
ar
X

iv
:1

10
2.

17
82

v3
 [

cs
.IT

]
6

Ju
l 2

01
3

On network coding for acyclic networks with delays
K. Prasad and B. Sundar Rajan

Dept. of ECE, IISc, Bangalore 560012, India
Email: {prasadk5,bsrajan}@ece.iisc.ernet.in

Abstract—Problems related to network coding for acyclic,
instantaneous networks (where the edges of the acyclic graph
representing the network are assumed to have zero-delay) have
been extensively dealt with in the recent past. The most prominent
of these problems include(a) the existence of network codes
that achieve maximum rate of transmission,(b) efficient network
code constructions, and(c) field size issues. In practice, however,
networks have transmission delays. In network coding theory,
such networks with transmission delays are generally abstracted
by assuming that their edges have integer delays. Note that
using enough memory at the nodes of an acyclic network with
integer delays can effectively simulate instantaneous behavior,
which is probably why only acyclic instantaneous networks have
been primarily focused on thus far. In this work, we elaborate
on issues ((a), (b) and (c) above) related to network coding for
acyclic networks with integer delays, which have till now mostly
been overlooked. We show that the delays associated with the
edges of the network cannot be ignored, and in fact turn out
to be advantageous, disadvantageous or immaterial, depending
on the topology of the network and the problem considered i.e.,
(a), (b) or (c). In the process, we also show that for a single
source multicast problem in acyclic networks (instantaneous and
with delays), the network coding operations at each node can
simply be limited to storing old symbols and coding them overa
binary field. Therefore, operations over elements of largerfields
are unnecessary in the network, the trade-off being that enough
memory exists at the nodes and at the sinks, and that the sinks
have more processing power.

I. I NTRODUCTION

Network coding was introduced in [1] as a means to improve
the rate of transmission in networks. Linear network coding
was introduced in [2] and it was found to be sufficient to
achieve the maxflow-mincut capacity in certain scenarios such
as multicast. The linear network coding problem on a network
with given sink demands can be considered to have three major
subproblems.
• Existence of a network code that satisfies the demands.
• Efficient construction of such a network code.
• Minimum field size for the existence of such a network

code.
An algebraic theory of network coding was developed in

[3], which converted the existence problem of network coding
into an algebraic geometry problem. As for the latter two,
most of the literature in network coding has focused on the
multicast problem, i.e., where all sinks demand the information
generated by all the sources in the network. A polynomial-
time algorithm for designing a multicast network code on a
single-source acyclic instantaneous (zero-delay) network was
presented in [4]. This algorithm was further generalized in[5]

Part of the content of this work has appeared in the Proceedings of IEEE
Information Theory Workshop held at Paraty, Brazil, October 16-20, 2011.

and [6] for the case of multicast on networks with cycles. Note
that the notion of delays in the network is inherent to any
algorithm on cyclic networks. Delays are therefore assumed
either on the edges of the networks that contribute to the
cycles alone, or throughout the network. An information flow
decomposition based approach to the problem of network code
construction was discussed in [7].

Computing the minimum field size required to solve a
network coding problem is known [8] to be NP-hard. However,
for the multicast case on acyclic networks and certain kinds
of cyclic networks, it is known [3] [4] that a field size larger
than the number of sinks in the network is sufficient. Further
results on the field size issue can be found in [6] [7] [9]–[11].
In certain networks, linear network coding itself is found to
be insufficient to achieve the given demands [12].

The case of acyclic networks with delays was abstracted in
[3] as acyclic networks where each edge in the network has an
integer delay associated with it. With this setting, the authors
of [3] were able to naturally generalize the notion of linear
network coding and thereby the framework for the problem of
the existence of a linear network code on such networks was
presented. According to the framework of [3], a network code
on an acyclic network with general demands has to satisfy
two conditions at every sink to be a solution for the network,
which we refer to as(a) invertibility conditions, which have
to be satisfied to recover the information sequences demanded
at each sink, and (b)zero-interferenceconditions, which have
to be satisfied so that information sequences not needed at
a sink do not interference with those that are demanded (a
formal description of these conditions are given in Section
III). If at least one such network coding solution exists forthe
network, then the network is said to besolvable.

A delay profile for a network consists of a set of non-
negative integers, one for each edge in the network indicating
the integer delay experienced by the symbols on that edge.
For a given delay profile for a network, it has been noted (see
[13] [14], for example) that an instantaneous behaviour canbe
simulated in acyclic networks with integer delays using enough
memory at the nodes of the network. It is assumed in most
of network coding literature that this can always be done, and
that this is indeed the source of the instantaneous behaviour
in the network. However, several questions remain unexplored,
such as how solvability, field size, etc., are affected when there
is a change in the delay profile of the network, given that the
network has already been configured to be instantaneous under
a known delay profile.

In [15], it is shown that for multicast networks which are
equipped with memory at the nodes, there always exists a
network code (using memory at the nodes) which is a valid

http://arxiv.org/abs/1102.1782v3

2

solution for the network for any delay profile under any field
size. The authors of [15] further show that such adelay-
invariant code can be found with high probability using a
random choice of the network coding coefficients from a large
field. They also give a deterministic algorithm to construct
such a delay-invariant multicast network code for acyclic and
cyclic networks, as long as the field size is larger than the
number of sinks. In [16], it is shown that under the conditions
where the nodes in the network are always equipped with
enough memory to counteract any amount of delays in the
network, a network (with arbitrary demands) is solvable for
any delay profile if and only if it is solvable with an all-
zero delay profile. In other words, networks codes which are
solutions for the network under a certain delay profile can
always be converted into solutions for the network under a
different delay profile by utilizing the appropriate numberof
memory elements at the nodes of the network.

In this work, we wish to study the effect of the relationship
between some of the network coding problems for instanta-
neous networks and their counterparts with non-trivial delay
profiles. The instantaneous network of a networkG, which is
referred to asGinst throughout the paper, corresponds to the
networkG with a known delay profile where memory elements
have already been used to simulate instantaneous (zero-delay)
behaviour. We assume that any delay profile inG can only
have greater delays (on one or many edges) compared to those
in the basic delay profile that gives rise to the instantaneous
networkGinst. Therefore, throughout the paper, we view the
instantaneous networks as networks with the all-zero delay
profile.

Many of the results in this paper compare the network
coding problems onGinst with an unit-delay network, Gud.
The unit-delay network is the network where the delays in the
edges are exactly one unit above the delays inGinst. To derive
these comparison results, we assume that the intermediate
(non-source non-sink) nodes ofG are equipped with memory
sufficient only to simulate the instantaneous behaviour of
Ginst. This forms the major difference between our results and
that of [16], where there is no bound on the amount of memory
used by the intermediate nodes. In contrast with [15], [16],we
concern ourselves with analysing whether delays over thosein
Ginst can be advantageous or disadvantageous or neutral, given
that the intermediate nodes do not have memory beyond what
is used by them to simulate instantaneous behaviour inGinst.
Following our framework of viewingGinst asG with the all-
zero delay profile, and because of the fact that we limit the
amount of memory elements at the intermediate nodes ofG,
we refer to the intermediate nodes ofG as beingmemory-free,
i.e, utilizing no memory elements. The unit-delay networkGud

is then appropriately viewed as the networkG with an all-
one delay profile (i.e, one where all edges have a delay of
unity associated with them). Although our results show the
comparisons between network coding onGinst andGud, they
can be generalized without much difficulty to general delay
profiles. The all-one delay profile is chosen only because it
is sufficient to illustrate the differences obtained through our
results between instantaneous networks and those with delays,
and less cumbersome to handle in terms of notation.

Table I summarises the relationships obtained in this paper
between some of the network coding problems for instanta-
neous and unit-delay networks. The contributions of our work
are as follows.

• We prove that the solvability ofGinst preserves the
invertibility conditions (Proposition 1) inGud, but not
necessarily zero-interference conditions (Example 1). On
the other hand, we prove that ifGud is solvable, thenGinst

is always solvable (Proposition 2), and thereby proving
that if Ginst is not solvable, then so isGud (Corollary 2).
These results on the relationship between the solvability
and non-solvability ofGinst andGud are tabulated in the
first two rows of Table I.

• We show that whenever there is a polynomial-time al-
gorithm for constructing a network code forGud that
satisfies all sink demands, then there is a polynomial-
time algorithm for constructing a network code forGinst

which satisfies all sink demands (Corollary 3). The third
row of Table I captures these results.

• We prove that under certain conditions on the topology
of the network there exists an equivalence between a net-
work code over any particular field constructed onGinst

andGud (Proposition 3). Thus, for networks obeying the
constraints given in Proposition 3, the minimum field size
for constructing a network code satisfying all demands
for Ginst andGud is the same. We also prove that under
such constraints on topology, the non-solvability ofGud

implies the non-solvability ofGinst (Corollary 4). The
last two rows of Table I lists these results.

• We prove that there exist networks for which the delays
prove useful for the field size problem, i.e., network
codes can be constructed over a smaller field size for
Gud compared toGinst, and also show a construction
of such networks (Corollary 5). These results are also
tabulated in the last two rows of Table I. Towards that
end, we prove the feasibility of two multicast algorithms,
one of which works for acyclic networks (instantaneous
and with delays) and was conjectured in [18] based on the
multicast algorithm of [4], and the other works for certain
special acyclic networks (Proposition 4 and Proposition
5). These modified algorithms employ low-complexity
encoding at the intermediate nodes overF2 using memory
elements, while possibly demanding a larger complexity
of decoding at the sinks compared to traditional network
coding schemes.

The rest of this work is organized as follows. In Section II,
we set up the model and the terminology for acyclic networks
with delays. In Section III, we explore the relationship between
the network code existence problem inGud andGinst for an
acyclic networkG with given set of demands, and also present
examples where having delays prevent the existence of any
solution forGud while solutions exist forGinst. In Subsection
IV-A, we analyze the conditions on topology which result in
an equivalence of network coding solutions betweenGud and
Ginst. After briefly reviewing the Linear Information Flow
(LIF) algorithm of [4] in Subsection IV-B, in Subsection IV-C
we use a modified version of this algorithm to obtain a class

3

TABLE I
RELATIONSHIP BETWEEN NETWORK CODING PROBLEMS BETWEENGinst AND Gud FOR AN ACYCLIC GRAPHG.

Property of interest If the property holds for Ginst, If the property holds for Gud,

does it continue to hold forGud? does it continue to hold forGinst?
Solvability Yes, if zero-interference conditions Yes(Proposition 2).

are satisfied (Proposition 1),
or for multicast (Corollary 1).

No, if they are not satisfied (Example 1).
Non-solvability Yes(Corollary 2). No (Example 1).

Polynomial-time algorithms No, in general, asGud might not Yes(Corollary 3).
for code construction even be solvable (Example 1).

Solvability over No, in general, asGud might not No, in general (Corollary 5), as illustrated
a particular field even be solvable (Example 1). in Example 2 and Example 3.

Yes, for certain conditions on Yes, under certain conditions
topology given by Proposition 3, given by Proposition 3.

or for multicast (Corollary 1).
Non-solvability over No, in general (Corollary 5), as illustrated No, in general (Example 1).

a particular field in Example 2 and Example 3. Yes, under conditions on topology
given by Corollary 4.

of networks in which delays prove beneficial in the minimum
field size problem, i.e., where feasible binary network codes
always exist forGud irrespective of the field size required for
Ginst. We conclude the paper in Section V with remarks and
directions for further research.

II. N ETWORK CODES FOR ACYCLIC NETWORKS WITH

DELAYS

Following the terminology of [4], an acyclic network is
modeled as an acyclic graphG with V being the set of
nodes andE the set of edges in the network. The setV
contains a set of source nodesS and a set of sink nodesT .
We assume that the sources have no incoming edges in the
network, while the sinks have no outgoing edges. The time
unit under consideration shall imply one use of the channels
in the network. Each sources ∈ S generateshs information
sequences at the rate ofhs Fq symbols per every time unit,Fq

being the finite field withq symbols. For each sources ∈ S,
we introducehs parallel edges (denoted byEs) incoming at
s, which carry thehs information sequences to the sources.
Let h =

∑

s∈S hs.
Assuming an ordering on the set of information sequences

available at the sources, letIt denote an indicator function for
a sink t ∈ T , defined as

It : {1, 2, ..., h} → {0, 1} ,

such that,It(i) = 1, if sink t demands theith information
sequence, and0 otherwise. LetC denote the collection of the
functionsIt, ∀t ∈ T .

Each sink nodet ∈ T demands some subset of sizeht

of the h information sequences generated at the sources. Let
h

T
=

∑

t∈T ht. For each sinkt, we assumeht imaginary
outgoing edges fromt, denoted byEt. We represent a network
G(V , E) with a set of sourcesS and a set of sinksT with a
set of demands given byC asG(V , E ,S, T , C).

Every edge in the directed graph representing the network
has a capacity of oneFq symbol. We abstract the case of
networks with delay by assuming a unit-delay associated with
edges of the graphG, represented by the parameterz. We
denote the graphG(V , E) along with the delays asGud, the
unit-delay version ofG or simply theunit-delay networkGud.
Note that network links with integer delays greater than unit
are modeled as serially concatenated edges in the directed
multi-graph. Because of this reason, we view networks with
integer delays and those with unit-delays equivalently.

The set of symbols generated at the sources at any particular
instant of time is called agenerationof symbols. Any node
in a unit-delay network may receive information of different
generations on its incoming edges at any particular time
instant. Except for the discussion in Subsection IV-C, we
assume that the intermediate (non-sink, non-source) nodesare
memory-free and merely transmit aFq linear combination
of the incoming sequences on their outgoing edges. Also,
the zero-delay version ofG, referred to as theinstantaneous
network, is denoted byGinst. The following notations will be
used throughout the paper.

ΓI(v) : Set of incoming (including imaginary) edges at nodev

ΓO(v) : Set of outgoing (including imaginary) edges at nodev

δI(v) : |ΓI(v)|.

δO(v) : |ΓO(v)|.

v=head(e) : if e ∈ ΓI(v).

v=tail(e) : if e ∈ ΓO(v).

For an edgee ∈ E ∪Et, we define thelocal encoding vector
as a δI(tail(e))-length vector,(me,p(z) : p ∈ ΓI(tail(e))) ,
where me,p(z) ∈ Fq(z), the field of rational functions
over Fq. The local encoding vector determines the sequence
ye(z) =

∑

i ye,iz
i (ye,i ∈ Fq being the symbol atith time

index) flowing on edgee based on the sequences incoming at

4

tail(e), i.e.,

ye(z) =
∑

p∈ΓI(tail(e))

me,p(z)yp(z). (1)

Note that as the intermediate nodes are allowed to take onlyFq

linear combinations of the incoming sequences, we have for an
edgee /∈ ΓO(s) (for any s ∈ S), me,p(z) = zme,p, for some
me,p ∈ Fq and the parameterz denotes the delay incurred
during the transmission through edgee. For an edgee ∈ ΓO(s)
of some sources ∈ S, we haveme,p(z) = zm̃e,p(z), for
somem̃e,p(z) ∈ Fq(z), as we let the sources take arbitrary
combinations overFq(z). The additionalz again denotes the
delay incurred on the edgee. For Ginst, note that

me,p(z) = me,p ∈ Fq, (2)

for any pair of edgese andp, and therefore the corresponding
input-output relationship for any edgee is given independent
of the time index as

ye =
∑

p∈ΓI(tail(e))

me,pyp,

whereye, yp ∈ Fq.
Let m denote the set of alllocal encoding coefficients

(all taking values fromFq). For Gud, m is the set of allFq

coefficients of the numerators and denominators of allme,p(z).
For Ginst, m denotes the set of allme,p. The difference
between the two will be clear from the context.

The network coding problem implies a choice of the local
encoding coefficientsme,p such that each sink can recover the
information it demands. Because of the linearity of (1), we
can associate with every edgee a h-length global encoding
vector over Fq(z). The global encoding vectorb(e) of edge
e, indicates the particularFq(z) linear combination of the
h information sequences, flowing ine. The global encoding
vectors of theh incoming edges at the sources correspond
to the basis vectors ofFh

q . By (1), the vectorb(e) can be
recursively calculated from the global encoding vectors ofthe
edges incoming attail(e). The global encoding vectors are
well defined because of the acyclicity of the network.

Having ordered theh input sequences and theh
T

output
sequences, the input-output relationship ofGud can be repre-
sented as ah×h

T
matrix overFq(z) called theoverall transfer

matrix [3], M(z), of the network, the columns of which are the
global encoding vectors of the imaginary outgoing edges from
the sinks. The transfer matrix corresponding to a particular
sink t, is theh× ht matrix Mt(z), the columns of which are
the global encoding vectors of the imaginary outgoing edges
from the sinkt. Therefore, forx(z) being theh-length input
vector andyt(z) being theht-length output vector at sinkt,
we haveyt(z) = x(z)Mt(z). For Ginst, the components of
the global encoding vectors and network transfer matrices are
all elements fromFq. For more details on the structure of
these matrices, we refer the reader to [3].

III. E XISTENCE OFNETWORK CODES FOR ACYCLIC

NETWORK WITH DELAYS

The problem of network code existence was presented from
an algebraic geometry point of view in [3]. The local encoding

coefficientsm are assumed to be variables which can take
values from a large enough finite field. A network code, i.e.,
a particular choice of the set of all local encoding coefficients
m, is defined to befeasible, i.e., it achieves the given set
of demands at the sinks, if the following two conditions are
satisfied.

• Invertibility conditions:For each sinkt, theht × ht sub-
matrixM ′t(z) of Mt(z), the rows of which corresponding
to the inputs demanded at sinkt, is invertible overFq(z).

• Zero-Interference conditions:For each sinkt, the ele-
ments of the matrixMt(z) which are not part ofM ′t(z)
are zero.

Note that if the mincut between any sources and any sink
t is less than the number of information sequences demanded
by t from s, then the network coding problem is clearly not
solvable. Besides the mincut conditions, the topology of the
network also affects the ability to satisfy the demands in the
network.

For each sinkt, some elements ofMt(z) are not a part
of the M ′t(z) matrix. Let f1, f2, ..., fK be all such elements,
for all possible sinkst ∈ T . Note that eachfi ∈ Fq(z)
for any particular choice ofm, hence we represent eachfi
as fi(m, z). Similarly, let g1(m, z), g2(m, z), ..., gL(m, z)
be the determinants of theM ′t(z) matrices. Letg(m, z) =
∏L

i=1 gi(m, z). The invertibility and zero-interference con-
ditions then imply that the assignment ofm should satisfy
g(m, z) 6= 0 andf1(m, z) = f2(m, z) = ... = fK(m, z) = 0
respectively. Similar conditions (except for the delay parameter
z) for feasibility hold good for theGinst also. Note that for
certain network topologies or sink demands, the invertibility
conditions alone will suffice for feasibility, while the zero-
interference conditions might not arise at all [3]. The multicast
case, where all sinks demand all the information sequences,
is one such example.

We now provide some results regarding the question of
whether the solvability ofGud implies the solvability ofGinst

also, and vice versa. The following proposition is a generalized
version of Proposition 1 of [17], where the statement was
proved only for a multicast case. A simpler proof for this
proposition can also be derived easily from the results of [15].

Proposition 1: Let Gud(V , E ,S, T , C) be an acyclic, unit-
delay network with a given set of sink demands and
Ginst(V , E ,S, T , C) be the corresponding instantaneous net-
work. Letm′ be a set of local encoding kernels which result in
a network code forGinst, satisfying the invertibility conditions.
Thenm′ continues to satisfy the invertibility conditions for
Gud.

Proof: See Appendix A.
For the multicast case, which has no zero-interference

conditions, we then have the following corollary, which was
proved in [17].

Corollary 1: Let Gud(V , E ,S, T , C) be an acyclic, unit-
delay network with multicast demands, i.e., all sinks require
all the information sequences, andGinst(V , E ,S, T , C) be the
corresponding instantaneous network. Then a feasible network
code forGinst continues to be feasible forGud.

5

In a general non-multicast network coding problem, it might
not be possible to satisfy the zero-interference conditions in the
networkGud, though they can be satisfied in the networkGinst.
This is because of the fact that different flows which cancelled
out the interference inGinst can take paths of different delays
in the corresponding acyclic network with delays, thereby
preventing the cancelling effect. Example 1 illustrates one such
network, for which there exists solutions inGinst, but none for
Gud.

Example 1:Consider the networkG shown in Fig. 1. Let
the field under consideration beFq. Sources1 has a sequence
x1(z), which has to be conveyed to sinkt1, while the sequence
x2(z) at sources2 has to be conveyed to sinkt2. In bothGinst

andGud, the topology of the network demands that the linear
combination of the two incoming sequences at nodev1 should
be such that both the local encoding coefficients are non-zero.

In Ginst, the information sequencex1(z) is cancelled out
at nodev2 to enable sinkt2 to receivex2(z), and similarly
cancellation ofx2(z) happens at nodev3 for sink t1. In Gud,
this cancellation, while being necessary for the network code
to be feasible, cannot happen at the nodesv2 andv3 because of
the disparity in the delays of the flows at their incoming edges.
Since the choice of our finite field was arbitrary, it is therefore
clear that unless memory is used at some of the intermediate
nodes, there exists no feasible network code for this network
considered with delays over any finite field.

Fig. 1. A networkG where zero-interference conditions fail to hold inGud

In light of Proposition 1 and Example 1, it can be observed
that the solvability of a network coding problem forGinst

need not imply solvability forGud. The following proposition
answers the reverse problem, i.e., that solvability of a given
G(V , E ,S, T , C) for Gud always implies its solvability for
Ginst.

Proposition 2: Let Gud(V , E ,S, T , C) be an acyclic, unit-
delay network with a given set of sink demands andGinst

be the corresponding instantaneous network. If there exists a
feasible network code forGud(V , E ,S, T , C), then there exists
a feasible network code forGinst(V , E ,S, T , C).
Proof: See Appendix B.

Proposition 2 leads to the following corollary.

Corollary 2: Let Gud(V , E ,S, T , C) be an acyclic, unit-
delay network with a given set of sink demands andGinst

be the corresponding instantaneous network. If there exists
no feasible network code forGinst(V , E ,S, T , C), then there
exists no feasible network code forGud(V , E ,S, T , C).

Note that the proof of Proposition 2 involved an actual
construction of a feasible network code forGinst starting from
a feasible network code forGud. Such a construction implies
the following corollary on a polynomial-time constructionfor
a feasible network coding solution forGinst.

Corollary 3: Let Gud(V , E ,S, T , C) be an acyclic, unit-
delay network with a given set of sink demands andGinst

be the corresponding instantaneous network. If there exists a
polynomial-time construction algorithm for a feasible network
coding solution onGud, then there exists a polynomial-time
construction algorithm for a feasible network coding solution
on Ginst.
Proof: See Appendix C.

IV. RELATIONSHIP BETWEEN THE MINIMUM FIELD SIZE

PROBLEM FORGud AND Ginst

In this section, we discuss the effect of considering delays
in the network on the field size over which a valid network
code can be designed for an acyclic networkG. We assume
that Gud is solvable, which mean thatGinst is also solvable,
according to Proposition 2. Note that Proposition 1 already
gives a small insight into the field size issue, showing that
for a multicast network, the minimum field size that satisfies
the invertibility conditions inGud is at most as large as the
minimum field size forGinst.

It is not difficult to observe that in some of the usual
examples in network coding literature such as the butterfly
network and combination networks, the feasibility of a given
network code is preserved between the unit-delay network
and the corresponding instantaneous network, because the
topology of these networks prevents the mixing of information
symbols from different generations at the intermediate nodes.
In the forthcoming subsection, we formalize such a topological
constraint for networks with general demands and thereby
obtain sufficient conditions on the equivalence of network
coding solutions betweenGud andGinst for an acyclic network
G with given demands.

A. Equivalence of minimum field size problem betweenGinst

andGud

The following proposition gives a class of networks for
which the minimum field size is equal for bothGinst andGud,
by demonstrating a sufficient condition under which certain
network coding solutions remain feasible for bothGinst and
Gud. We define for a nodev ∈ V\S, a set Q(v) which
consists of all possible paths (a path being a sequence of edges
following an ancestral order) from the source nodes tov such
that any two paths differ by at least one edge. We also define
for a nodev ∈ V\S, a |Q(v)|-lengthdepth vectord(v), each
component (inZ+) of which indicates the total delay incurred
in the corresponding path ofQ(v) from some sources to node
v.

6

Proposition 3: Let Gud(V , E ,S, T , C) be an acyclic, unit-
delay network with a given set of sink demands and
Ginst(V , E ,S, T , C) be the corresponding instantaneous net-
work. Suppose the topology ofGud is such that for any
v ∈ V\S, the components of the depth vectord(v) are
all equal. Let U be the set of all feasible solutions for
Gud(V , E ,S, T , C) such that the sources combine information
symbols without using memory, i.e. the symbols only from the
current generation, andUq be the subset ofU with solutions
from the fieldFq. Then the following statements are true.

(A) Any solution fromU for Gud is also a feasible solution
for Ginst.

(B) Any feasible solution forGinst is a feasible solution for
Gud.

(C) If qmin is the minimum field size for which a feasible
network code exists forGud and the subsetUqmin

of U is
non-empty, thenqmin is the minimum field size required
for a feasible solution forGinst too.

Proof: See Appendix D.
Proposition 3 formalizes the easily observed sufficient con-

ditions for the same network codes to be solutions for both
Ginst andGud. However, deriving necessary conditions for the
same seems difficult. Proposition 3 also leads to the following
obvious corollary.

Corollary 4: Let Gud(V , E ,S, T , C) be an acyclic, unit-
delay network with a given set of sink demands and
Ginst(V , E ,S, T , C) be the corresponding instantaneous net-
work. Suppose the topology ofGud is such that for any
v ∈ V\S, the components of the depth vectord(v) are all
equal. If Gud has no feasible solutions over some particular
field Fq, then neither doesGinst.

B. Reduction of minimum field size inGud - Review of Linear
Information Flow Algorithm

Proposition 3 illustrates some network conditions which
lead to the equivalence between finding the minimum required
field size for a given set of demands onGud and Ginst of
a given acyclic networkG. Example 1 illustrated a situation
where the disparity in the delays of the symbols arriving at a
node prevented the possibility of obtaining a feasible network
code. However, such delay disparity can also be useful. In
particular, because of this delay disparity, there exist networks
in which the feasible network codes exist over a smaller field
for Gud compared toGinst. Towards understanding how such
situations can arise, we discuss a couple of examples.

Example 2:Consider the networkG shown in Fig. 2. The
sources has two sequencesx1(z) andx2(z) to be transmitted
to the six sinksti : 1 ≤ i ≤ 6. This network is clearly a

cascaded version of the usual butterfly network and the

(

4
2

)

network. As in the case of the

(

4
2

)

network, a feasible

network coding solution for this network (either inGinst or in
Gud) implies that any two of the four global encoding vectors
on the edgesei : 1 ≤ i ≤ 4 should be linearly independent.
Therefore, forGinst, a minimum field size of3 is required to
construct a feasible network code.

However, forGud, a binary field is sufficient. Consider the
usual network code overF2 in the butterfly subnetwork of
the given network, where the global encoding vectors at the

nodev2 are

(

z2

0

)

and

(

z4

z4

)

, while those at nodev3 are
(

0
z2

)

and

(

z4

z4

)

. Then the vectors

(

z3

0

)

,

(

z5

z5

)

,
(

0
z3

)

and

(

z5

z5 + z3

)

can be chosen as global encoding

vectors for the edgesei : 1 ≤ i ≤ 4 respectively, which
render the network code feasible forGud. Therefore, even in
a multicast situation, the minimum field size requirement of
the unit-delay network can be smaller than that of the corre-
sponding instantaneous network. Note that such a situationis
made possible because of the difference in the delays between
the incoming symbols at the two edges ofv3.

Fig. 2. A multicast network in whichGud requires smaller field size thanG

Example 3:Consider the networkG shown in Fig. 3. For
1 ≤ j ≤ 3, each sourcesj has an information sequencexj(z).
This network has non-multicast demands, with sinksti : 1 ≤
i ≤ 3 requiring all three information sequences, while sinkt4
requires{x1(z), x3(z)} and t5 demands{x2(z), x3(z)} . We
show that no feasible network code exists forGinst over F2,
while such a code exists forGud.

We now argue that we cannot obtain a feasible network code
for Ginst overF2. The sinksti : 1 ≤ i ≤ 5 have direct paths
from the source(s){s1, s2} , {s1, s3} , {s2, s3} , {s3} and{s3}
respectively. As the sinksti : 1 ≤ i ≤ 3 require information
sequences from all three sources, the edgee1 should carry
a coded version of all three information sequences for the
network code to be feasible at sinksti : 1 ≤ i ≤ 3. Thus,
over F2, the global encoding vector for edgee1 should be
a = (1 1 1)

T
. As sink t5 has a direct path from sources3,

the edgee2 should carry a linear combination of bothx2(z)
andx3(z). Thus the global encoding vector of edgee2 over
F2 must beb = (0 1 1)

T
. Now, as sinkt4 has a direct path

from sources3, the edgee3 should carry a linear combination

7

of bothx1(z) andx3(z), i.e., (1 0 1)T . However, the global
encoding vectors of the incoming edges at nodev1 area and
b, using which the vector(1 0 1)

T cannot be obtained. Thus
no feasible network code can be found forGinst over F2. A
feasible network code can be found for this network over any
field with sizeq ≥ 3.

Now we prove by argument that there exists a code for
Gud. Becausee1 should carry a linear combination of all
three information sequences, let its global encoding vector
be a(z) =

(

z2 z2 z2
)T

, after accounting for the delays
incurred in the transmission. Accounting for the disparityin
the delays at the nodev2, let the global encoding vector of
edgee2 be b(z) =

(

0 z2 z3
)T

. Thus the global encoding
vectors of the incoming edges at nodev1 areza(z) andzb(z).
Nodev1 can then simply send a sum of two incoming symbols
on edgee3, in which case the global encoding vector of edge
e3 is

(

z4 0 z4 + z5
)T

. Accounting for all the direct paths in
the network, it can be seen that all sink demands are satisfied,
i.e., the invertibility conditions hold overF2(z) and so do the
zero-interference conditions. Thus there is a feasible network
code forGud overF2. As in the previous example, the delay
disparity at nodev2 is what makes this possible.

Fig. 3. A non-multicast network in whichGud requires smaller field size
thanG

In the remainder of this section, we show that there exist
several occasions in which a binary field is sufficient for
constructing feasible network codes for unit delay networks,
irrespective of the field size required for their instantaneous
counterparts. We concentrate only on the single-source mul-
ticast case. As the results in this section are all centered
on the deterministic version of theLinear Information Flow
(LIF) algorithm in [4], we briefly discuss the terminology and
lemmas related to the LIF algorithm before proving our results.

The steps of the LIF algorithm for constructing a multicast
network code in a single source acyclic instantaneous network
Ginst with |T | sinks are as follows.

1) Identify thehs edge-disjoint paths from the source to the
sinks, wherehs is the number of information symbols

at the source. Note thaths can be at most equal to
the minimum of the mincuts between the source and
each sink and not more, otherwise the multicast problem
is infeasible. LetG∗(V∗, E∗) be the subnetwork ofG
consisting of the nodes and edges on these edge-disjoint
paths alone. The rest of the algorithm works only with
G∗, as a feasible network code forG∗ can be converted
to a feasible network code forG by simply assigning
zeros for any other local encoding coefficients.

2) For a sinkt ∈ T , let f t denote the set ofhs edge-
disjoint paths from the source tot. For each sinkt ∈ T ,
the algorithm maintains for each sink a setCt, which
consists of thehs most recently processed edges (one
from every path inf t) and ahs × hs matrix Bt, which
has the global encoding vectors of the edges inCt. The
setCt is initialized with the set{ei : 1 ≤ i ≤ hs} (the
hs imaginary edges at the source), while the columns
of the matrixBt is initialized with thehs-length global
encoding vectors{b(ei) : 1 ≤ i ≤ hs} respectively. For
every sinkt, the algorithm maintains the full-rank prop-
erty ofBt by an appropriate choice of the local encoding
coefficients attail(e), e ∈ Ct being the most recently
processed edge asCt is incremented in some ancestral
ordering. The algorithm also maintains anotherhs × hs

matrix At which has the inverse vectors ofBt at every
step of the algorithm.

3) For an edgee ∈ E∗, let f t
←(e) denote the predecessor

edge ofe on some flow path from the sources to sink
t. Note that there can be at most one flowpath froms to
any sink throughe. After processing any edgee, the LIF
algorithm updates the setCt and the matricesBt and
At. The updated values forCt, Bt andAt are denoted
by C̃t, B̃t and Ãt and are obtained as follows.

a) C̃t = Ct\ {f
t
←(e)} ∪ {e} .

b) B̃t = B̃t\ {b(f
t
←(e))} ∪ {b(e)} .

c) ãt(e) = (b(e).at(f
t
←(e)))

−1
at(f

t
←(e)).

d) For all c ∈ Ct\ {f
t
←(e)} ,

ãt(c) = at(c)− (b(e).at(c)) ãt(c). (3)

4) Ultimately the algorithm ends with the matrixBt equal
to the network transfer matrixMt of the sinkt, whose
full-rank property is guaranteed by the algorithm, there-
fore rendering a feasible network code.

Let T (e) be the number of sinks which have a flow path
throughe, and letP (e) = {f t

←(e) : t ∈ T (e)} be the set of
all predecessor edges ofe. The only non-zero local encoding
coefficients to be chosen for the edgee by the algorithm
are me,p, p ∈ P (e). At every step of the algorithm where
the global encoding vector of the next edge (according to a
chosen ancestral order)e is selected, the setBt has to be
kept linearly independent, i.e., the choice ofme,p should be
such thatBt\ {b(f

t
←(e))} ∪ {b(e)} is linearly independent.

The following lemma proved in [4] gives a fast way to test
this linear independence based on the dot product inFq. In
the following lemma, we haveδa,b = 1, if a = b.

Lemma 1:Consider a basisB of Fhs
q and vectorsb ∈ B,

a ∈ Fhs
q such that∀b′ ∈ B, we haveb′.a = δb,b′ . Then, any

8

vectorx ∈ Fhs
q is linearly dependent onB\ {b} if and only

if x.a = 0.
Given the full-rank matrixBt of global encoding vec-

tors
{

b(e) ∈ Fhs
q : e ∈ Ct

}

, we will denote the corre-
sponding columns of the inverse matrixAt of Bt, as
{

at(e) ∈ Fhs
q : e ∈ Ct

}

. Then the linear independence con-
dition to be checked in the LIF algorithm takes the following
form due to Lemma 1:

∀t ∈ T : ∀e, e′ ∈ Ct : b(e).at(e
′) = δe,e′ . (4)

The following lemma gives the sufficient field size for the
construction of a feasible network code for multicast on a
single source acyclic network.

Lemma 2:[4] Let q ≥ n. Consider pairs(xi,yi) ∈ Fhs
q ×

Fhs
q with xi.yi 6= 0 for i ≤ i ≤ n. There exists a linear

combinationu of x1,x2, ...,xn such thatu.yi 6= 0 for 1 ≤
i ≤ n.

Outline of proof:We provide only an outline here in order
that we might use similar proof ideas later in Subsection IV-C.
For the complete proof, the reader is referred to [4]. The proof
involves the iterative construction of vectorsu1,u2, ...,un

(each ui ∈ Fhs
q) such that for anyi, ui is some linear

combination of the vectors{xk : 1 ≤ k ≤ i} and for anyj
such that1 ≤ j ≤ i, ui.yj 6= 0. As long as the field size is
more thann, the vectorsui can always be found, with the
final vectorun being the desiredu. �

With e being the edge under consideration, let

{(xi,yi) : i ≤ i ≤ n} =
{

(b(f t
←(e)),at(f

t
←(e))) : t ∈ T (e)

}

in Lemma 2. Then the vectoru found using Lemma 2
satisfies (by invoking Lemma 1) the requirements for the
global encoding vectorb(e) of edgee, i.e., (4). The particular
linear combination of the vectors{b(f t

←(e)) : e ∈ P (e)} used
to obtainu gives the local encoding coefficients attail(e), i.e.,
{me,p : p ∈ P (e)} . By Lemma 2, a field sizeq such that

q > max
e∈E

T (e), (5)

T (e) being the number of sinks which have flow paths through
e, is always sufficient for constructing a multicast network
code forG∗inst according to the LIF algorithm. Therefore, for
constructing a multicast network code in any single source
acyclic network with|T | sinks,q > |T | is sufficient.

Note that although the LIF designs a feasible network
code forGinst, the extension of the LIF algorithm (and the
associated lemmas) toGud is straightforward. While the local
encoding coefficients (picked according to Lemma 2) continue
to be overFq, the matricesAt and Bt are overFq(z) for
Gud according to (1). Therefore, the dot product involved in
the Lemma 1 and Lemma 2 are the standard dot product in
Fq(z), and full-rank property ofBt is checked overFq(z). By
Corollary 1, (5) holds for multicast network code construction
for G∗ud too.

C. Delay-and-code: A technique for single-source multicast
on acyclic networks

As discussed in Subsection IV-B, the LIF algorithm uses
Lemma 2 together with Lemma 1 for constructing a multicast

network code in a given instantaneous networkGinst, or
the corresponding unit-delay networkGud. Based on the LIF
algorithm, we now present another network coding scheme
called adelay-and-codescheme, which reduces the complexity
of encoding at the intermediate nodes at the cost of potentially
increased complexity of decoding at the sink nodes. The finite
field under consideration is alwaysF2. As a theoretical by-
product of this scheme, we show that there exist networks for
which the binary field is sufficient for constructing a multicast
network code inGud, irrespective of the field size requirement
in Ginst.

We assume that each node is equipped with memory ele-
ments and a linear combination of the stored symbols is then
transmitted on the outgoing edges. Abusing the definition of
the delay parameterz, we also denote a memory element by
z. We however do not allow all possibleF2(z)-linear com-
binations of the incoming symbols that is possible using the
memory elements available at the node under consideration.In
other words, the input-output relationship of the edgee given
by (1) is restricted to be of the form

ye(z) =
∑

p∈ΓI(tail(e))

me,pz
ae,pyp(z), (6)

whereme,p ∈ F2, andae,p ∈ Z≥0, in general (for bothGinst

andGud). ForGud, ae,p ∈ Z+, to account for mandatory delay
incurred in the transmission through edgee.

If a delay-and-code scheme onG is such that for any non-
source nodev ∈ V ∪ T , and for anyp ∈ ΓI(v),

ae,p = ap, ∀e ∈ ΓO(v) such thatme,p 6= 0, (7)

then we refer to the delay-and-code scheme as auniform delay-
and-codescheme. Otherwise, we refer to it as anon-uniform
delay-and-codescheme. In other words, in the uniform delay-
and-code scheme, an intermediate node is not allowed to code
differently delayed versions of the symbols arriving from any
particular edge. In the non-uniform case, this is permitted.
Note that we consider only intermediate nodes in the network,
i.e., the non-source non-sink nodes. The non-uniform delay-
and-code technique was already mentioned in [18] for acyclic
and cyclic networks. It was however only conjectured that a
feasible multicast network code can be designed using the non-
uniform delay-and-code scheme. In this work, we prove this
conjecture for the case of acyclic networks.

Similar to the usual network coding formulation, such linear
combinations also result in a network transfer matrix at each
sink, which should be full-rank overF2(z) for the network
code to be feasible for that particular sink. The algorithm for
constructing a delay-and-code scheme for any given acyclic
single-source network with multicast demands follows thatof
the LIF algorithm, with the change that the local encoding
coefficients are based on the formulation of (6). The following
proposition shows that any acyclic network with multicast
demands can be solved using the non-uniform delay-and-code
scheme.

Proposition 4: Let G(V , E , s, T , C) be an acyclic single-
source network with multicast demands with the mincut be-
tween s and anyt ∈ T being at leasths, the number of
information sequences generated ats. Then a feasible network

9

code can be designed forGinst (or Gud) using the non-uniform
delay-and-code scheme provided the total number of memory
elements present at each node for each incoming edge is at
least(|T | − 1) .
Proof: See Appendix E.

We now deal with the uniform delay-and-code scheme. We
consider only the special case of those networks in which the
paths from the source to each sink are not only edge-disjoint
but also node-disjoint, i.e., thehs paths from the source to
any sink do not have any common node except the source and
that particular sink itself. The general case, where paths are
not necessarily node-disjoint, is more difficult and might not
be solvable because of the following reason.

Consider a network with paths that are not node-disjoint.
Because of the formulation specified by (7), for any given
intermediate nodev, all the priorly processed outgoing edges
of v should be considered when processing any particular
e′ ∈ ΓO(v). Let e, e′ ∈ ΓO(v) and supposeT (e)∩T (e′) 6= Φ.
Suppose the global encoding vector ofe has been decided
beforee′. Once edgee′ has been processed (b(e′) has been
decided), note that the elements of the setS(e), which was
used to determineb(e), would have been updated according
to (3). Therebyb(e) might no longer satisfy the required
properties of maintaining the ranks of theBt matrices of some
t ∈ T (e) ∩ T (e′). Now if a new global encoding vectorb(e)
was chosen for edgee, then the setS(e′) might change, and
b(e′) might no longer be a valid global encoding vector fore′.
Because of such a see-saw effect, it might not be possible to
design a feasible network code using the uniform delay-and-
code scheme.

Now suppose thehs edge-disjoint paths to each sink from
s are also node-disjoint, i.e., at any intermediate node in the
network, there exists at most one incoming-outgoing edge pair
which lies on any path from the source to any particular sink.
Therefore, for anye ∈ ΓO(v) being the currently processed
edge, anyc ∈ Ct\ {f

t
←(e)} for any t ∈ T (e) is such that

c /∈ ΓI(v). In other words, there are noe, e′ ∈ ΓO(v) such
thatT (e)∩T (e′) 6= Φ. Thus, fixing the global encoding vector
for anye′ ∈ ΓO(v) does not affect the setsS(e) for any other
edgee ∈ ΓO(v). For this reason, we focus on networks with
node-disjoint paths for the uniform delay-and-code case.

Proposition 5: Let G(V , E , s, T , C) be an acyclic single-
source network with multicast demands with at leasths

node-disjoint paths betweens and any t ∈ T , hs being
the number of information sequences generated ats. Let
δ := maxv∈V δO(v). Then a feasible network code can be
designed forGinst (or Gud) using the uniform delay-and-code
scheme provided the total number of memory elements present
at each node for each incoming edge is at leastδ (|T | − 1) .
Proof: See Appendix F.

The following corollary to Proposition 5 shows that there
exist several unit-delay networks for which a binary field is
sufficient for constructing a feasible network code, irrespective
of the field size required for their instantaneous counterparts.

Corollary 5: There exist acyclic networks for which a feasi-
ble binary network code exists for the unit-delay networks as a
result of differently delayed information available at thecoding
nodes (where paths to different sinks intersect) in the network,

irrespective of the minimum field size required to design a
feasible network code for the corresponding instantaneous
networks. In particular, given a single-source acyclic network
G with multicast demands and with at leasths node-disjoint
paths (hs being the number of information symbols at source)
from the source to each sink, it is always possible to construct
a modified networkG̃ such thatG̃inst has the same minimum
field size requirement asGinst, but a binary field size would
suffice to obtain a feasible network code forG̃ud.
Proof: See Appendix G.

Although the delay-and-code scheme can be used to con-
struct feasible network codes in the multicast situation, for a
network with more general demands, it might not prove to be
useful. We now present an example where it is not possible
to design a network code using the delay-and-code scheme.

Example 4: Consider the networkG shown in Fig. 4,

Fig. 4. A network for which the delay-and-code scheme cannotbe used to
construct a feasible network code

with sources{si : 1 ≤ i ≤ 3} and sinks{ti : 1 ≤ i ≤ 21} .
The sourcesi generates the information sequencexi(z).
The subnetwork ofG consisting of all nodes and edges of
G except the nodesv13 and sink t21 is derived from the
(

6
3

)

combination network, i.e., for every possible three-

combination of the nodes{vi : 7 ≤ i ≤ 12} , there exists a
sink to which there is precisely one edge incoming from
the three nodes, each of which demands all three of the

information sequences. There are therefore

(

6
3

)

= 20 such

sinks, and the bolded arrows indicate the ten outgoing edges
from each nodevi : 7 ≤ i ≤ 12, and the three incoming edges
from {vi : 7 ≤ i ≤ 12} to each sinkti : 1 ≤ i ≤ 20. Each of
these20 sinks demand all three information sequences. The
additional sinkt21 demands the information sequencex1(z).
Note that there exists a solution to this network (for bothGinst

andGud) if the field sizeq ≥ 4.
We now attempt to obtain a delay-and-code scheme on this

10

network (in eitherGinst or Gud). Because each nodevi is
only connected to the sourcesi for 1 ≤ i ≤ 3, each of the
global encoding vectors of the outgoing edges from the nodes
{vi : 1 ≤ i ≤ 3} has one component of the formza, a being
some non-negative integer, with the other two components
being zero. Also, the three global encoding vectors of the
outgoing edges from the nodes{vi : 4 ≤ i ≤ 6} have to be
linearly independent and of the form

(

za zb zc
)T

, because
each of these three vectors have to be linearly independent with
any two of the three global encoding vectors of the outgoing
edges from{vi : 1 ≤ i ≤ 3} . For 4 ≤ i ≤ 6, let the global
encoding vector of nodevi be f i =

(

zai zbi zci
)T

, for
some non-negative integersai, bi andci.

To satisfy the requirements for sinkt21, a delay-and-code
based linear combination of the vectorsf i : 4 ≤ i ≤ 6

should generate a vector of the form
(

zd 0 0
)T

, for some
non-negative integerd. In other words, for some non-negative
integersã, b̃ and c̃, and for somem1,m2,m3 ∈ F2, we want





za4 za5 za6

zb4 zb5 zb6

zc4 zc5 zc6









m1z
ã

m2z
b̃

m3z
c̃



 =





zd

0
0



 .

Note thatm1,m2 andm3 cannot all be0. They cannot all
be 1, as it is not possible to find non-negative integersã, b̃
and c̃ such thatzã+b4 + z b̃+b5 + zc̃+b6 = 0, or such that
zã+c4 + z b̃+c5 + zc̃+c6 = 0.

Now, suppose two ofm1,m2 and m3 are non-zero, then
this means that the global encoding vector of the outgoing
edge from nodev1 lies in the space spanned by two of
the global encoding vectors of the outgoing edges from
{vi : 4 ≤ i ≤ 6} . But this contradicts our original choice of
these global encoding vectors, according to which any two
are linearly independent with the global encoding vector of
the outgoing edge from nodev1. Therefore, a delay-and-code
based scheme cannot satisfy the requirements of all sinks in
this network, in eitherGinst or Gud.

V. CONCLUDING REMARKS

We have discussed the effects of using the delay inherent
in the network in problems related to network code existence
and designs. The delay-and-code algorithms presented in this
paper enable low-complexity encoding at the intermediate
nodes at the cost of using large memories for decoding at
the sinks. A simple upper bound for the maximum number
of memory elements required at any sink to decode the
information sequences which are encoded using a delay-
and-code scheme can be obtained without much difficulty.
Similar algorithms can be found in [18]–[20]. Also, while the
equivalence between memory elements and delays might not
in practice make sense as the actual value of the delay incurred
in the two might not be equal, the parameterz used can be
equivalently used to express both and therefore Corollary 5
still holds.

The results obtained in this work indicate that using delays
in the network might be beneficial in certain situations, while
being not useful in others. In any case, the delays in the
network cannot be ignored for analyzing any network coding

problem. Subsequent work might include the analysis of
random network coding in unit-delay networks and the study
of cyclic networks in a similar manner.

REFERENCES

[1] R. Ahlswede, N. Cai, R. Li and R. Yeung, “Network Information
Flow”, IEEE Transactions on Information Theory, vol.46, no.4, July
2000, pp. 1204-1216.

[2] N. Cai, R. Li and R. Yeung, “Linear Network Coding”, IEEE Trans-
actions on Information Theory, vol. 49, no. 2, Feb. 2003, pp.371-381.

[3] R. Koetter and M. Medard, “An Algebraic Approach to Network
Coding”, IEEE/ACM Transactions on Networking, vol. 11, no.5, Oct.
2003, pp. 782-795.

[4] S. Jaggi, P. Sanders, P.A. Chou, M. Effros, S. Egner, K. Jain, and
L.M.G.M. Tolhuizen, “Polynomial-time algorithms for multicast net-
work code construction”, IEEE Transactions on InformationTheory,
vol. 51, no. 6, June 2005, pp.1973-1982.

[5] E. Erez and M. Feder, ”Efficient Network Codes for Cyclic Networks”,
ISIT, 4-9 Sept. 2005, Adelaide, Australia, pp. 1982 - 1986.

[6] A. I. Barbero and O. Ytrehus, “Cycle-Logical Treatment for Cyclo-
pathic Networks”, IEEE Transactions on Information Theory, Vol. 52,
No. 6, June 2006.

[7] C. Fragouli and E. Soljanin “Information Flow Decomposition for
Network Coding”, IEEE Transactions on Information Theory,Vol. 52,
No. 3, March 2006.

[8] A. Lehman and E. Lehman, “Complexity classification of network
information flow problems”, SODA, 2004, New Orleans, USA, pp.
142-150.

[9] A. Tavory, M. Feder, and D. Ron, “Bounds on Linear Codes for Net-
work Multicast”, Technical Report TR03-033, Electronic Colloquium
on Computational Complexity, 2003.

[10] C. Chekuri, C. Fragouli, and E. Soljanin, “On Average Throughput and
Alphabet Size in Network Coding”, IEEE Transactions on Information
Theory, Vol. 52, No. 6, June 2006.

[11] A. Lehman and E. Lehman, “Network Coding: Does the ModelNeed
Tuning?”, SODA, 2005, Vancouver, Canada, pp. 499-504.

[12] R. Dougherty, C. Freiling, and K. Zeger, “Insufficiencyof Linear Cod-
ing in Network Information Flow”, IEEE Transactions on Information
Theory, Vol. 51, No. 8, August 2005.

[13] X. Wu, C. Zhao and X. You, “Generation-Based Network Coding over
Networks with Delay”, IFIP International Conference on Network and
Parallel Computing, Shangai, China, Oct. 18-21 2008, pp. 365-368.

[14] K. Prasad and B. Sundar Rajan, “Single-generation Network Coding
for Networks with Delay”, arXiv:0909.1638v1[cs.IT], September 2009,
Available at: http://arxiv.org/abs/0909.1638.

[15] Q. T. Sun, S. Jaggi, S.-Y. R. Li, “Delay Invariant Convolutional
Network Codes”, Proceedings of ISIT 2011, St. Petersburg, Russia,
July 31 - Aug. 5, 2011.

[16] Michelle Effros, “On Dependence and Delay: Capacity bounds for
Wireless Networks”, Proceedings of WCNC 2012, Paris, France, April
1-4, 2012.

[17] K. Prasad and B. Sundar Rajan, “Network error correction
for unit-delay, memory-free networks using convolutional
codes”, arXiv:0903.1967v3[cs.IT], September 2009, Available at:
http://arxiv.org/abs/0903.1967.

[18] A. I. Barbero and O. Ytrehus, “An efficient centralized
binary multicast network coding algorithm for any cyclic
network”, arXiv:0705.0085v1[cs.IT], May 2007, Availableat
http://arxiv.org/abs/0705.0085v1.

[19] H. Lu, “Binary Linear Network Codes”, IEEE ITW on Information
Theory for Wireless Networks, 1-6 July 2007, Solstrand, Norway.

[20] A. Keshavarz-Haddad and M.A. Khojastepour, “Rotate-and-add coding:
A novel algebraic network coding scheme”, IEEE ITW 2010, Aug. 30
- Sept. 3, Dublin, Ireland.

[21] T. Mulders and A. Storjohann, “On lattice reduction forpolynomial
matrices”, Journal of Symbolic Computation, Vol. 35, Issue4, April
2003, pp. 377-401.

[22] A. Borodin and I. Munro, “The computational complexityof algebraic
and numeric problems”, American Elsevier Pub. Co., 1975.

APPENDIX A
PROOF OFPROPOSITION1

Proof: Let M ′t be theht × ht submatrix of the network
transfer matrix of any particular sink nodet ∈ T in Ginst,

http://arxiv.org/abs/0909.1638
http://arxiv.org/abs/0909.1638
http://arxiv.org/abs/0903.1967
http://arxiv.org/abs/0903.1967
http://arxiv.org/abs/0705.0085
http://arxiv.org/abs/0705.0085v1

11

involving the ht information symbols to be inverted. Let
M ′t(z) be the corresponding matrix of the same sinkt in Gud.
We first note that the matrixM ′t can be obtained fromM ′t(z)
by substitutingz = z0 = 1, i.e.,

M ′t = M ′t(z)|z=1.

Given thatM ′t is of full rank overFq, we prove thatM ′t(z)
is of full rank overFq(z) by contradiction.

Suppose thatM ′t(z) was not of full rank overFq(z), then
we have

ht−1
∑

i=1

ai(z)

bi(z)
M ′

i(z) = M ′

ht

(z), (8)

whereM ′

i(z) is the ith column ofM ′t(z) andai(z), bi(z) ∈
Fq[z] ∀ i = 1, 2, .., ht − 1 are such thatbi(z) 6= 0 ∀i, and
ai(z) 6= 0 for at least onei, andgcd(ai(z), bi(z)) = 1, ∀i.
We have the following two cases

Case 1: bi(z)|z=1 6= 0 ∀i.
Substitutingz = 1 in (8), we have

ht−1
∑

i=1

ai
bi
M ′

i = M ′

ht

, (9)

whereai = ai(z)|z=1, bi = bi(z)|z=1 andM ′

i = M ′

i(z)|z=1

is the ith column ofM ′t .
Clearly M ′

ht
6= 0 sinceM ′t is of full rank, and hence the

left hand side of (9) cannot be zero. Therefore, some non-zero
linear combination of the firstht − 1 columns ofM ′t is equal
to its ht

th column, which contradicts the given statement that
M ′t is of full rank overFq. Therefore,M ′t(z) must be of full
rank overFq(z).

Case 2: bi(z)|z=1 = 0 for at least onei.
Let I ′ ⊆ {1, 2, ..., ht} be such that(z−1)p

′

|bi(z) for some
positive integerp′. Let p be an integer such that

p = max
i∈I′

p′.

Now, from (8) we have

ht−1
∑

i=1

(z − 1)p
ai(z)

bi(z)
M ′

i(z) = (z − 1)pM ′

ht

(z). (10)

Let I ⊆ {1, 2, .., ht} be such that(z − 1)p|bi(z) ∀ i ∈ I.
Then, we must have that(z − 1) ∤ ai(z) ∀ i ∈ I, since
gcd(ai(z), bi(z)) = 1. Also, letb′i(z) = bi(z)/(z−1)p ∈ Fq[z]
∀ i ∈ I. Then we have
(

(z − 1)p
ai(z)

bi(z)

)

|z=1 =

(

ai(z)

b′i(z)

)

|z=1 =
ai
b′i

∈ Fq\ {0} ,

where b′i = b′i(z)|z=1 ∈ Fq\ {0}, since (z − 1) ∤ b′i(z).
Substitutingz = 1 in (10), we have

∑

i∈I

ai
b′i
M ′

i = 0,

i.e., a non-zero linear combination of the columns ofM ′t is
equal to zero, which contradicts the full-rankness ofM ′t , thus
proving thatM ′t(z) has to be of full rank overFq(z). As the
choice of the sinkt was arbitrary, this completes the proof.

APPENDIX B
PROOF OFPROPOSITION2

Proof: Let m′ be a set of local encoding coefficients
taking values from some fieldFq which result in a feasi-
ble network code forGud, satisfying the invertibility and
zero-interference conditions, i.e.,f1(m′, z) = f2(m

′, z) =
... = fK(m′, z) = 0 and the product of the determinants
g(m′, z) = gn(m

′,z)
gd(m

′,z)
6= 0, where gn(m

′, z), gn(m
′, z) ∈

Fq[z], the ring of polynomials in variablez over Fq[z], are
the numerator and denominator polynomials corresponding to
g.

Note that, if we assign some appropriate value inFq for
the parameterz in (1), we get a well-defined network code
for Ginst. In other words, if throughout the network, we let
z = zq ∈ Fq such that(z − zq) does not divide any numerator
polynomial ofme,p(z) corresponding to any pair of edgese
andp, then the unit-delay equation

ye(z) =
∑

p∈ΓI (tail(e))

m′e,p(z)|z=zqyp(z)

reduces to the instantaneous form, without the time index, as

ye =
∑

p∈ΓI(tail(e))

m′′e,pyp,

wherem′′e,p = m′e,p(z)|z=zq , for all pairs of edgese and p
in the network. The new set of local encoding coefficients,
denoted bym′′ is a well-defined network code forGinst

(although this might not be feasible). Using this technique,
we now show that given a feasible network code (m′) for
Gud over some fieldFq, we can obtain a feasible network
code forGinst, over a possibly larger fieldFQ.

Given that g(m′, z) = gn(m
′,z)

gd(m
′,z)

, let FQ be an exten-
sion of Fq, such thatQ > degree(gn) + degree(gd). As
Fq ⊂ FQ, we can view the coefficientsm′ to be elements
of FQ, which we shall now refer to asm′

Q. We now
choose somez

Q
∈ FQ such thatgn(m′

Q, z)|z=z
Q

6= 0,

and gd(m
′

Q, z)|z=z
Q

6= 0. Such a choice is possible be-
cause the polynomialgn(m′

Q, z)gd(m
′

Q, z) can have at most
degree(gn)+degree(gd) zeros inFQ. Therefore, withz = z

Q
,

we have a well-defined network code forGinst with g 6= 0,
satisfying the invertibility condition inGinst. Let the set of
local encoding coefficients obtained forGinst by assuming
z = z

Q
bem′′

Q.
As for the zero-interference conditions,f1(m′

Q, z) =
f2(m

′

Q, z) = ... = fK(m′

Q, z) all being zero polynomials
implies that any choice ofz does not alter their value. There-
fore the network code defined bym′′

Q is a feasible network
code forGinst(V , E ,S, T , C). This completes the proof.

APPENDIX C
PROOF OFCOROLLARY 3

Proof: Let m′ be a set of local encoding coefficients
taking values from some fieldFq which result in a feasible
network code forGud, satisfying the invertibility and zero-
interference conditions. Let the resulting network transfer
matrix of any particular sinkt ∈ T in Gud be Mt(z) and
let M ′t(z) be theht × ht submatrix ofMt(z) which involves

12

those rows ofMt(z) that correspond to the information
sequences to be obtained by sinkt. AlthoughM ′t(z) involves
rational functions inz, the denominators can be factored out
to obtain a matrix of the formM ′t(z) = (a(z))−1M ′′t (z)
where a(z) ∈ Fq[z] and M ′′t (z) is a matrix consisting of
bounded-degree polynomials inz. It is known (see [21], for
example) that the determinant of a polynomial matrix of size
k × k and degree atd can be calculated with complexity
O(k3d2). The determinant ofM ′t(z) can thus be calculated
with polynomial complexity. Thus, following the notations
from the proof of Proposition 2, it is therefore clear that the
productg(m′, z) = gn(m

′,z)
gd(m

′,z)
of the determinants of all the

sinks can also be calculated in polynomial-time.
The next step in the construction of a feasible network

code for Ginst according to the proof of Proposition 2
is to pick a valuez

Q
from a large enough fieldFQ so

that g(m′

Q, z
Q
) 6= 0. Finding such az

Q
involves at most

degree(gn)+degree(gd) evaluations of the polynomialgngd.
Such polynomial evaluations can be performed with complex-
ity linear in the degree of the polynomial concerned (see
[22], for example). Therefore, identifying an appropriatezQ

takesO
(

(degree(gn) + degree(gd))
2
)

operations over the
field concerned.

Once such az
Q

has been identified, the local encoding
coefficientsm′′

Q for Ginst can be obtained can be obtained
by evaluating the local encoding coefficientsm′

Q of Gud at
z = z

Q
. All the elements ofm′

Q are rational functions and
there are at most|E|2 of them, thus the total complexity
involved in these evaluations is also polynomial. Once these
evaluations have been obtained, we have a feasible network
code forGinst. The complexity of obtaining such a feasible
network code forGinst at each step has been polynomial
including that of the obtaining a feasible network code for
Gud, as assumed. This proves the corollary.

APPENDIX D
PROOF OFPROPOSITION3

Proof: Consider a feasible network coding solution from
U for Gud. Because of the conditions on the topology of the
network, the columns of theh × ht (following the notations
in Section II) network transfer matrixMt(z) of a sink t ∈ T
are of the form

Mi,t(z) = zaiMi,t, 1 ≤ i ≤ ht (11)

where Mi,t(z) is the ith column of Mt(z), Mi,t ∈ Fh
q

and ai ∈ Z+. We also haveMt = Mt(z)|z=1, the net-
work transfer matrix of the sinkt in Ginst, the ith col-
umn of which is Mi,t. Let M ′t(z) be the ht × ht sub-
matrix of Mt(z), involving those rows (say, those indexed
by {ji ∈ {1, 2, 3, ..., h} : 1 ≤ i ≤ ht}) of Mt(z) which corre-
spond to the information sequences that need to be inverted at
t, and letM ′t be the corresponding matrix forGinst. Because
of (11), the determinant ofM ′t(z) is of the form

det (M ′t(z)) = det (M ′t)

ht
∏

i=1

zaji . (12)

Thus, if det (M ′t(z)) 6= 0, then det (M ′t) 6= 0, which means
M ′t is invertible. Also, any zero element ofMt(z) is also zero
in Mt. As the choice of the sinkt was arbitrary, both the
invertibility and the zero-interference conditions are satisfied
for all sinks inGinst, thus proving (A).

We now prove (B). Suppose there is a feasible solution
in place forGinst. Because of the condition on the network
topology, the network transfer matrices inGud is of the form
(11). Then, by (12) the corresponding invertibleht × ht

submatrixM ′t(z) of the network transfer matrixMt(z) of sink
t in Gud with the same local encoding coefficients asGinst

has a non-zero determinant and is thus full-rank. Thus the
invertibility conditions for sinkt are carried over toGud. To
prove the zero-interference conditions, supposeMi,j,t is the
element(i, j) of Mt which is zero. Then the corresponding
element ofMt(z), Mi,j,t(z), is such thatMi,j,t(z) = 0, or
Mi,j,t(z) 6= 0 with (z − 1)|Mi,j,t(z) (asMt(z)|z=1 = Mt).
However, because of (11),Mi,j,t(z) = zaiMi,j,t which means
that (z − 1) ∤ Mi,j,t(z). Thus Mi,j,t(z) = 0. The zero-
interference conditions are also satisfied fort in Gud. Again,
as the choice of sinkt was arbitrary, any solution forGinst is
also a solution forGud.

To prove (C), we first note that, by (B), the minimum field
size requirement for a feasible solution forGud is not larger
than that ofGinst. Also, by (A), any solution forGud from any
non-emptyUq is feasible forGinst, which holds forq = qmin

too. This fact along with (B) proves (C).

APPENDIX E
PROOF OFPROPOSITION4

Proof: Throughout this proof, we assume that the network
we are working with isG∗(V∗, E∗), the subnetwork ofG
consisting only of the nodes and edges on thehs edge-disjoint
paths from the sources to each sinkt ∈ T . Just as Lemma 2
together with Lemma 1 justifies the maintenance of the rank
of the matricesBt : t ∈ T in every step of the LIF algorithm,
we prove this proposition by showing a variant of Lemma
2 which will maintain the rank of the matricesBt : t ∈ T
according to the delay-and-code schemes.

Let e be the edge whose global encoding vector is to be
decided in the current step of the non-uniform delay-and-code
LIF algorithm, and letv = tail(e). We have sets of ordered
pairs (elements fromFq(z)

hs × Fq(z)
hs) as in Lemma 2,

S(e) : = {(xi,yi) : i ≤ i ≤ n}

=
{

(b(f t
←(e)),at(f

t
←(e))) : t ∈ T (e)

}

, (13)

such thatxi.yi 6= 0, 1 ≤ i ≤ n, n being the cardinality of the
set in the RHS. We seek to iteratively construct the vectors
u1,u2, ...,un (eachui ∈ Fq(z)

hs) such that the following
conditions hold for eachi, 1 ≤ i ≤ n.

1) ui is some delay-and-code based linear combination of
the vectors{xk : 1 ≤ k ≤ i} .

2) For anyj such that1 ≤ j ≤ i,ui.yj 6= 0.

If such vectors can be found, then we fixb(e) = un as the
global encoding vector ofe as it can be seen using Lemma 1
that such a choice preserves the necessary requirements forthe

13

current step of the non-uniform delay-and-code LIF algorithm.
The vectorsu1,u2, ...,un are constructed as follows.

Let u1 = α1x1, whereα1 ∈ F2 andα1 6= 0 as we need
u1.y1 6= 0. Now suppose for somei, 1 ≤ i ≤ n− 1, we have
ui such thatui.yj 6= 0 ∀1 ≤ j ≤ i. Then we will show that
we can getui+1 such thatui+1.yj 6= 0 ∀1 ≤ j ≤ i + 1, as
long as the total number of memory elements present at each
node for each incoming edge is at least(|T | − 1) .

Supposeui.yi+1 6= 0. Then we chooseui+1 = ui, which
then satisfies our requirements. Else, we choose

ui+1 = ui + αi+1z
βi+1xi+1. (14)

Again, we haveαi+1 ∈ F2 and αi+1 6= 0 as we want
ui+1.yi+1 6= 0. βi+1 ∈ Z≥0 is the number of memory
elements used to delay the symbols on that particular incoming
edge. Thusui+1 = ui + zβi+1xi+1.

Now suppose for some choice ofβi+1 = β and for some
j, 1 ≤ j ≤ i, we haveui+1.yj = 0, i.e.,

ui.yj = −zβ (xi+1.yj) , (15)

thenβ is not a valid choice forβi+1, as (15) should not hold
for any j, 1 ≤ j ≤ i. Note that there are at mosti choices
for j at which (15) will hold. There are therefore at mosti
choices forβi+1 that cannot be used. As1 ≤ i ≤ n− 1, if we
have at leastn choices forβi+1, then we can always choose
one value such that (15) does not hold for any1 ≤ j ≤ i for
any giveni, 1 ≤ i ≤ n−1. With |T |−1 memory elements for
each incoming edge at nodev, we have|T | choices for any
particularβi+1. This, coupled with Lemma 1 and the fact that
n ≤ |T | ensures that a non-uniform delay-and-code scheme
can be constructed for the given multicast problem.

APPENDIX F
PROOF OFPROPOSITION5

Proof: As in Proposition 4, we prove the proposition
using a variant of the proof for Lemma 2. We again assume
that the network we are working with isG∗(V∗, E∗), the
subnetwork ofG consisting only of the nodes and edges on
the hs edge-disjoint paths from the sources to each sink
t ∈ T . We follow an ancestral ordering which enables us to
process all outgoing edges of a particular intermediate node
before moving to the next. As the uniform delay-and-code
technique is defined only for the intermediate nodes, we use
the non-uniform delay-and-code technique at the source node
to preserve the ranks of the matricesBt for each sinkt, until
all the edges inΓO(s) have been processed.

Let v be the intermediate node whose outgoing edges are
to be processed together. As in the proof of Proposition 4,
for eache ∈ ΓO(v), we have the setS(e) as defined in (13),
and we seek to iteratively constructu1,u2, ...,un, such that

conditions1) and 2) (as in the proof of Proposition 4) are
satisfied. Also, (7) needs to be satisfied because we seek to
design a uniform delay-and-code.

In the process of choosing eachui for any particulare ∈
ΓO(v), the local encoding coefficientme,p and the delayae,p
(me,p and ae,p are as in (6)) corresponding toe and some
p ∈ ΓI(v) has to be chosen. Based on the arguments developed

in the proof of Proposition 4, the choices forme,p and ae,p
are restricted. For any particularp ∈ ΓI(v) and for any edge
e ∈ ΓO(v) for which me,p 6= 0, it was shown that there are
at most|T | − 1 choices that are not allowed forae,p in the
non-uniform delay-and-code case.

For the uniform delay-and-code case, we needae,p =
ap, ∀e ∈ ΓO(v) such thatme,p 6= 0. Thus the number of
choices ofap that cannot be allowed for any edgep ∈ ΓI(v)
is at mostδ (|T | − 1) , in the case ofme,p 6= 0 ∀e ∈ ΓO(v).
If me,p = 0 for any e ∈ ΓO(v), this number of disallowed
choices forae,p can only reduce. Therefore if every node in
the given network hasδ (|T | − 1) memory elements for each
incoming edge, then there exists at least one choice forap
such that the conditions on the invertibility of theBt matrices
(again by invoking Lemma 1) and the uniformity of the delay-
and-code scheme given by (7) are satisfied.

Note that the proof hinges on the fact that the network has
node-disjoint paths, as we have seen in Subsection IV-C, that a
feasible uniform delay-and-code scheme might not be possible
to design in a general network with only edge-disjoint paths.
This concludes the proof.

APPENDIX G
PROOF OFCOROLLARY 5

Proof: Proposition 5 shows that a feasible network code
based on the uniform delay-and-code scheme can be con-
structed for a multicast situation on networks with node-
disjoint paths. Note that given such a network, all that the
uniform delay-and-code scheme effectively does is to intro-
duce different delays on the incoming edges. Because of the
uniformity of the delay-and-code scheme, i.e., the formulation
given by (7), theap memory elements used for each edge
p ∈ ΓI(v) at some intermediate nodev can be viewed as
ap additional delays on edgep, or equivalently as additional
forwarding nodes withap forwarding edges. In other words,
given an acyclic networkG with multicast demands and node-
disjoint paths, a feasible uniform delay-and-code scheme was
obtained for the unit delay networkGud. Then the unit-delay
networkGud along with the uniform delay-and-code network
code naturally invokes the unit-delay network̃Gud on which
there exists a feasible network code overF2, by using the
equivalence between the memory elements and delays.

	I Introduction
	II Network codes for acyclic networks with delays
	III Existence of Network codes for acyclic network with delays
	IV Relationship between the minimum field size problem for Gud and Ginst
	IV-A Equivalence of minimum field size problem between Ginst and Gud
	IV-B Reduction of minimum field size in Gud - Review of Linear Information Flow Algorithm
	IV-C Delay-and-code: A technique for single-source multicast on acyclic networks

	V Concluding remarks
	References
	Appendix A: Proof of Proposition 1
	Appendix B: Proof of Proposition 2
	Appendix C: Proof of Corollary 3
	Appendix D: Proof of Proposition 3
	Appendix E: Proof of Proposition 4
	Appendix F: Proof of Proposition 5
	Appendix G: Proof of Corollary 5

