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Abstract—A number of different multimedia fingerprinting
algorithms and identification techniques were proposed and
analyzed recently. This paper presents a content identification
setup for a class of multimedia data that can be modeled
by a Gauss-Markov process. We advocate a constrained order
statistics decoding scheme based on digital fingerprints extracted
from correlated data to identify contents. Finally, we investigate
the fundamental limits of the proposed setup by deriving bounds
on the miss and false acceptance probabilities.

I. INTRODUCTION

In today’s world, digital reproduction tools and user gener-
ated content (UGC) websites such as Youtube, Flicker, etc.,
have performed an impressive evolution, providing profes-
sional solutions to various groups of users. Besides these
obvious advantages, at the same time these tools have raised
concerns about copyrighted content protection. Thus, content
based identification (CBI) becomes a critical issue.

Multimedia applications use high-dimensional data that are
frequently privacy-sensitive. The data are also highly corre-
lated in spatial and time coordinates. Moreover, multimedia
data might be severely distorted due to the habitual chain of
processing, transcoding, communication and storage. There-
fore, in order to design a robust CBI system, one must consider
not only its ability to handle high-dimensional, correlated and
privacy-sensitive data but also its performance under strong
distortions.

There exist several approaches to deal with the former
problems, such as robust hashing and digital fingerprinting.
A digital fingerprint represents a short, robust and distinctive
content description. The main idea behind digital fingerprint-
ing approaches is to extract digital fingerprints of a lower
dimensionality with a maximum possible entropy, i.e., in
the binary case the bits of digital fingerprints should be
independently and equally likely 0s and 1s. However, since
multimedia data are correlated, one of the principle tasks of a
dimensionality reduction transform is to eliminate correlation
between the samples. A mapper that possesses such properties
is the Karhunen-Loève transform (KLT) [1]. However, the price
that must be paid for this optimality is its data dependence and
the necessity of updating the transform matrix for new entries.
In order to allay this dependence, several approximations of
the KLT were proposed such as the Discrete Cosine Transform
(DCT) and Discrete Wavelet Transform (DWT) [1]. The basis
vectors of these transforms are fixed and independent of the
statistics of their inputs. Actually, the basis vectors of DCT

and DWT are optimized for locally correlated data. However,
the main drawback of such fixed basis transforms consists
in the public disclosure of the basis vectors, which is rarely
acceptable for multimedia security applications [2].

One solution to overcome this privacy/security shortcoming
is a randomized mapper that can be designed based on random
projections (RP) [3]. The RP have been the object of much
interest due to their ability for distance preservation, which
is also recognized in the Compressed Sensing community for
sparse data [4]. However, the drawback of this approach is
that multimedia data are real valued correlated signals but
not sparse samples. Although the decorrelation property of
orthogonal transforms is well-known [1], the RP are based
on approximately orthogonal bases. Therefore, the statistics
of projected data, i.e., the covariance matrix, are not well
justified. On the other hand, prior knowledge of the statistics
of extracted digital fingerprints is crucial for evaluation of
the performance of CBI systems. As mentioned above, the
second important issue of CBI systems is their ability to deal
with highly distorted data where the performance of unique
decoding is characterized by a high probability of error. As
a possible solution, one can envision the use of the Forney
[5] list decoding approach as mentioned in [6]. However, in
many identification problems, the final sink of information
will be a human being. This restriction makes this type of
list decoding undesirable, due to the high variability of the
list size, i.e., for very noisy environment the list can be
exceedingly long. Another solution, which is proposed by the
authors in [7], is the constrained Order Statistics List Decoding
(OSLD) approach. In the constrained OSLD, which is indeed a
combination of Elias [8] and Forney list decoding approaches
in communication setups, a limited number of candidates with
the largest likelihood functions that can satisfy a specific
threshold is selected. The performance analysis accomplished
in [7] is based on the assumption that contents are generated
independently and identically, which is not true for multimedia
data [1]. Moreover, one is often interested in choosing system
parameters, i.e., the length of digital fingerprints, the threshold
and the maximum number of final candidates, to ensure
that the probabilities of miss and false acceptance are below
certain bounds. Hence, in this paper, we derive bounds on the
probabilities of miss and false acceptance using fingerprints
of a given length.

The main contribution of this paper can be summarized
as follows: we introduce an identification setup by using a
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Fig. 1. The general setup for CBI based on binary fingerprints.

constrained OSLD for a class of multimedia data that can be
modeled by a correlation-based model like a Gauss-Markov
process, which captures image pixel dependencies directly in
the coordinate domain [1]. Then, we analyze the fundamental
performance limit by deriving bounds on the miss and false
acceptance probabilities.

The outline of this paper is as follows. In Section II, we
introduce the identification system. In Section III, we analyze
the statistics of extracted digital fingerprints. The fundamental
limits of the proposed identification setup is considered in
Section IV. Finally, the conclusions are presented in Section V.

Notations: We use capital letters X to denote scalar random
variables and X = {X[i]}Ni=1 to denote vector random vari-
ables. Corresponding small letters x and x = {x[i]}Ni=1 denote
realizations of scalar and vector random variables, respectively.
x† denotes the transpose of x. We use H2(·) to denote a
binary entropy. N (µ, σ2

X) stands for the Gaussian distribution
with mean µ and variance σ2

X . B(N, p) denotes the Binomial
distribution with N trails and probability of success p. E[·]
designates the expectation. D(τ‖δ) stands for the divergence
between 0 ≤ τ ≤ 1 and 0 ≤ δ ≤ 1.

II. IDENTIFICATION SETUP

The identification setup under analysis shown in Fig. 1
consists of two main phases: content enrollment and content
identification.

Regarding storage requirements and computational com-
plexity, the cost of identification could be enormous for large
databases, especially in multimedia applications. Therefore, in
the content enrollment phase, the digital fingerprints are ex-
tracted from contents to be identified and stored in a Database.
The database is a collection of M binary vectors denoted by
bxm ∈ {0, 1}L,m ∈ {1, . . . ,M}, where bxm = φ(xm) is a
digital fingerprint extracted from the content xm,xm ∈ XN ,
which is drawn from a common stationary distribution p(x).
Here φ(·) is a digital fingerprint extraction function that can
be key-dependent.

In the content identification phase, for a given query y the
digital fingerprint is extracted following the same approach as
in the enrollment phase, i.e., by = φ(y). Then, the decoder
constructs a list of indices of entries N ′l which are the most
likely related to the query. Otherwise, it produces an erasure,
N ′l = ∅.

a) Identification Problem: In the event the query dig-
ital fingerprint by is related to some element bxm of the
database, one can assume that this relationship can be mod-
eled by a binary channel with the transition probability
p(by|bxm). If the query digital fingerprint by is unrelated
to any database entry, we assume that by is drawn from
p(by) =

∑
bxm∈{0,1}L

p(bx)p(by|bx). Therefore, we can
define the content identification problem as a composite hy-
pothesis test: {

H0 : By ∼ p(by)
Hm : By ∼ p(by|bxm)), (1)

where H0 and Hm correspond to the cases that the query
digital fingerprint by is unrelated to any database entry, and
the query digital fingerprint by is related to the mth entry of
database, respectively.

b) Decoder: We define the constrained OSLD as follows:
1) The likelihood functions, p(by|bxm), 1 ≤ m ≤ M , for

all entries of the database are evaluated.
2) The Nl indices with the largest likelihood functions

are chosen which form a set Nl. The parameter Nl is
referred to as the primary list size.

3) The final output set of the decoder is defined by
N ′l = {m ∈ Nl : p(by|bxm) ≥ eγL}, where the
parameter γ controls the number of final candidates.

The performance metrics of the identification setup are
defined by the probability of miss:

Pm =
M∑
m=1

Pr{(m /∈ Nl) ∪ p(by|bxm) < eγL|Hm}Pr{Hm},

(2)
and the probability of false acceptance:

Pf = Pr{N ′l 6= ∅|H0}. (3)

III. DIGITAL FINGERPRINT EXTRACTION AND
STATISTICAL ANALYSIS

The digital fingerprint extraction function φ(·) works as
follows:

1) The dimensionality of some content xm or a query y is
reduced from N to L by applying random projections
(RP) [9], which are approximately orthoprojectors, i.e.,
ww† ≈ IL where w ∈ 1√

N
{±1}L×N with Wij ∼

Bernoulli( 1
2 ), 1 ≤ i ≤ L and 1 ≤ j ≤ N . For

a given w, the projected x̃m and ỹ are obtained by
x̃m = wxm and ỹ = wy.

2) L-length binary digital fingerprints, by and bxm , are
derived by taking the sign of the projected data, i.e.,
bxm = {sign(x̃m[i])}Li=1 and by = {sign(ỹ[i])}Li=1.

A. The Statistics of Content Digital Fingerprints

In this Section, we investigate the statistics of content digital
fingerprints obtained by the RP. We assume that the content X
is a Gauss-Markov process with the covariance matrix Kxx.
This is a simple but often-used model in image processing [1].
Then, the covariance matrix of the projected data is obtained
by:

Kx̃x̃ = E[wXX†w†] = wKxxw†, (4)
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Fig. 2. The first 256 elements of the first row of Kxx and Kx̃x̃, where x
is generated from the Gauss-Markov process with ρ = 0.95 and σ2

X = 1. x
and x̃ have the length of N = 215 and L = 28, respectively.

where Kxx is defined by [1]:

Kxx = σ2
X


1 ρ . . .ρN−1

ρ 1 . . .ρN−2

...
...

. . .
...

ρN−1ρN−2. . . 1

 , (5)

where σ2
X and 0 ≤ ρ < 1 are the variance and the normalized

correlation coefficient, respectively. We use the following
proposition for statistical modeling of projected data.

Proposition 1 (Decorrelation property of RP). Let the ele-
ments of the RP matrix, W of size L × N and L > 1 , be
generated by the probability mass function (PMF) Pr{Wij =
+ 1√

N
} = Pr{Wij = − 1√

N
} = 1

2 , and X be a real zero-mean
random vector modeled as the Gauss-Markov process with
variance σ2

X and normalized correlation coefficient ρ. Then,
we have:

Pr
{

max
i 6=j
|Kij

x̃x̃| > βσ2
X

}
<

1
L
, (6a)

Pr
{

max
i
|Kii

x̃x̃ − σ2
X | > ασ2

X

}
<

2

L( 1
ρ )
, (6b)

where Kij
x̃x̃ denotes the (i, j)th element of Kx̃x̃,

β =
√

6
N ( 1+ρ2

1−ρ2 ) lnL, α =
√

4
N ( ρ

1−ρ ) lnL and α < β.

Proof: Appendix A.

Remark 1. For a sufficiently large N and L, L ≤ N , α→ 0
and β → 0, Kx̃x̃ asymptotically converges to σ2

XIL with
high probability. Moreover, from the fact that the content
source is a Gauss-Markov process, which implies that the
content vector x is jointly Gaussian, and RP is a linear
transform, the projected data x̃ follows the jointly Gaussian
distribution, i.e., X̃ ∼ N (0,Kx̃x̃). Therefore, since elements
of x̃ are asymptotically uncorrelated, Kx̃x̃ ≈ σ2

XIL, one can
conclude that x̃ are asymptotically independent and identically
distributed (i.i.d.). In addition, the digital fingerprint extracted
from x̃ asymptotically follows B(L, 1

2 ) due to symmetry of
the Gaussian distribution function.

The decorrelation property of the RP is illustrated in Fig. 2.
All off-diagonal elements of Kx̃x̃ are below the evaluated
threshold β.

B. The Statistics of Query Digital Fingerprint

Consider the query y to be a noisy version of a content that
can be modeled as a Gauss-Markov process and is observed
through an Additive White Gaussian Noise (AWGN) channel,
Y = X + Z, where Z ∼ N (0, σ2

ZIN ) and σ2
Z is the variance

of the noise. At the output of the first step of the digital
fingerprinting, we have Ỹ = X̃ + Z̃. From Proposition 1, we
can asymptotically assume that the projected content part of
the query, X̃, follows the distribution N (0, σ2

XIL). To justify
the statistics of Z̃, we have the following collary.

Collary 1 (i.i.d. preservation property of RP). Let the RP
matrix, W, be generated the same as in Proposition 1, and
Z are drawn i.i.d. from a common stationary distribution
with variance σ2

Z . Then, the diagonal elements of covariance
matrix of the projected noise Z̃ = WZ are equal to σ2

Z , i.e.,
∀i,Kii

z̃z̃ = σ2
Z , and all off-diagonal elements of Kz̃z̃ satisfies:

Pr
{

max
i6=j
|Kij

z̃z̃| > δσ2
Z

}
<

1
L
, (7)

where δ =
√

6
N lnL.

Proof: Appendix B.

Remark 2. For a sufficiently large N and L,L ≤ N ,
δ → 0, Kz̃z̃ asymptotically converges to σ2

ZIL with high
probability. Moreover, Z is i.i.d. Gaussian and RP is a linear
transform, Z̃ is jointly Gaussian whose elements are asymp-
totically uncorrelated, i.e., Z̃ ∼ N (0,Kz̃z̃),Kz̃z̃ ≈ σ2

ZIL,
thus Z̃ follows asymptotically i.i.d. Gaussian. Consequently,
the transformed channel is a discrete memoryless channel, i.e.,
p(by|bx) =

∏L
i=1 p(by[i]|bx[i]).

Remark 3. From Proposition 1 and Collary 1, Ỹ is the
summation of two independent random vectors X̃ and Z̃ where
X̃ ∼ N (0,Kx̃x̃),Kx̃x̃ ≈ σ2

XIL and Z̃ ∼ N (0,Kz̃z̃),Kz̃z̃ ≈
σ2
ZIL. Thus, Ỹ is a jointly Gaussian distributed random vector

with asymptotically uncorrelated elements which implies their
independence. Moreover, one can conclude that By asymp-
totically follows B(L, 1

2 ) due to symmetry of the Gaussian
distribution function. Conditioned onHm, the relation between
bxm and by can be modeled by the Binary Symmetric Channel
(BSC) with crossover probability Pb = 1

π arctan
(
σZ
σX

)
[9].

IV. BOUNDS ON ERROR PROBABILITIES

In this section, we derive bounds on the miss and false
acceptance probabilities based on the obtained results.

A. Miss Probability Bound

From Remark 3, conditioned on Hm, the transition proba-
bility of the BSC is given by p(by|bxm) = P dmb (1−Pb)L−dm
that is a decreasing function of the Hamming distance dm ,
dH(by,bxm) for Pb ∈ [0, 0.5], which is a realization of
Dm and can be considered as a sufficient statistic. From
Remark 1, all entries of the database are i.i.d., and since they
can be queried equally likely, i.e., Pr{Hm} = 1

M , the overall
probability of miss does not depend on the particular index
and hence for m = 1:



Pm=Pr{(m1 /∈ Nl) ∪ p(by|bx1) < eγL|H1}
=Pr{(1 /∈ Nl) ∪ (D1 > ηL)|H1}
(a)
=Pr{(1 /∈ Nl) ∩ (D1 ≤ ηL)|H1}+ Pr{D1 > ηL|H1},

(8)

where η = γ−ln(1−Pb)
ln(Pb/(1−Pb)) and (a) follows from the addition

rule of probability . The first term in (8) is referred to as the
miss probability of the first kind, P I

m, and the second term is
the miss probability of the second kind, P II

m.
By using Remarks 1 and 3, conditioned onH1, the sufficient

statistics mentioned above have the following distributions for
m, 1 ≤ m ≤M :

Dm ∼
{
B(L,Pb),for m = 1,
B(L, 1

2 ), for m 6= 1. (9)

Proposition 2 (Miss probability bound). For the binary sym-
metric channel with the crossover probability Pb, the probabil-
ity of miss of the constrained OSLD, for any η, Pb < η < 1

2 ,
is bounded by:

Pm=P I
m + P II

m ≤ {exp[−L(ln 2−R−H2(η))]}Nl

+exp[−LD(η‖Pb)]. (10)

Proof: Appendix C.

Remark 4. For the case Nl = 1, i.e., Maximum Likelihood
(ML) decoding, the obtained miss probability bound coincides
with the result achieved in [2]. If Nl > 1, i.e., list decoding,
P I
m converges to 0 faster than for ML decoding.

Remark 5. For Pb < η < 1
2 and if R < ln 2 −H2(η) there

exist fingerprints with the rate R and miss probability Pm such
that limL→∞ Pm = 0.

B. False Acceptance Probability Bound
From Remark 3 , conditioned on H0, the sufficient statistics

follows Dm ∼ B(L, 1
2 ), 1 ≤ m ≤M .

Proposition 3 (False acceptance probability bound). For the
binary symmetric channel with the crossover probability Pb,
the average probability of false acceptance of the constrained
OSLD, for any η, Pb < η < 1

2 , is bounded by

Pf ≤ exp[−L(ln 2−R−H2(η))]. (11)

Proof: Appendix D.

Remark 6. For Pb < η < 1
2 and R < ln 2−H2(η) there exist

fingerprints with the rate R and false acceptance probability
Pf such that limL→∞ Pf = 0.

Remark 7. From Remarks 5, 6, both Pm and Pf go to zero
as L goes to ∞. Moreover, it holds for η arbitrarily close to
Pb. Therefore, the identification capacity Cid = I(Bx,By) =
ln 2−H2(Pb) [10] is achievable.

V. CONCLUSIONS

In this paper, we present a theoretical analysis of the
proposed CBI system in multimedia applications. A quite
simple approach is introduced to extract digital fingerprints
from multimedia data that can be modeled by a Gauss-Markov
process.
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APPENDIX A
PROOF OF PROPOSITION 1

Proof: The elements of Kx̃x̃ can be expanded as follows:

Kij
x̃x̃ =

N∑
r=1

N∑
c=1

wirKrc
xxwjc. (12)

At first, we investigate upper off-diagonal elements of Kx̃x̃,
Kij

x̃x̃, 1 ≤ i < j ≤ L. One can represent these elements as
a sum of N2 independent and zero-mean random variables,
Kij

x̃x̃ =
∑N
r=1

∑N
c=1 V

ij
rc , where V ijrc ∈

Krc
xx

N {+1,−1}, 1 ≤
r ≤ N, 1 ≤ c ≤ N , which are almost surely bounded, i.e.,
Pr{V ijrc ∈ [+Krc

xx

N ,
−Krc

xx

N ]} = Pr{V ijr = +Krc
xx

N } + Pr{V ijr =
−Krc

xx

N } = 1. In order to bound these elements, we compute
the probability that the largest upper off-diagonal element of
Kx̃x̃ is greater than βσ2

X , where β is a positive real value.
This probability is given by:

Pr
{

max
i 6=j
|Kij

x̃x̃| > βσ2
X

}
(a)

≤ L(L− 1)
2

Pr{|Kij
x̃x̃| > βσ2

X}

(b)

≤ L(L− 1)
2

2 exp

(
−

2β
2σ4
X

N4 N4∑
r,c(2

Krc
xx

N )2

)

=L(L− 1) exp

(
− β2σ4

X
2
N2

∑
r,c(Krc

xx)2

)
, (13)

where (a) follows from the fact that there are only L(L−1)
2

such random variables which are identically distributed [11]



and (b) follows from the Hoeffding’s inequality 1[12]. In order
to bound the 1

N2

∑
r,c(K

rc
xx)2, from (5) one obtains:

1
N2

N∑
r=1

N∑
c=1

(Krc
xx)2

=
σ4
X

N2

(
N + 2((N − 1)ρ2 + . . .+ ρ2(N−1))

)
<
σ4
X

N
(1 + 2(ρ2 + . . .+ ρ2(N−1)))

(a)

≤ σ4
X

N

(
1 + ρ2

1− ρ2

)
,(14)

where (a) follows from the summation of the first N terms
of geometric series and the fact that 0 ≤ ρ < 1. Using the
inequality (14), we have:

Pr
{

max
i6=j
|Kij

x̃x̃| > βσ2
X

}
< L(L−1) exp

(
−β

2N(1− ρ2)
2(1 + ρ2)

)
.

(15)

By setting β =
√

6
N

(
1+ρ2

1−ρ2

)
lnL, (6a) is obtained.

For the diagonal elements of Kx̃x̃ we have:

Kii
x̃x̃ = σ2

X +
N∑
r=1

N∑
c=1

r 6=c

wirKrc
xxwic. (16)

Similarly to (12), all diagonal elements can be modeled as
a sum of N(N − 1) independent random variables with the
mean σ2

X , i.e, Kii
x̃x̃ =

∑N
r=1

∑N
c=1

r 6=c
P ijrc , where P ijrc ∈ {σ2

X +
Krc

xx

N , σ2
X −

Krc
xx

N }, 1 ≤ r ≤ N, 1 ≤ c ≤ N , which are almost
surely bounded, i.e., Pr{P ijrc ∈ [σ2

X + Krc
xx

N , σ2
X −

Krc
xx

N ]} = 1.
Then, the probability that the largest of all |Kii

x̃x̃−σ2
X | exceeds

ασ2
X satisfies:

Pr
{

max
i
|Kii

x̃x̃ − σ2
X | > ασ2

X

} (a)

≤ LPr{|Kii
x̃x̃ − σ2

X | > ασ2
X}

(b)

≤2L exp

(
− α2σ4

X
2
N2

∑
r,c,r 6=c

(Krc
xx)2

)
, (17)

where (a) follows from the fact that there are only L such
identically distributed random variables [11] and (b) follows
from Hoeffding’s inequality [12]. In order to bound the term
1
N2

∑
r,c,r 6=c

(Krc
xx)2, from (5), one obtains:

1
N2

∑
r=1

∑
c=1

r 6=c

(Krc
xx)2 =

2σ4
X

N2

(
(N − 1)ρ2 + . . .+ ρ2(N−1)

)

<
2σ4

X

N

(
ρ2 − ρ2N

1− ρ2

)
≤ 2σ4

Xρ
2

N(1− ρ2)
. (18)

By using (18), (17) can be bounded as follows:

Pr
{

max
i
|Kii

x̃x̃ − σ2
X | > ασ2

X

}
< 2L exp

(
−α

2N(1− ρ2)
4ρ2

)
.

(19)

By setting α =
√

4
N

(
ρ

1−ρ

)
lnL, (6b) is obtained.

1If X1, X2, . . . , XN are independent and Pr{Xi ∈ [ai, bi]} = 1,
(∀i, 1 ≤ i ≤ N ), then for t > 0, Pr{|X̄ − E[X̄]| ≥ t} ≤
2 exp

„
− 2t2N2PN

i=1(bi−ai)2

«
, where X̄ = X1+X2+···+XN

N
.

APPENDIX B
PROOF OF COLLARY 1

Proof: This is a corollary of Proposition 1, where ρ→ 0.
For the off-diagonal elements of Kz̃z̃, we can easily derive (7)
by substituting ρ = 0. For the diagonal elements, α|ρ=0 = 0.
Thus, Pr{maxi|Kii

z̃z̃ − σ2
Z | > 0} < limρ→0

1

L( 1
ρ )

= 0 for all

L > 1, which implies that ∀i, 1 ≤ i ≤ L,Kii
z̃z̃ = σ2

Z .

APPENDIX C
PROOF OF PROPOSITION 2

Proof: Conditioned on H1, we define the event EDj , as
the event that there exists a subset of Hamming distances Dj ⊂
D = {D1, . . . , DM} with |Dj | = Nl, including Nl of Dms
for each of them m 6= 1, Dm ≤ D1 and Dm ≤ ηL. P I

m can
be bounded as follows:

P I
m = Pr

⋃
j

EDj

∣∣∣∣H1

 (a)

≤
∑
j

Pr
{
EDj

∣∣∣∣H1

}
=
∑
j

Pr{(Dj(1) ≤ D1 ∩D1 ≤ ηL) ∩

· · ·∩(Dj(Nl) ≤ D1 ∩D1 ≤ ηL)|H1}
(b)
=
(
M − 1
Nl

)
Pr{Dm 6=1 ≤ D1 ∩D1 ≤ ηL|H1}Nl

(c)

≤ (M − 1)NlPr{Dm 6=1 ≤ ηL|H1}Nl

where Dj(i), j(i) 6= 1, 1 ≤ j ≤
(
M−1
Nl

)
, 1 ≤ i ≤ Nl denotes

the ith element of the set Dj , (a) follows from union bound,
(b) from the fact that the events are independent and Dj(i)

are i.i.d. random variables and (c) follows from the inequality(
M−1
Nl

)
≤ (M − 1)Nl and the fact that

Pr{Dm 6=1 ≤ D1 ∩D1 ≤ ηL|H1} ≤ Pr{Dm6=1 ≤ D1|D1 ≤ ηL,H1}
≤Pr{Dm 6=1 ≤ ηL|H1}.
By using the Chernoff bound for any Pb < η < 1

2 , one obtains:

P I
m ≤

{
M exp

[
−LD

(
η‖ 1

2

)]}Nl ≤ {exp[−L(ln 2−H2(η)−R)]}Nl ,
where M = expbLRc. By using the Chernoff bound, P II

m can
be bounded as:

P II
m ≤ exp[−D(η‖Pb)].

By combining the bounds on P I
m and P II

m, Pm can be bounded
by (10).

APPENDIX D
PROOF OF PROPOSITION 3

Proof: Conditioned on H0, the probability of false accep-
tance can be bounded as follows:

Pf= Pr

{
M⋃
m=1

Dm ≤ ηL
∣∣∣∣H0

}
(a)

≤
M∑
m=1

Pr
{
Dm ≤ ηL

∣∣∣∣H0

}
(b)
=MPr{Dm ≤ ηL|H0} ≤M exp

[
−D(η‖ 1

2 )
]

(20)

where (a) follows from union bound and (b) holds because
all Dm are i.i.d. random variables. By using Chernoff bound
for any Pb < η < 1

2 , we have (11).


