ ݊߳ଵ,௡ 

         ൌ ;ଵܯሺܫ ଵܻ
௡, ଶܻ

௡|ܯ଴, ,ଶܯ ܵ௡ሻ ൅ ݊߳ଵ,௡ 

         ൌ ෍ ;൫ܺ௧ܫ ଵܻ,௧, ଶܻ,௧หܯ଴, ,ଶܯ ܵ௡, ଵܻ
௧ିଵ, ଶܻ

௧ିଵ൯
௡

௧ୀଵ

൅ ݊߳ଵ,௡ 

        ൌ
ሺ௔ሻ

෍ ;൫ܺ௧ܫ ଵܻ,௧หܯ଴, ,ଶܯ ܵ௡, ଵܻ
௧ିଵ, ଶܻ

௧ିଵ൯
௡

௧ୀଵ

൅ ݊߳ଵ,௡ 

        ൌ ෍ ൫ܪ ଵܻ,௧หܯ଴, ,ଶܯ ܵ௡, ଵܻ
௧ିଵ, ଶܻ

௧ିଵ൯
௡

௧ୀଵ

൅ ݊߳ଵ,௡ 

        ൑
ሺ௕ሻ

෍ ൫ܪ ଵܻ,௧ห ௧ܷ, ܵ௧൯
௡

௧ୀଵ

൅ ݊߳ଵ,௡ 

ሺܣ. 36ሻ 

where ߳ଵ,௡ ՜ 0 as ݊ ՜ ∞, equality (a) holds because the channel is degraded and inequality (b) holds because conditioning does not 
increase the entropy. On the one hand, the presented proof for the converse part continues to hold for the case where CSI is also 
available at the stronger receiver, i.e., the first receiver. ■ 

 

 Proof of Theorem 8: 

Note that the scenario considered in this theorem can be derived from that one of Theorem 7 by replacing ଵܵ with ܵௗ, ܵଶ with ܵ௥, and 
ܻ with ሺܻ, ܵ௥ሻ. Therefore, the following rate is achievable: 

sup min ൜ܫሺܷ, ௥ܷ; ܻ, ܵ௥ሻ െ ,ሺܷܫ ௥ܷ; ܵ௥, ܵௗሻ,
;ሺܷܫ ௥ܻ| ௥ܷ, ܵௗሻ െ ;ሺܷܫ ܵ௥| ௥ܷ, ܵௗሻൠ 

ሺܣ. 37ሻ 

where the supremum in ሺܣ. 37ሻ is taken over all joint PDFs ௑ܲೝ௎ೝ௑௎|ௌೝௌ೏ ൌ ௑ܲೝ௎ೝ|ௌ೏ ௑ܲ௎|௎ೝௌೝௌ೏. Let ߙ א ሾ0,1ሿ, and ܺ௥~ࣨሺ0, ௥ܲሻ and 
ܺ଴~ࣨሺ0, ,ሻ be two independent Gaussian RVs which are also independent of ሺܵ௥ܲߙ ܵௗሻ. Define: 

ە
ۖ
۔

ۖ
ܺۓ ؜ ඨ

തܲߙ
௥ܲ

ܺ௥ ൅ ܺ଴                     

௥ܷ ؜ ௥ܵௗߚ ൅ ܺ௥                          
ܷ ؜ ଵܵ௥ߚ ൅ ଶܵௗߚ ൅ ଷܺ௥ߚ ൅ ܺ

 

ሺܣ. 38ሻ 

where, 

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
௥ߚۓ ൌ ௥ܲ ൅ ඥߙതܲ ௥ܲ

ܲ ൅ ௥ܲ ൅ 2ඥߙതܲ ௥ܲ ൅ ௥ܰ ൅ ௗܰ

ଵߚ ൌ
ܲߙ

ܲߙ ൅ ௥ܰ
                                      

ଶߚ ൌ
ܲߙ

ܲߙ ൅ ௥ܰ ൅ ௗܰ
                          

ଷߚ ൌ ଶߚ ቌඨ
തܲߙ

௥ܲ
൅ 1ቍ െ ඨ

തܲߙ
௥ܲ

         

 

ሺܣ. 39ሻ 

By substituting ሺܣ. 38ሻ in ሺܣ. 37ሻ, we derive the rate (28). ■ 
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