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Abstract—We explore a basic noise-free signaling
scenario where coordination and communication are
naturally merged. A random signal X1, ..., Xn is pro-
cessed to produce a control signal or action sequence
A1, ..., An, which is observed and further processed
(without access to X1, ..., Xn) to produce a third
sequence B1, ..., Bn. The object of interest is the
set of empirical joint distributions p(x, a, b) that can
be achieved in this setting. We show thatH(A) ≥
I(X ;A,B) is the necessary and sufficient condition
for achieving p(x, a, b) when no causality constraints
are enforced on the encoders. We also give results for
various causality constraints.

This setting sheds light on the embedding of dig-
ital information in analog signals, a concept that
is exploited in digital watermarking, steganography,
cooperative communication, and strategic play in team
games such as bridge.

I. INTRODUCTION

We are interested in examining a simple batch of
communication questions that obscure the line be-
tween “analog” control and “digital” communication
signaling. How well can a signal be used to both
carry information (digital) and play an explicit role in
a system (analog)? Suppose a communication signal
is required to have certain statistical properties and
correlations with other signals of interest, such as
in a multiuser communication setting, or consider
a control signal that is used to carry additional
embedded information. This sort of dual purpose
signaling manifests itself naturally in the simple
communication setting shown in Figure 1.

A. An “Online Communication” Problem

Let us begin the discussion with an example from
the literature. In 2003, Gossner et. al. [1] solved an
interesting problem involving sequential play of a
cooperative penny matching game. The game setting
allows for communication between the players only
through actions in the game, which they refer to as

“online communication.” The game involves a ran-
dom binary sequence (the “source”) and two players,
Alice and Bob. Alice knows the source sequence,
but Bob doesn’t. Alice and Bob repeatedly attempt
to guess1 the source sequence, one bit at a time.
They obtain one point whenever both of them guess
correctly. After each guess, they each see the guess
of the other person and the source bit. As you might
expect, they are allowed to strategize before the
source sequence is revealed to Alice, but after the
game begins they cannot communicate explicitly –
only implicitly through the game itself. What is the
best average score that can be achieved?

Gossner et. al. show that the optimal average score
of this game is .82, which is significantly better than
the average score that can be achieved through trivial
(albeit clever) strategies.(Warning: Spoiler! Pause
here if you wish to solve this problem on your own.)
You can achieve this score using techniques from
communication theory (error-correction codes) and
information theory. The main ideas are block-Markov
coding, rate-distortion theory for Hamming distor-
tion, and input-constrained channel capacity (binary
channel with no noise). The analysis by Gossner et.
al. was combinatoric instead of information theoretic.
They also present a matching upper bound which is
very specific to the particular game being played.

A nice surprise related to this game emerges from
the results of our work. Suppose that the game was
made more difficult. After each guess, Bob sees the
guess that Alice made but does not see the source bit
(nor does he know the score of the game until after
the game is finished). It turns out that the optimal
average score of the game is the same! This may be
surprising because the strategy prescribed by Gossner
et. al. to achieve optimality requires that Bob consider

1Alice knows the source sequence, so her “guesses” are always
correct if she chooses. The optimal strategy will have Alice
inserting wrong guesses for the sake of communication.
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the past source bits when making his next guess. The
strategy must be significantly modified in order to
achieve optimality when Bob does not see the past
source bits. This observation is not limited to the
specific repeated game being played. We provide an
information theoretical solution to general games of
this form in Section V.

II. U SES AND ILLUSTRATIONS

We encounter a variety of situations in signal
processing and communication where a signal plays
multiple roles. Perhaps the most relevant to this
work are those involving network communication.
In a multiuser joint source-channel coding setting,
the encoders must structure communication signals
to convey information about the sources while also
taking advantage of statistical dependencies of the
sources to correlate and align the communication
signals.

A specific situation where a communication sig-
nal is used directly and indirectly is the “cribbing”
transmitters encountered in the work of Van der
Meulen [2] and Willems [3] [4], and more recently
by Permuter and Asnani [5]. Here a multiple access
channel is considered, but the channel input from
one transmitter is overheard by the other transmitter,
allowing them to learn about each other’s message
and cooperate. Here it is discovered that the channel
input should not only carry information intended
directly for the other transmitter, but it should also
be a suitable transmission signal.

In other examples, there are explicit goals to em-
bed information in signals, such as digital watermark-
ing and steganography. Here, a media signal, such as
video or audio, is augmented to carry information
in the form of an ID tag or data, which is usually
intended to be imperceivable to human perception.
Research exploring the capacity to embed informa-
tion under signal distortion constraints can be found
in [6], [7], [8], and [9].

Let us now suggest some illustrations of the sce-
nario we are concerned with in a concrete, though
playful, manner.

A. Game of Bridge

In the game of bridge, players bid for contracts
which allow them to call trump, pass cards, and
hopefully earn enough points to validate the contract.
The bid consists of a number and a suit, indicating
how many tricks will be won (beyond the defacto six)

and a suit for trump. However, a player who makes
a first bid of ‘1 Clubs’ may not be bidding for the
sake of winning the contract. Instead, the bid might
be a message to his partner that there is no dominant
suit in his hand. Communication strategies for bridge
are limited by the effect they have on the play of the
game.

B. Collusion

High speed stock trading systems make money by
their precise timing of buying and selling. Suppose
two trading systems wish to collude in order to shift
market prices, and they wish to do so in a way
that is not discoverable over standard communication
channels. How much can they communicate through
the timing of their buys and sells without adversely
affecting their profits?

C. Multi-part Printing

Two printers are used to print a color document.
The first prints all colors, and the second prints black
only. However, the electronic document for printing
is sent only to the first printer. The second printer
scans the color document and adds black where
needed. The color printer, which mixes three inks
to create black, can save ink by leaving black for the
second printer to take care of, but information about
the location of the black must be written into the
image somehow. How much ink can be saved?

III. C ASCADE OFCONTROLLERS

A. Problem Statement

An i.i.d. random process{Xi} is distributed ac-
cording topX , which is to say that any finite block
of symbols is distributed according to

Xn ∼ pXn(x1, ..., xn) =

n
∏

i=1

pX(xi).

The cascade of controllers shown in Figure 1
produces two additional sequences{Ai} and {Bi}.
The Ai’s are a function of theXi’s and theBi’s
are a function of theAi’s, possibly with causality
constraints. The system runs for a finite but arbitrar-
ily large number of iterations,n, and we use the
superscript notationXn to represent the sequence
X1, ...,Xn. The goal is to coordinate the sequence
of triples (X,A,B)i with a desired empirical distri-
bution.
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Fig. 1. Cascade of controllers.The source of information,Xn,
is an i.i.d. sequence with a known distribution. Controller1 pro-
duces a control sequenceAn which has information embedded
into it for Controller 2. Without access to the source, Controller
2 processesAn to produce a control sequenceBn.

We characterize the coordination that is achievable
among the three control signals in terms of the em-
pirical coordination of [10]. Under this framework,
a coordination scheme is summarized by the joint
distribution that it achieves, in the sense that the
frequencies of triples(X,A,B)i correspond closely
with the specified joint distribution with high prob-
ability. Unlike the problems considered in [10], the
cascade of controllers setting has no explicit rate-
limited communication channels.

To state the criterion for empirical coordination
formally, a conditional distributionp(a, b|x) can be
achieved if for allǫ > 0 there exists an integern and
encoding functionsf andg (satisfying the necessarily
causality constraints) such that

P
(

‖PXn,An,Bn(x, a, b)− p0(x)p(a, b|x)‖TV
> ǫ

)

< ǫ,

where An ∈ An, Bn ∈ Bn, the in-
duced empirical distributionPXn,An,Bn(x, a, b) =
1
n

∑n
i=1 1{(Xi,Ai,Bi)=(x,a,b)}, and‖ · ‖TV is the total

variation distance between two distributions.
The coordination set of all achievable distributions

for empirical coordination is designated as

P , {achievablep(a, b|x)} .

The main results of this paper are the character-
izations of the coordination sets in Theorem 4.1,
Theorem 5.1, and Figure 2.

B. Sequences - An Alternative Statement

The coordination scenario of this paper is de-
scribed as controllers acting on signals, providing a
natural operational meaning. However, the results of
the analysis in this work are simply statistical and
probabilistic statements about sequences. Consider
the set of all groups of random variablesXn, An,
and Bn having the following two properties. First,

Xn−An−Bn forms a Markov chain. Second,Xn is
an i.i.d. sequence according top0(x). This is exactly
the set of random variables that can be produced
by a cascade of non-causal randomized controllers.
Theorem 4.1 then relates to the first-order statistics
of the sequences in this set.

C. Maximize Average Score

We can take a different approach to analyzing
coordination by specifying a reward function for the
three combined signals. Let the functionΠ(x, a, b)
be a reward obtained for each occurrence of the
triple (x, a, b) in the sequence of combined signals
(X,A,B)1, (X,A,B)2, .... We can then ask for the
greatest possible average reward under the constraints
imposed by the cascade of controllers of Figure 1,
taking the supremum over all choices of block length
n and controllers.

It turns out that this analysis is fundamentally the
same as characterizing the coordination setP. The
optimal average reward corresponding to the func-
tion Π can be found by maximizingE Π(X,A,B)
over the coordination set of conditional distributions.
Likewise, the coordination set, being a convex set, is
fully characterized by the optimal average reward for
all reward functionsΠ. This connection is due to the
close relationship between the average function value
of a sequence and the empirical distribution. For a
detailed proof of the relationship, see the discussion
in Section VI of [10] and the proof in Section VII.

IV. N ON-CAUSAL CONTROLLERS

Controller 1 and Controller 2 produce signals ac-
cording to unconstrained non-causal encoding func-
tions:

An = f(Xn),

Bn = g(An).

Theorem 4.1:The coordination setP for the cas-
cade of controllers in Figure 1 is the set of conditional
distributionsp(a, b|x) such that the joint distribution
with the source, given byp0(x)p(a, b|x), satisfies

H(A) ≥ I(X;A,B).

A. Achievability

To efficiently achieve coordination with a cascade
of controllers, we populated a codebook of(an, bn)
pairs. Controller 1 identifies a pair(ãn, b̃n) in the
codebook which yields the desired correlation with



Xn. However, Controller 1 only producesAn = ãn,
which is the first half of the codeword. If the code-
book is small enough, Controller 2 will be able to
identify which codeword Controller 1 selected based
only on observingAn.

Consider a source distributionp0(x) and a de-
sired conditional distributionp(a, b|x) that satis-
fies H(A) > I(X;A,B). Select a constantr
such thatH(A) > r > I(X;A,B). Let C =
{(an(k), bn(k))}2

nr

k=1 be a randomly generated code-
book, where each(an(k), bn(k)) is independently
drawn from the marginal distribution induced by
p0(x)p(a, b|x).

Controller 1 finds an integerk such that
(Xn, an(k), bn(k)) is jointly typical (in the sense
that the empirical joint distribution is close to the
desired distribution in total variation). This will be
successful with high probability ifn is large enough,
as a consequence of rate-distortion theory, since
r > I(X;A,B). Controller 2 searches the codebook
C for the firstj such thatan(j) = An and produces
the control sequenceBn = bn(j). If Controller 1
was successful, thenAn is a typical sequence, and
with high probability there is no other codeword in
the randomly generated codebook equal toAn since
r < H(A).

B. Converse

This problem does not involve rates of communi-
cation. The converse rests on the following observa-
tion.

H(An) ≥ I(Xn;An)
(a)
= I(Xn;An, Bn),

=

n
∑

q=1

I(Xq;A
n, Bn|Xq−1)

= nI(XQ;A
n, Bn|XQ−1, Q)

= nI(XQ;A
n, Bn,XQ−1, Q)

≥ n I(XQ;AQ, BQ).

where (a) comes from the fact thatXn −An −Bn

form a Markov chain.Q is a time sharing random
variable uniformly distributed on{1, ..., n} and in-
dependent of{Xn, An, Bn}. Similarly,

H(An) =

n
∑

q=1

H(Aq|A
q−1)

= n H(AQ|A
Q−1, Q)

≤ n H(AQ).

V. ONE CAUSAL CONTROLLER

Let us revisit the game Gossner et. al. solved in [1].
In their setting, Controller 1 observes the wholeXn

sequence and then generates an action sequenceAn2;
Controller 2 has a sequence of causally constrained
action functionsgi(·) for i = 1, ..., n. Therefore, the
controllers act according to the following encoding
functions:

An = f(Xn),

Bi = gi(A
i−1) for i = 1, ..., n.

Theorem 5.1:The coordination setP for the cas-
cade of controllers in Figure 1 with a strict causality
constraint on Controller 2 is the set of conditional
distributionsp(a, b|x) such that the joint distribution
with the source, given byp0(x)p(a, b|x), satisfies

H(A|X,B) ≥ I(X;B).

A. Achievability

We use block-Markov coding. Each block is of
length k, and we denote theith block Xn(i). Con-
sider a joint distributionp0(x)p(a, b|x) that satisfies
H(A|X,B) > I(X;B), and selectr such that
H(A|X,B) > r > I(X;B). We generate a code-
book C of Bk sequences of size2kr according to
the marginal distribution induced byp0(x)p(a, b|x)
to coverXk. We also randomly bin all the typical
Ak sequences in2kr bins.

At the beginning of theith block, Controller
1 finds an indexji+1 in the codebook such that
Bk(ji+1) is jointly typical withXn(i+1). Controller
1 then finds anAk sequence in theji+1th bin that
is jointly typical with (Xn(i), Bk(ji)) and outputs
thatAk sequence in theith block. At the end of the
ith block, Controller 2 observes theAk(i) sequence
from Controller 1, thus decodes the bin indexji+1.
In the (i + 1)th block, Controller 2 simply outputs
Bk(ji+1) as its actions. This scheme works with high
probability and yields an empirical distribution close
to p0(x)p(a, b|x).

B. Converse

nH(X) = H(Xn)
(a)
= H(Xn, An)

2Technically, Controller 1 also observesB1, ..., Bi−1 when
producing actionAi, but this can be safely ignored.
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−∞ 0 k > 0 ∞

−∞
X − (A,U)−B X ⊥ B

H(A) ≥ I(X;A,B) H(A) ≥ I(X;A,U) + I(A;U) H(A) ≥ I(X;A,B) + I(A;B)

0
X ⊥ U, H(A|X,U) = 0 X −A−B X ⊥ B X ⊥ B

H(A) ≥ I(X;A,B|U)

k > 0
X ⊥ A X ⊥ (A,B) X ⊥ (A,B) X ⊥ (A,B)

H(A) ≥ I(X;A,B)

∞
X ⊥ (A,B) X ⊥ (A,B) X ⊥ (A,B) X ⊥ (A,B)

Fig. 2. The coordination set under various delay constraints.

=

n
∑

q=1

H(Xq, Aq|X
q−1, Aq−1)

(b)
=

n
∑

q=1

H(Xq, Aq|X
q−1, Aq−1, Bq)

≤

n
∑

q=1

H(Xq, Aq|Bq)

= nH(XQ, AQ|BQ, Q)

≤ nH(XQ, AQ|BQ),

where (a) is becauseAn is a function ofXn and
(b) is due to the fact thatBq is a function ofAq−1.
The random variableQ is uniformly distributed on
the set[n] and independent of{Xn, An, Bn}. Note
thatH(X) ≤ H(X,A|B) is equivalent toI(X;B) ≤
H(A|X,B).

Based on Theorem 5.1 and the discussion in Sec-
tion III-C, we can characterize the optimal average
score of the game in the following corollary:

Corollary 5.2: For a game that pays outπ(x, a, b)
(x represents the source realization,a represents the
action of Alice,b represents the action of Bob), and
an i.i.d. source sequence with distributionp0(x), the
optimal average score of the game (assuming Alice
knows the entire source sequences, Bob sees past
actions of Alice, and they produce actions simulta-
neously) is

max
p(a,b|x) : H(A|X,B)≥I(X;B)

E π(X,A,B).

Remark: If we specialize the corollary to the
case whereX ∼Bernulli(1/2) and carry out the
optimization we will recover the optimal score in [1].
Furthermore, the score cannot be improved even if
Bob is allowed to also see the past source realiza-
tions (that he has already attempted to guess). The
converse for Theorem 5.1, in particular inequality (b),
still holds.

VI. FURTHER EXTENSIONS

In general, the encoding functions for both con-
trollers can be subject to delay constraints, i.e,

Ai = fi(X
i−d1),

Bi = gi(A
i−d2),

whered1 and d2 are the delays. The results under
different d1 d2 combinations are listed in Figure 2.
Note that−∞ means non-causal. Section III solved
the cased1 = −∞ and d2 = −∞ and Section V
solved the cased1 = −∞ andd2 = 1.
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