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Abstract—It was recently shown that spatial coupling of
individual low-density parity-check codes improves the belief-
propagation threshold of the coupled ensemble essentially to the
maximum a posteriori threshold of the underlying ensemble.
We study the performance of spatially coupled low-density
generator-matrix ensembles when used for transmission over
binary-input memoryless output-symmetric channels. We show
by means of density evolution that the threshold saturation
phenomenon also takes place in this setting. Our motivation
for studying low-density generator-matrix codes is that they
can easily be converted into rateless codes. Although there are
already several classes of excellent rateless codes known to date,
rateless codes constructed via spatial coupling might offer some
additional advantages. In particular, by the very nature of the
threshold phenomenon one expects that codes constructed on this
principle can be made to be universal, i.e., a single construction
can uniformly approach capacity over the class of binary-
input memoryless output-symmetric channels. We discuss some
necessary conditions on the degree distribution which universal
rateless codes based on the threshold phenomenon have to fulfill.
We then show by means of density evolution and some simulation
results that indeed codes constructed in this way perform very
well over a whole range of channel types and channel conditions.

Index Terms—Spatial Coupling, LDGM, LDPC, LT codes,
Rate-less Codes, Raptor Codes, LDPC Convolutional Codes

I. INTRODUCTION

HE idea of spatially coupling copies of a graphical model

was introduced for the coding context in [1]] in the form
of convolutional LDPC ensembles. The performance of such
ensembles was investigated in, among others, [2-4] and it was
found to be very good. In particular the threshold of a coupled
ensemble was consistently found to be significantly superior
to the threshold of the underlying ensemble. It was then shown
in [} 6] why this is the case, and the phenomena was termed
threshold saturation.

The key observation in the above papers is that the be-
lief propagation (BP) threshold of the coupled ensemble is
considerably improved and becomes close to the maximum a
posteriori (MAP) threshold of the underlying ensemble while
the MAP threshold of the coupled and underlying ensembles
are close to each other. This phenomenon has also been
observed in several other classes of graphical models [7) (8]
and seems to be rather general: when we spatially couple,
the dynamical threshold of the chain converges to the static
threshold of the un-coupled model.

We study the coupling phenomenon for low-density
generator-matrix (LDGM) codes. LDGM codes are closely
related to LT codes. LT codes were originally designed for
communication over the binary erasure channels (BEC) with
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unknown erasure probability [9]. For these codes the encoder
generates an (in principle) infinite sequence of output symbols.
The decoder collects as many output symbols as necessary
to successfully recover all the information bits. LT codes are
one of the first instances of rateless codes, see [10]. They are
called rateless codes because the rate of the code is not fixed
a priori and can vary from essentially zero to essentially one,
depending on the channel condition.

A typical application of rateless codes is a system where the
actual channel is unknown to the encoder and chosen from a
given uncertainty set. LT codes can asymptotically reach 1 —p
of the capacity of the BEC with unknown erasure probability,
for any ¢ > 0 [9]. In particular, LT codes are universal
over the BEC. By adding a proper precoder to the LT codes,
Shokrollahi introduced Raptor codes which exhibit an even
better performance in terms of encoding/decoding complexity
and error probability [11l]. There is a considerable literature
on rateless codes. Let us just mention a very small selection
and refer the reader to some of the review articles for a more
thorough literature review. The error performance of Raptor
codes and LT codes over binary-input memoryless output-
symmetric (BMS) channels was investigated in [12]. Later in
[LO], the authors showed how to design u-capacity achieving
Raptor codes, for arbitrary p > 0, on the binary symmetric
channel (BSC) and the binary additive white Gaussian noise
channel (BAWGNC); the authors also proved that LT codes are
not universal over the BSC and the BAWGN channel families.

The objective of this paper is to introduce a further al-
ternative to the construction of rateless codes, namely to
construct rateless codes via spatial coupling of LT ensembles.
We show by means of density evolution that the threshold
saturation also takes place in this setting. We provide some
necessary conditions on the degree distributions in order for
the constructed ensemble to be universal.

We describe the structure of coupled ensembles in Sec-
tion [lI} There we also explain the relationship between LT and
LDGM ensembles. The saturation phenomenon is investigated
in Section We derive some necessary conditions for such
an ensemble to be universal in Section We also provide
some simulation results for various channel types and rates
which give further support for our conjecture.

II. RATELESS ENSEMBLES FROM COUPLED LT
ENSEMBLES

We propose to construct rateless codes by spatially coupling
LT codes. When the number of information bits and the
number of output bits tends to infinity (at a fixed ratio), the
performance of such a structure can in turn be assessed by
analyzing an ensemble of spatially coupled LDGM codes. Let
us start by recalling the definition of LT codes.



1) Structure of LT Ensemble: Let uq,...,u,, denote the
information bits we want to transmit. For LT codes, in prin-
ciple, an infinite stream of output symbols is generated from
these m information bits. The receiver “listens” to as many
of them as needed in order to decode the m information bits
reliably.

More precisely, the encoder generates a sequence of output
symbols as follows: First, an integer d, called the degree,
is independently and randomly chosen according to a given
degree distribution. This distribution is encoded by the poly-
nomial R(x) = ZZZT‘ Rqx?, where Ry is the probability of
choosing d. Next, a d-tuple of information bits is uniformly
picked from all (") distinct d-tuples, denote it by (i1, ..., iq).
Finally, the sum wu;, + --- + u;, is computed (also called
the “output symbol”) and it is transmitted over the channel.
Here, we assumed that the transmitter and the receiver share
randomness so that the choice of the degree as well as the
choice of the indices is known both to the transmitted and to
the receiver.

The receiver collects a number of output symbols (typically
at least equal to the number of information bits) and starts the
decoding process using the BP algorithm. If it cannot decode
given this information, it collects further output symbols and
retries. It continues in this manner until all m information bits
are decoded. Assume that the receiver decodes all information
bits using n output symbols. We then say that the code has
rate 7 = 7.

The received output symbols and information bits can be
represented by a bipartite graph G(U, G; E). Here U denotes
the set of information nodes and it has cardinality m. In the
same manner, G denotes the set of generator nodes (output
symbols). The set E denotes all edges; there is an edge
between a generator node and an information node iff the
corresponding bit was used in the computation of this output
symbol.

2) Coupled LT Ensemble: Let us now discuss how to
couple LT codes. Assume that the information bits are divided
into L sets located at positions [0, L — 1] and each having m
information bits. Let these bits be labeled from 1 to mL. Let
the generator nodes be located at positions [0, L + w — 2],
where w is a smoothing parameter, w € IN. To generate an
output symbol, the encoder picks ¢ € [0, L + w — 2]. This is
the position of the next generator node which is being con-
structed. Next the degree d is chosen as in the uncoupled case,
according to the distribution R(x), and independently from all
previous choices. Then, each of the d connections is uniformly
and independently chosen among the mw information bits in
the range [¢ —w+1, 4], see Fig. [I| For generator nodes situated
close to the boundaries, if the position of a chosen information
bit is not in the range [0, L — 1] then the associated edge is
omitted. Equivalently we can assume that it is connected to a
bit outside of this range which is known both to the transmitter
and the receiver and whose value can without loss of generality
be assumed to be 0. Finally, the encoder sends the sum of the
values of the connected information bits. As for the uncoupled
case, we assume that shared randomness is available at the
transmitter and the receiver so that the choice of positions,
degrees, and connected bits is known on both sides. We call
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Fig. 1. Adding a new generator node to a coupled LDGM ensemble.

the resulting ensemble a spatially coupled LT ensemble.

3) LDGM Ensembles as Limits of LT Ensembles: Consider
an uncoupled LT code. Since the degree of every generator
node is chosen independently according to the distribution
R(x), the empirical distribution of the degrees of the output
symbols converges a.s. to R(xz). Further, if we let m and
n tend to infinity but fix their ratio, then the empirical
degree distribution of the information bits converges a.s. to the
Poisson distribution A(z) = e~ where ly, = ZR'(1)
is the average degree of an information bit. Therefore, in this
sense (for increasing blocklengths) the resulting code tends to
an instance of the LDGM (e¢(*=1) R(x)) ensemble. Note
also that for any fixed number of iterations density evolution
is continuous in the degree distribution.

In order to study the threshold behavior of LT codes we
can therefore study the threshold behavior of the equivalent
LDGM ensemble. Only when we are interested in the finite-
length scaling behavior do we need to take the small deviations
of the degree distribution from the expected value into account.
For coupled LT ensembles the same argument applies. There-
fore, for the purpose of analysis, we consider L copies of
(el~(==1) 'R(x)) LDGM ensembles spatially coupled in the
same way as described above.

4) Design Rate: In the coupled setting, the design rate of
the code is equal to the total number of non-trivial information
bits, which is equal to m L, divided by the number of generator
bits that are connected to at least one of the m.L non-trivial
information bits. We have,

Lemma 1 (Design Rate). Consider an (A\(x), R(z), L, w)
coupled LDGM ensemble such that the underlying ensemble
has n generator nodes and m information bits. The design
rate is r =

mL
n(L—w+1)+2n 3¢ ' (1-R(L))

We see that the design rate of the coupled ensemble is
slightly decreased compared to the design rate m/n of the
underlying ensemble. However, this rate loss vanishes with L
at a speed of ©(%). Hence, we should not pick L too small
in order to keep the rate loss at an acceptable level. On the
other hand, picking L very large leads to very long codes.
Hence, there is an inherent trade-off. For LDPC ensembles,
various ways of reducing the rate loss were suggested in [6].
The same basic ideas can be applied in the present setting to
substantially mitigate the rate loss. We will not pursue this
topic further, although in a real setting it is important.
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Fig. 2. Left: EBP GEXIT curve (dashed) and Maxwell curve (solid) of

the (e!2-32(z=1) ' R; (2)) LDGM ensemble with R (z) = 0.02z +0.622 +
0.38213 and 7 = 0.5 for transmission over the BEC. The area under the
Maxwell curve is r and the area threshold is 0.494. The BP threshold is 0.350.
Right: The EBP GEXIT curves of the corresponding coupled ensembles for
(L,w) equal to (64,5) (red curve), (128,5) (green curve), and (512,11)
(blue curve). Note that these EBP GEXIT curves are all very close to the
Maxwell curve of the underlying ensemble.

III. THRESHOLD SATURATION OF COUPLED LDGM
ENSEMBLE

Let us consider as example the EBP GEXIT curve of
the (e'232(=1 R;(x)) LDGM ensemble where R;(z) =
0.02z + 0.62% + 0.382'% and r = L[] In the left picture in
Fig. P|the EBP GEXIT curve is shown as a dashed line. For the
given example it has the shape of an “S.” Let us construct the
Maxwell curve. We get the Maxwell curve by taking the EBP
GEXIT curve and by cutting the “S” by means of a vertical
line, where the line is located in such a way that the two gray
areas are equal (see the left picture). The Maxwell curve then
consists of the the vertical line plus the two connecting parts
of the EBP GEXIT curve so that the total curve represents an
increasing function. In the sequel we will refer to the entropy
value where the vertical line is located as the area threshold
(since the position of the vertical line is defined by an equality
of areas). In Fig. 2] the Maxwell curve is shown as solid black
curve and the area threshold is A =~ 0.494. This has to be
compared to the BP threshold of this ensemble which can
be seen to be around 0.35. The significance of the Maxwell
curve is that for a wide range of ensembles and channels it
is conjectured to characterize the performance of the MAP
decoder, see e.g., [13].E]

Let us now show by means of DE computations that the
BP threshold of the coupled ensemble is very close to the
area threshold of the underlying ensemble for a wide range
of BMS channels (see Fig. [2). This observation suggests that
the threshold saturation phenomenon also occurs in the current
setting.

The first step in the evaluation of the asymptotic perfor-

In a nutshell, the EBP GEXIT curve is the curve of all fixed points (FP)
of density evolution (DE) for the given ensemble. For an in-depth discussion
we refer the reader to [13].

2Note that, even if we assume that the Maxwell curve characterizes the
MAP performance, the area threshold defined above is not really the MAP
threshold since there is an error floor (this code does not have a non-trivial
MAP threshold). But if we assume, as it is e.g. the case for Raptor codes, that
we are using a pre-code and that the error floor is sufficiently small, then this
area threshold has an important operational significance. As a consequence of
the error floor, this area threshold can even be slightly larger than the Shannon
threshold.

mance is to write down the density evolution (DE) equations.
To keep the notation at a manageable level, let us start with
the case of the BEC.

Lemma 2 (DE Equations). Consider a coupled (A\(x) =
elos(@=1) R(x), L,w) LDGM ensemble and transmission over
the BEC with erasure probability €. Let x;, © € Z, denote the
average erasure probability which is emitted by information
nodes at position i and y;, j € Z, denote the average erasure
probability which is emitted by generator nodes at position j.
The fixed point (FP) condition implied by DE is then

1 i+w—1
i = A ; Y), (1)
1 J
y=1-(0-epl—— > ), )
i=j—w+1

where p(x) = R'(x)/R'(1) and x; =0 for i ¢ [0, L — 1].

As mentioned before, since the information bits outside the
interval [0, L — 1] are known, we can assume that =; = 0 for
1 ¢ [0, L — 1]. The decoding process starts with :UZ(-O) =1 for
1€ [0,L —1]. Let xgl) denote the average erasure probability
which is emitted by information bits at position ¢ at round .
If at each decoding round all xgl) are updated according to
(1) and (@), then for each 7 the sequence ngl) is monotonically
decreasing. Since the sequence is bounded from below it must
converge. Call the limit :17500), i € [0,L — 1]. We call the
vector (azéoo), e ,x(LOf)l) the forward DE FP for the erasure
probability €. From this we can compute the BP GEXIT value
h; at the generator nodes in position j € [0, L 4w — 2]. It is
defined by, hj(.’l?o, s ,l‘L,l) =1- R(l — i Zg:jfuﬂrl I'Z)
The same analysis can be performed for general BMS channels
by writing down the corresponding DE equations. Since this
is rather routine, we skip this part.

Let us now illustrate the results of the DE analysis. Consider
the LDGM ensemble in Fig. @ As discussed above, the left
picture shows its EBP GEXIT curve as well as the derived
Maxwell curve. The right picture shows the EBP GEXIT
curves of the corresponding coupled ensembles with various
values of L and w. As we can see from the picture, all these
curves are very close to the Maxwell curve of the underlying
ensemble and seem to approach the closer the larger we
choose L and w (as long as w is small compared to L). So,
according to this numerical evidence, the threshold saturation
phenomenon occurs for this ensemble as conjectured.

Fig. [3] shows the EBP GEXIT curves for several further
examples. All pictures are for the degree distribution Ra(x) =
0.3602% + 0.313z% + 0.3272%*2 and (L, w) equal to (32,3)
and (64,4). The rows correspond to transmission over the
BEC, BSC, and BAWGNC (top to bottom), respectively. The
columns corresponds to rates 0.2, 05, and 0.8 (left to right),
respectively. For all these cases we see that the threshold satu-
ration phenomenon takes place. Also, the resulting thresholds
are all very close to the Shannon capacity. Indeed, we see that
this code is uniformly good over these classes of channels
and a wide range of rates. This gives further evidence to our



1 —— 1 —— 1 —
% BEC % BEC % BEC
sa) s3]
Nd Nd Nd
N '\ x®
S (=) S
o I Il
IR h A h I\ h
0 10 10 1
1 ﬁf 1 // 1
BSC g BSC g BSC
m m
= = =
N ) Q
[e] S| (e}
JI JI | JI
-\ h h WV h
0 10 10 1
1 — 1 ! T
% AWGN % AWGN % AWGN
sa) sa)
= Nd Nd
N '\ x®
S (=) S
Il Il Il
1Y h h ) h
0 B 10 10 1

Fig. 3.

EBP GEXIT curves of LDGM ensemble (A(z), R2(x)) (black curves) and the corresponding coupled ensembles for (L, w) equal to (32, 3) (blue

curves) and (64,4) (green curves) where Ra(z) = 0.36022 + 0.31323 + 0.327222. The ensembles are depicted for different rates 0.2, 0.5 and 0.8 in BEC,
BSC and AWGN channel. For the rate 0.8, there is no BP threshold for the underlying LDGM ensembles. For all cases, the area threshold of individual

ensembles is very close to the Shannon threshold.

conjecture that rateless codes constructed on coupling of LT
codes can be made to be universal.

IV. NECESSARY CONDITIONS ON DEGREE DISTRIBUTION
FOR UNIVERSALITY OF COUPLED LDGM ENSEMBLE

Although currently we do not know how to prove that
coupled LT ensembles can be made universal, it is easy to
derive some necessary conditions for this to happen.

(i) Error Floor: Since we are dealing essentially with LDGM
ensembles, our construction has generically a bit error
floor. To achieve capacity, we have to ensure that this
error floor tends to zero as the block-length grows large.
This induces a constraint on average degree of the gen-
erator nodes, see [11]

(ii) Threshold Behavior: The premise of coupled ensembles
is that their BP threshold is equal to their area threshold.
Assuming the above premise, for a given generator degree
distribution and a specific design rate, the corresponding
coupled LDGM ensemble is therefore asymptotically
(when L and w tend to infinity) capacity achieving for a
family of channels if the area threshold of the underlying
LDGM ensemble is equal to its Shannon threshold. If
this property holds for any design rate, then we say that

3Here we assume that we want to construct our sequence of capacity
achieving ensembles in such a way that the rate of the outer code tends
to one.

the coupled ensemble with that degree distribution is
universal on that family of channels. If it holds in addition
for any channel family (within lets say the BMS channel
family) then we say that the ensemble is universally
capacity achieving.

We will see that this induces a constraint on Ry and R».

A. Error Floor

LDGM ensembles have in general a non-zero bit error
probability below the “threshold” (which we call the error
floor) and this error floor remains essentially unchanged by
coupling.

Theorem 1 (Lower Bound on Error Floor). The error floor
of the (A\(z) = el=(*=1) R(z)) LDGM ensemble when trans-
mission takes place over the BEC with erasure probability €
is lower bounded by

RI(1 = Ae))

R/(1)

Hence, a necessary condition for this expression to tend to
zero at a fixed erasure probability € is that R'(1) tends to
infinity.

P> %)\(e)(l (1= )1 — D, @)

B. Threshold Behavior

It is shown in [10] that in order for a (el¢(®=1) R(x))
LDGM ensemble (the asymptotic LT code with degree distri-



bution R(x) in their work) to be capacity achieving under BP
decoding for a BMS channel with LLR density a, the following
two conditions must be fulfilled:

(i) B =0,

(i) Ry = %&)), where C'(a) denoted the capacity of the

channel and D(a) = [ a(l) tanh(l/2)dl.

Let us quickly review why these conditions are necessary. The
first condition is due to the fact that if R; > 0, the probability
that an information bit is connected to more than one generator
node with degree one is strictly positive. Imagine that e.g.
two generator nodes of degree one are connected to the
same information node. With positive probability both of them
are received. But then clearly one of the generator nodes is
redundant. Hence we are bounded away from capacity.

To explain the second condition we will not follow the
arguments used in [[10] but rather use the language of EBP
GEXIT curves. Assume that Ry is very close to zero. Let
H(a) = 1-C(a) be the entropy associated to the channel with
density a. The stability condition of LDGM ensembles [13]
implies that the entropy value where the EBP GEXIT curve
deviates from 1 occurs at the point h = H(a) where D(3) =

~—. Here r is the design rate.

2Ry

Ifh>1- r, then the value of the EBP GEXIT curve at
the Shannon threshold, 1 — r, is strictly smaller than one (see
e.g. Fig. [2). Consequently, by applying the area theorem, the
area threshold (and hence the BP threshold) must be strictly
below the Shannon threshold. Therefore, to achieve capacity,
we need that & < 1 — r. This implies that Ry < 2%(2).

Ifh<1-— r, then the EBP GEXIT curve deviates from 1 at
h, which lies strictly below the Shannon threshold. Since the
BP threshold cannot be greater than h, also in this case we
cannot achieve capacity (see e.g. Fig. [3} recall that currently
we discuss uncoupled ensembles). Therefore, we must have
h > 1 —r. This implies that Ry > 572

Combining these two conditions we see that we need
equality for the uncoupled case. From this point of view it is
immediately clear why in this framework we cannot construct
universal codes — the right-hand side of the above equality
depends on the channel!

Consider now the coupled case. Condition (i) is still neces-
sary. What about condition (ii)? It is easy to see that if the EBP
GEXIT curve deviates from 1 to the right of the threshold, then
also in the coupled case we are bounded away from capacity.
So the condition A < 1—r, or equivalently, Ry < 265((1‘) still
applies. But, due to the fact that the performance is now given
by the Maxwell curve associated to the underlying ensembles,
we are no longer bound by the second condition. Therefore, we
might hope to find a value of Ry which fulfills the inequality

Ry < 2%2) for all BMS channels.

Lemma 3 (Minimum of Stability Condition). Over the class of
densities a associated to BMS channels, inf, %(aa)) = 4111(2),
and the minimum is attained for the BSC with entropy 1.

Corollary 1 (Area Threshold of LDGM ensemble). In order
for an (el+@=V R(z), L,w) coupled LDGM ensemble to be
asymptotically universal over all BMS channels, it is necessary

that: (i) Ry =0, (ii) Ry < 557 ~ 0.3606.

Let us look back at the example in Fig. This degree
distribution was designed according to Corollary [1] i.e., we
have Ry = 0 and Ry < 0.3606. Further, R'(1) =~ 8.85. We
can see that the GEXIT values of the underlying ensembles
are 1 for h > 1 — 7 and for all tested channels. Due to a
rather small value for Ry, the BP threshold of the underlying
ensemble is quite small (in particular for low rates) and so
the uncoupled ensemble itself would not be useful. But as we
have seen, the performance for the coupled case is universally
close to the Shannon threshold.

Let us summarize: Coupled LDGM codes have the potential
advantage of being universal. This is indeed a nice property
to have for typical applications of rateless codes. Further,
since we are only concerned with the area threshold of the
underlying ensemble, there are many more degrees of freedom
in their design and typically only a small degree of irregularity
suffices, making them potentially easier to implement.

To be fair, there is a price to be payed. Due to the coupled
structure and the fact that L has to be chosen reasonably large
in order to avoid a large rate loss, it is difficult to construct
codes of very short length which perform well.
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