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Abstract—Problems related to network coding for acyclic, and [6] for the case of multicast on networks with cycles.eNot
instantaneous networks (where the edges of the acyclic grp that the notion of delays in the network is inherent to any
representing the network are assumed to have zero-delay) @  514orithm on cyclic networks. Delays are therefore assumed
been extensively dealt with in the recent past. The most proinent . .
of these problems include(a) the existence of network codes either on the edges of the networks that (_:ontrlbut_e to the
that achieve maximum rate of transmission,(b) efficient network ~ cycles alone, or throughout the network. An information flow

code constructions, and(c) field size issues. In practice, however, decomposition based approach to the problem of network code
networks have transmission delays. In network coding theqr,  construction was discussed irl [7].

such networks with transmission delays are generally absacted Computing the minimum field size required to solve a

by assuming that their edges have integer delays. Note that : .

u)s{ing enouggh memory at thge nodes of ang acyclic)getwork with network cod_lng problem is know_’l [8] to be NP-hard. queyer,
integer delays can effectively simulate instantaneous bekior, for the multicast case on acyclic networks and certain kinds
which is probably why only acyclic instantaneous networks ave of cyclic networks, it is known[[3][[4] that a field size larger
been primarily focused on thus far. In this work, we elaborae  than the number of sinks in the network is sufficient. Further
on issues (a), (b) and (c) above) related to network coding for  regjts on the field size issue can be foundin [6] [7] [OF-[11]

acyclic networks with integer delays, which have till now matly - - L :
been overlooked. We show that the delays associated with theIn certain networks, linear network coding itself is foura t

edges of the network cannot be ignored, and in fact turn out De insufficient to achieve the given demands [12].
to be advantageous, disadvantageous or immaterial, depeimg) The case of acyclic networks with delays was abstracted in
on the topology of the network and the problem considered i.e [3] as acyclic networks where each edge in the network has an
(a), (b) or (c). In the process, we also show that for a single jnager delay associated with it. With this setting, thehaus
source multicast problem in acyclic networks (instantaneos and . . )
with delays), the network coding operations at each node can of [3] were ?ble to naturally generalize the notion of linear
simply be limited to storing old symbols and coding them overa Network coding and thereby the framework for the problem of
binary field. Therefore, operations over elements of largeffields the existence of a linear network code on such networks was
are unnecessary in the network, the trade-off being that enagh  presented. According to the framework of [3], a network code
hm;rgquyoﬁax';:zcztsgi‘ﬁg“ggﬁzra”d at the sinks, and that the sinks o3 5 acyclic network with general demands has to satisfy
' two conditions at every sink to be a solution for the network,
which we refer to aga) invertibility conditions, which have
|. INTRODUCTION to be satisfied to recover the information sequences derdande

Network coding was introduced ifil[1] as a means to impro €ach sink, and (jero-interferenceonditions, which have
the rate of transmission in networks. Linear network codif§ be satisfied so that information sequences not needed at
was introduced in[]2] and it was found to be sufficient t§ Sink do not interference with those that are demanded (a
achieve the maxflow-mincut capacity in certain scenariah syformal description of these cond|t|(_)ns are given in Section
as multicast. The linear network coding problem on a netwdH¥- If at least one such network coding solution exists fioe
with given sink demands can be considered to have three mdj§fwork, then the network is said to belvable
subproblems. A delay profilefor a network consists of a set of non-

« Existence of a network code that satisfies the demand .eg"?‘“"e integers, one fqr each edge in the network indigati

. Efficient construction of such a network code. the integer delay experienced by the symbols on that edge.

« Minimum field size for the existence of such a networ{gOr a given delay profile for a _network, it has been _noted (see
code. 13] [14], for example) that an instantaneous behaviourlzan

. _ simulated in acyclic networks with integer delays usinguegio
An algebraic theory of network coding was developed 'themory at the nodes of the network. It is assumed in most

.[SE’ whlchlcogvelrted the et><|stenc§| prob/lfmfof Tﬁtwlo T: Cgtd'nof network coding literature that this can always be done, an
Into an algebraic geomelry problem. AS for the falter Woy o 1his is indeed the source of the instantaneous behaviou
. : , oo I?r(? the network. However, several questions remain unegglor
multicast problem, i.e., where a!l sinks demand the mfarma_ uch as how solvability, field size, etc., are affected winenet
generated by all the sources in the network. A polynomleﬁs- a change in the delay profile of the network, given that the

tlme algorithm for (_je§|gn|ng a multicast network code on fetwork has already been configured to be instantaneous unde
single-source acyclic instantaneous (zero-delay) nétwas a known delay profile

presented inJ4]. This algorithm was further generalizefbin In [A5], it is shown that for multicast networks which are

Part of the content of this work has appeared in the Procgedif IEEE equipped with m?mory at the nodes, there alway_s exists. a
Information Theory Workshop held at Paraty, Brazil, Octob6-20, 2011.  network code (using memory at the nodes) which is a valid
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solution for the network for any delay profile under any field Table[]l summarises the relationships obtained in this paper
size. The authors of _[15] further show that suchdelay- between some of the network coding problems for instanta-
invariant code can be found with high probability using aneous and unit-delay networks. The contributions of ourkwor
random choice of the network coding coefficients from a largee as follows.

field. They also give a deterministic algorithm to construct
such a delay-invariant multicast network code for acycfid a
cyclic networks, as long as the field size is larger than the
number of sinks. In[16], it is shown that under the condision
where the nodes in the network are always equipped with
enough memory to counteract any amount of delays in the
network, a network (with arbitrary demands) is solvable for
any delay profile if and only if it is solvable with an all-
zero delay profile. In other words, networks codes which are
solutions for the network under a certain delay profile can
always be converted into solutions for the network under a
different delay profile by utilizing the appropriate numbmr
memory elements at the nodes of the network.

In this work, we wish to study the effect of the relationship
between some of the network coding problems for instanta-
neous networks and their counterparts with non-triviabgel
profiles. The instantaneous network of a netw@rkwhich is
referred to agy;,.; throughout the paper, corresponds to the
networkgG with a known delay profile where memory elements
have already been used to simulate instantaneous (zeag}del
behaviour. We assume that any delay profileGircan only
have greater delays (on one or many edges) compared to those
in the basic delay profile that gives rise to the instantaseou
network G;,s;. Therefore, throughout the paper, we view the
instantaneous networks as networks with the all-zero delay
profile.

Many of the results in this paper compare the network
coding problems org;,; with an unit-delay networkgG,,,.
The unit-delay network is the network where the delays in the
edges are exactly one unit above the delayg;in;. To derive
these comparison results, we assume that the intermediate
(non-source non-sink) nodes Gfare equipped with memory
sufficient only to simulate the instantaneous behaviour of
Ginst- This forms the major difference between our results and
that of [16], where there is no bound on the amount of memory
used by the intermediate nodes. In contrast with [15], [0&],
concern ourselves with analysing whether delays over those
Ginst Can be advantageous or disadvantageous or neutral, given
that the intermediate nodes do not have memory beyond what
is used by them to simulate instantaneous behaviogs;, iy .
Following our framework of viewingj;,.s; asg with the all-
zero delay profile, and because of the fact that we limit the
amount of memory elements at the intermediate nodeg, of The rest of this work is organized as follows. In Secfidn II,
we refer to the intermediate nodes®fas beingmemory-free  we set up the model and the terminology for acyclic networks
i.e, utilizing no memory elements. The unit-delay netwgrl  with delays. In Sectionll, we explore the relationshipvetn
is then appropriately viewed as the netwdaykwith an all- the network code existence problemdn, and G;,,; for an
one delay profile (i.e, one where all edges have a delay adyclic networkg with given set of demands, and also present
unity associated with them). Although our results show trexamples where having delays prevent the existence of any
comparisons between network coding @5 andgG,4, they solution forG, 4 while solutions exist foG;,,s;. In Subsection
can be generalized without much difficulty to general deld¥-A] we analyze the conditions on topology which result in
profiles. The all-one delay profile is chosen only becauseah equivalence of network coding solutions betwéepn and
is sufficient to illustrate the differences obtained thdowyir G;,..;. After briefly reviewing the Linear Information Flow
results between instantaneous networks and those withigdeldLIF) algorithm of [4] in Subsectioh IV-B, in Subsection &
and less cumbersome to handle in terms of notation. we use a modified version of this algorithm to obtain a class

« We prove that the solvability of;,.; preserves the
invertibility conditions (Propositioi]1) inG.q, but not
necessarily zero-interference conditions (Exariiple 1). On
the other hand, we prove thatgf ; is solvable, thely;,, s;
is always solvable (Propositidd 2), and thereby proving
that if G;,,5; is not solvable, then so 8,4 (Corollary(2).
These results on the relationship between the solvability
and non-solvability olG;,,s; andG,4 are tabulated in the
first two rows of Tabld]lI.

o We show that whenever there is a polynomial-time al-
gorithm for constructing a network code fdf,, that
satisfies all sink demands, then there is a polynomial-
time algorithm for constructing a network code 84,
which satisfies all sink demands (Corollady 3). The third
row of Table[] captures these results.

« We prove that under certain conditions on the topology

of the network there exists an equivalence between a net-

work code over any particular field constructed &n;

andg,q (PropositiorB). Thus, for networks obeying the

constraints given in Propositigh 3, the minimum field size
for constructing a network code satisfying all demands
for G;,s: and G,  is the same. We also prove that under
such constraints on topology, the non-solvabilitythf;
implies the non-solvability 0fG;,s; (Corollary[4). The
last two rows of Tabl€] I lists these results.

« We prove that there exist networks for which the delays

prove useful for the field size problem, i.e., network

codes can be constructed over a smaller field size for

Gua compared toG;,s;, and also show a construction

of such networks (Corollarf]5). These results are also

tabulated in the last two rows of Tadle |. Towards that
end, we prove the feasibility of two multicast algorithms,
one of which works for acyclic networks (instantaneous
and with delays) and was conjecturedin/[18] based on the
multicast algorithm ofi[4], and the other works for certain
special acyclic networks (Propositibh 4 and Proposition

). These modified algorithms employ low-complexity

encoding at the intermediate nodes d¥erusing memory

elements, while possibly demanding a larger complexity
of decoding at the sinks compared to traditional network
coding schemes.



TABLE |
RELATIONSHIP BETWEEN NETWORK CODING PROBLEMS BETWEEK;,s¢t AND G,,q FOR AN ACYCLIC GRAPHG.

Property of interest If the property holds for Gy, s, If the property holds for G4,
does it continue to hold for G,.q4? does it continue to hold for G;,,s:?
Solvability Yes if zero-interference conditions Yes(Propositior_R).

are satisfied (Propositidd 1),
or for multicast (Corollary11).
No, if they are not satisfied (Examgdlé 1).

Non-solvability Yes(Corollary[2). No (Exampld_l).
Polynomial-time algorithmg No, in general, a%j,; might not Yes(Corollary[3).
for code construction even be solvable (Exampdlé 1).
Solvability over No, in general, a%j,,; might not No, in general (Corollary15), as illustrated
a particular field even be solvable (Exampdlé 1). in Example2 and Examplg 3.
Yes for certain conditions on Yes under certain conditions
topology given by Propositiop] 3, given by Proposition]3.
or for multicast (Corollary11).
Non-solvability over No, in general (Corollar{]5), as illustrated No, in general (Examplell).
a particular field in Example 2 and Exampld 3. Yes under conditions on topology

given by Corollanf4.

of networks in which delays prove beneficial in the minimum Every edge in the directed graph representing the network
field size problem, i.e., where feasible binary network sodéas a capacity of on&, symbol. We abstract the case of
always exist forGg,,, irrespective of the field size required fornetworks with delay by assuming a unit-delay associateld wit
Ginst- We conclude the paper in Sectibi V with remarks anedges of the graply, represented by the parameter We
directions for further research. denote the graplg(V, &) along with the delays a§,q, the
unit-delay version of; or simply theunit-delay networlgG,, .
Note that network links with integer delays greater thart uni
are modeled as serially concatenated edges in the directed
multi-graph. Because of this reason, we view networks with

Following the terminology of[[4], an acyclic network isinteger delays and those with unit-delays equivalently.
modeled as an acyclic grapi with V being the set of  The set of symbols generated at the sources at any particular
nodes and¢ the set of edges in the network. The $@t instant of time is called generationof symbols. Any node
contains a set of source nod&sand a set of sink node$. in a unit-delay network may receive information of differen
We assume that the sources have no incoming edges in a@erations on its incoming edges at any particular time
network, while the sinks have no outgoing edges. The tinygstant. Except for the discussion in Subsection 1V-C, we
unit under consideration shall imply one use of the channe{ssume that the intermediate (non-sink, non-source) rames
in the network. Each sourcee S generates:, information memory-free and merely transmit B, linear combination
sequences at the rate lof IF, symbols per every time unif; of the incoming sequences on their outgoing edges. Also,
being the finite field withy symbols. For each soureec S,  the zero-delay version af, referred to as thénstantaneous
we introduceh, parallel edges (denoted ) incoming at network is denoted byg;,..;. The following notations will be
s, Which carry theh information sequences to the source ysed throughout the paper.
Leth =73 .shs.

Assuming an ordering on the set of information sequences

II. NETWORK CODES FOR ACYCLIC NETWORKS WITH
DELAYS

available at the sources, [&t denote an indicator function for I';(v) : Set of incoming (including imaginary) edges at nade
a sinkt € T, defined as T'o(v) : Set of outgoing (including imaginary) edges at nade
5r(v) 2Ty (v)].
i - {1,2,....,h} — {0,1
t { » Sy ) } { ) }a 50(1)) :|Fo(v)|.

such that,Z,(i) = 1, if sink t demands the&'" information v=head(e): if e € I'1(v).
sequence, and otherwise. LetC denote the collection of the v=tail(e) : if e € To(v).
functionsZ;, vt € T.
Each sink node € 7 demands some subset of siae For an edge € £U¢&;, we define thdocal encoding vector
of the h information sequences generated at the sources. last a d;(tail(e))-length vector, (m. ,(z) : p € T'1(tail(e))),
h, = > ,crht. For each sinkt, we assumeh; imaginary where m.,(z) € Fy(z), the field of rational functions
outgoing edges from, denoted by¢;. We represent a network over F,. The local encoding vector determines the sequence
G(V, ) with a set of sources and a set of sink§” with a  y.(2) = >, ve.i2" (vei € F, being the symbol ai’”" time
set of demands given by asG(V, &, S, T,C). index) flowing on edge: based on the sequences incoming at



tail(e), i.e., coefficientsm are assumed to be variables which can take
values from a large enough finite field. A network code, i.e.,
ve() = D mep(@)p(2). (1) 4 particular choice of the set of all local encoding coeffitse
pels (tail(e)) m, is defined to befeasible i.e., it achieves the given set
Note that as the intermediate nodes are allowed to takelynlyof demands at the sinks, if the following two conditions are
linear combinations of the incoming sequences, we havetor satisfied.
edgee ¢ I'o(s) (for any s € S), me ,(2) = zmep, for some
mep € Fy and the parameter denotes the delay incurred
during the transmission through edgéd-or an edge € ' (s)
of some sources € S, we haveme ,(z) = 2. p(z), for
somem. ,(2) € Fy(z), as we let the sources take arbitrary
combinations oveff,(z). The additionalz again denotes the
delay incurred on the edge For G;,;, note that

« Invertibility conditions:For each sink, the h; x h; sub-
matrix M/ (z) of M;(z), the rows of which corresponding
to the inputs demanded at sinkis invertible overfF,(z).

o Zero-Interference conditiong=or each sinkt, the ele-
ments of the matrixd/;(z) which are not part of\f/(z)
are zero.

Note that if the mincut between any sourc@and any sink
Me,p(2) = Mep € Fy, (2) tis less than the number of information sequences demanded
and therefore the correspondingby t from s, then the network coding problem is clearly not
solvable. Besides the mincut conditions, the topology &f th
network also affects the ability to satisfy the demands & th

for any pair of edges andp,
input-output relationship for any edgeis given independent
of the time index as

network.
Ye = Z Me,pYps For each sinkt, some elements of\f;(z) are not a part
peT 1 (tail(e)) of the M/(z) matrix. Let f1, f2, ..., fx be all such elements,
wherey,,y, € F,. for all possible sinkst € 7. Note that eachf, € F,(z)

Let m denote the set of allocal encoding coefficients for any particular choice ofn, hence we represent eagh
(all taking values fromi,). For G,q, m is the set of allF, as fi(m,z). Similarly, let gi(m, z), g2(m, 2), ..., gr(m, 2)
coefficients of the numerators and denominators ofiall,(z). e the determinants of th&/;(z) matrices. Letg(m, z) =
For Ginst, m denotes the set of aln.,. The difference [[.2; 9i(m,2). The invertibility and zero-interference con-
between the two will be clear from the context. ditions then imply that the assignment o should satisfy
The network coding problem implies a choice of the local(m, z) # 0 and f1(m, z) = fa(m, 2) = ... = fx(m,z) =0
encoding coefficients:. , such that each sink can recover théespectively. Similar conditions (except for the delaygpaeter
information it demands. Because of the linearity [af (1), we) for feasibility hold good for thej;,s; also. Note that for
can associate with every edgea h-length global encoding certain network topologies or sink demands, the inveitjbil
vector over F,(z). The global encoding vectds(e) of edge conditions alone will suffice for feasibility, while the zer
e, indicates the particulalf,(z) linear combination of the interference conditions might not arise at all [3]. The rivaist
h information sequences, flowing in The global encoding case, where all sinks demand all the information sequences,
vectors of theh incoming edges at the sources corresporid one such example.
to the basis vectors o]FZ, By (@), the vectorb(e) can be ~ We now provide some results regarding the question of
recursively calculated from the global encoding vectorthef whether the solvability ofj,., implies the solvability 0fG;,,s:
edges incoming atail(e). The global encoding vectors arealso, and vice versa. The following proposition is a geriegdl
well defined because of the acyclicity of the network. version of Proposition 1 of_ [17], where the statement was
Having ordered the: input sequences and thie. output proved only for a multicast case. A simpler proof for this
sequences, the input-output relationshipGaf; can be repre- proposition can also be derived easily from the results §f.[1
sented as &xh.. matrix overF,(z) called theoverall transfer
matrix [3], M (z), of the network, the columns of which are the Proposition 1:Let G,.4(V,&,S,T,C) be an acyclic, unit-
global encoding vectors of the imaginary outgoing edgesfrodelay network with a given set of sink demands and
the sinks. The transfer matrix corresponding to a particulg;,s:(V,€,S,T,C) be the corresponding instantaneous net-
sink ¢, is the h x h; matrix M;(z), the columns of which are work. Letm’ be a set of local encoding kernels which result in
the global encoding vectors of the imaginary outgoing edgasietwork code fog;,,s:, satisfying the invertibility conditions.
from the sinkt. Therefore, forz(z) being theh-length input Thenm’ continues to satisfy the invertibility conditions for
vector andy:(z) being theh;-length output vector at sink  G,q4.
we havey:(z) = x(z)M;(z). For Gins, the components of Proof: See AppendikA.
the global encoding vectors and network transfer matrices a For the multicast case, which has no zero-interference
all elements fromk,. For more details on the structure ofconditions, we then have the following corollary, which was

these matrices, we refer the readerltb [3]. proved in [17].
Corollary 1: Let G,4(V,E,S,T,C) be an acyclic, unit-
I1l. EXISTENCE OFNETWORK CODES FOR ACYCLIC delay network with multicast demands, i.e., all sinks regui
NETWORK WITH DELAYS all the information sequences, agg,.:(V,&,S,T,C) be the

The problem of network code existence was presented fraorresponding instantaneous network. Then a feasibleanktw
an algebraic geometry point of view in| [3]. The local encafincode forG;,,,; continues to be feasible @, 4.



In a general non-multicast network coding problem, it might Corollary 2: Let G.4(V,&,S,T,C) be an acyclic, unit-
not be possible to satisfy the zero-interference conditinthe delay network with a given set of sink demands ands;
networkG, 4, though they can be satisfied in the netwgtk,;. be the corresponding instantaneous network. If there ®xist
This is because of the fact that different flows which camekll no feasible network code fa¥;,.:(V, &, S, T,C), then there
out the interference ig;,,; can take paths of different delaysexists no feasible network code g4 (V,&,S,T,C).
in the corresponding acyclic network with delays, thereby Note that the proof of Propositionl 2 involved an actual
preventing the cancelling effect. Example 1 illustrates such construction of a feasible network code @, ;; starting from
network, for which there exists solutionsdh, s, but none for a feasible network code fa@¥,4. Such a construction implies
Gud- the following corollary on a polynomial-time constructifor

Example 1:Consider the networlg shown in Fig[l. Let a feasible network coding solution fk,,s:.
the field under consideration li&. Sources; has a sequence Corollary 3: Let G,q4(V,&,S,T,C) be an acyclic, unit-
x1(z), which has to be conveyed to sitik while the sequence delay network with a given set of sink demands &g
x2(z) at sources, has to be conveyed to sintk. In bothG,,,.; be the corresponding instantaneous network. If there szist
andgG,4, the topology of the network demands that the linegrolynomial-time construction algorithm for a feasiblewetk
combination of the two incoming sequences at nodshould coding solution onG, 4, then there exists a polynomial-time
be such that both the local encoding coefficients are nom-zetonstruction algorithm for a feasible network coding solut

In Ginst, the information sequence; (z) is cancelled out on G;,;.
at nodewv, to enable sinki; to receivex(z), and similarly Proof: See Appendik C.
cancellation ofx2(z) happens at node; for sink ¢;. In G4,
this cancellation, while being necessary for the networtteco V. RELATIONSHIP BETWEEN THE MINIMUM FIELD SIZE
to be feasible, cannot happen at the nogdeandvs because of PROBLEM FORG,q AND Gipst

the disparity in the delays of the flows at their incoming exige |, yhis section, we discuss the effect of considering delays
Since the choice of our finite field was arbitrary, it is theref in the network on the field size over which a valid network

clear that unless memory is used at some of the intermedi%%e can be designed for an acyclic netwgrkWe assume
node_s, there _eX|sts no feasible ne_tvyork_ code for this nektwqhat G.a is solvable, which mean that;,.; is also solvable,
considered with delays over any finite field. according to Propositioh] 2. Note that Propositidn 1 already
gives a small insight into the field size issue, showing that
for a multicast network, the minimum field size that satisfies
the invertibility conditions inG, is at most as large as the
minimum field size forG;, ;.

It is not difficult to observe that in some of the usual
examples in network coding literature such as the butterfly
network and combination networks, the feasibility of a give
network code is preserved between the unit-delay network
and the corresponding instantaneous network, because the
topology of these networks prevents the mixing of informati
symbols from different generations at the intermediateesod
In the forthcoming subsection, we formalize such a topaali
constraint for networks with general demands and thereby
obtain sufficient conditions on the equivalence of network
coding solutions betwedh, ; andg;,,s; for an acyclic network
G with given demands.

Fig. 1. A networkG where zero-interference conditions fail to holdgi 4 . o ) .
A. Equivalence of minimum field size problem betw@gp,

In light of Propositiori]L and Exampl@ 1, it can be observedd Gud
that the solvability of a network coding problem fék,.;  The following proposition gives a class of networks for
need not imply solvability foG,,q. The following proposition which the minimum field size is equal for bof,; andG,4,
answers the reverse problem, i.e., that solvability of @wivby demonstrating a sufficient condition under which certain
GWV,&,8,7T,C) for G,q always implies its solvability for network coding solutions remain feasible for bath,,; and
Ginst- Gud- We define for a nodes € V\S, a set@(v) which
Proposition 2:Let G,4(V,E,S,7T,C) be an acyclic, unit- consists of all possible paths (a path being a sequence ebedg
delay network with a given set of sink demands &g, following an ancestral order) from the source nodes guch
be the corresponding instantaneous network. If theresesistthat any two paths differ by at least one edge. We also define
feasible network code fag,.4(V, £, S, T,C), then there exists for a nodev € V\S, a |Q(v)|-lengthdepth vectord(v), each
a feasible network code f@;,s:(V,&,S,T,C). component (irZ ™) of which indicates the total delay incurred
Proof: See AppendixB. in the corresponding path ¢} (v) from some source to node
Propositio 2 leads to the following corollary. .



Proposition 3:Let G,4(V,&,S,T,C) be an acyclic, unit-  However, forG,,, a binary field is sufficient. Consider the
delay network with a given set of sink demands andsual network code oveF, in the butterfly subnetwork of
Ginst(V,E,8,T,C) be the corresponding instantaneous nethe given network, where the global encoding vectors at the
work. Suppose the topology of,; is such that for any node

vy are
v € V\S, the components of the depth vectdfv) are 0

. . 4 3 5
all equal. Let/ be the set of all feasible solutions for 02 and( ; ).Then the vectors( 2 )7 ( 22 )7

4
z .
and A ) while those at node; are

Gua(V,E,S,T,C) such that the sources combine information, 2 0 z

. . . 5
symbols WIthOUF using memory, i.e. the symbqls only from th 03 and 52 , ) can be chosen as global encoding
current generation, and, be the subset aff with solutions z 27tz

from the fieldF,. Then the following statements are true. Vectors for the edges; : 1 < ¢ < 4 respectively, which

(A) Any solution from/ for G, is also a feasible solution render. the ne_:twork code fe‘f"s.'ble fg&.d' Thgrefore, even in
a multicast situation, the minimum field size requirement of

for ginst- H
(B) Any feasible solution fo;,; is a feasible solution for the unllt-d(.elay network can be smaller than that of the .cprre-
G sponding instantaneous network. Note that such a situéion
wd-

made possible because of the difference in the delays betwee

(C) If gmin is the minimum field size for which a feaS|bIethe incoming symbols at the two edgesigt

network code exists fof,,q and the subsé¥,, . of U/ is
non-empty, thew,,;,, is the minimum field size required
for a feasible solution fog;,,s: too.

Proof: See AppendixD.

Propositior B formalizes the easily observed sufficient con
ditions for the same network codes to be solutions for both
Ginst andg, 4. However, deriving necessary conditions for the
same seems difficult. Propositibh 3 also leads to the foligwi
obvious corollary.

Corollary 4: Let G,«(V,E&,S,T,C) be an acyclic, unit-
delay network with a given set of sink demands and
GinstV,E,8,T,C) be the corresponding instantaneous net-
work. Suppose the topology of,; is such that for any
v € V\S, the components of the depth vectdfv) are all
equal. If G,4 has no feasible solutions over some particular
field Fy, then neither doeg;,,s:.

B. Reduction of minimum field sizedh, - Review of Linear
Information Flow Algorithm

Proposition[B illustrates some network conditions which _ o , o
lead to the equivalence between finding the minimum requirEl§: 2= A multicast network in whiclg,.q requires smaller field size thap
field size for a given set of demands ¢k, and G;,s; of ) o
a given acyclic network;. Example[l illustrated a situation EX@mple 3:Consider the networki shown in Fig[8. For
where the disparity in the delays of the symbols arriving at’a= J < 3, €ach source; has an information sequeneg(z).
node prevented the possibility of obtaining a feasible pekw 1hiS network has non-multicast demands, with sifks1 <
code. However, such delay disparity can also be useful. 4= 3 requiring all three information sequences, while sigk
particular, because of this delay disparity, there exisivagks €auires{zi(z), z3(2)} andts demands{a(2), z5(2)}. We
in which the feasible network codes exist over a smaller fieR'OW that no feasible network code exists €y,; over I,
for G,q compared tg;,,.;. Towards understanding how suchVhile such a code exists f@.q. _ .
situations can arise, we discuss a couple of examples. We now argue that we cannot obtain a feaS|bIe_ network code
Example 2:Consider the networl shown in Fig[®. The for Ginst OverFa. The sinkst; : 1 < < 5 have direct paths
sources has two sequences (z) andz»(z) to be transmitted from the source(s]si, sz}, {s1, 53}, {s2, 53}, {s3} and{ss}

to the six sinkst; : 1 < i < 6. This network is clearly a respectively. As the sinks : 1 < i < 3 require information
sequences from all three sources, the edgeshould carry

a coded version of all three information sequences for the
. 4 . network code to be feasible at sinks: 1 < 7 < 3. Thus,

network. As in the case of th 9 network, a feasible . F,, the jglobal encoding vector for edge should be

network coding solution for this network (eitheréh,;; orin a= (1 1 1) . As sinkt; has a direct path from soureg,

G.a) implies that any two of the four global encoding vectorthe edgee; should carry a linear combination of boih (z)

on the edges; : 1 < i < 4 should be linearly independent.and z3(z). Thus the global encoding vector of edgg over

Therefore, forg;,s:, @ minimum field size o is required to F, must beb= (0 1 l)T. Now, as sinki4, has a direct path

construct a feasible network code. from sourcess, the edge:3 should carry a linear combination

cascaded version of the usual butterfly network an th% )



of bothz; (z) andzs(z), i.e., (1 0 1)" . However, the global
encoding vectors of the incominjg edges at nodarea and
b, using which the vectofl 0 1)° cannot be obtained. Thus
no feasible network code can be found fgy,.; overF,. A
feasible network code can be found for this network over any
field with sizeq > 3.

Now we prove by argument that there exists a code for
G.q- Becausee; should carry a linear combination of all
three information sequences, let its global encoding vecto

at the source. Note thdt; can be at most equal to
the minimum of the mincuts between the source and
each sink and not more, otherwise the multicast problem
is infeasible. LetG*(V*,£*) be the subnetwork of
consisting of the nodes and edges on these edge-disjoint
paths alone. The rest of the algorithm works only with
Gg*, as a feasible network code fgr can be converted

to a feasible network code fa§ by simply assigning
zeros for any other local encoding coefficients.

be a(z) = (22 2* ZQ)T, after accounting for the delays 2) For a sinkt € T, let f* denote the set oh, edge-

incurred in the transmission. Accounting for the dispaiity
the delays at the node;, let the global encoding vector of
edgee; be b(z) = (0 22 z3)T. Thus the global encoding
vectors of the incoming edges at nodeareza(z) andzb(z).
Nodew; can then simply send a sum of two incoming symbols
on edgees, in which case the global encoding vector of edge
egis (2 0 2%+ 25)T . Accounting for all the direct paths in
the network, it can be seen that all sink demands are satisfied
i.e., the invertibility conditions hold ovéF:(z) and so do the
zero-interference conditions. Thus there is a feasiblevordt
code forG,, overF,y. As in the previous example, the delay
disparity at nodes; is what makes this possible.

{ X1, X2, X3}

{ X1, X3}

4)

Fig. 3. A non-multicast network in whicky,, 4 requires smaller field size
thang

3)

disjoint paths from the source toFor each sink € T,

the algorithm maintains for each sink a €&t which
consists of theh, most recently processed edges (one
from every path inf*) and ah, x h, matrix B;, which
has the global encoding vectors of the edge€inThe
setC; is initialized with the set{e; : 1 <1i < h,} (the

hs imaginary edges at the source), while the columns
of the matrix B; is initialized with theh-length global
encoding vectorgb(e;) : 1 < i < hy} respectively. For
every sinkt, the algorithm maintains the full-rank prop-
erty of B, by an appropriate choice of the local encoding
coefficients attail(e), e € C; being the most recently
processed edge & is incremented in some ancestral
ordering. The algorithm also maintains anotherx A
matrix A; which has the inverse vectors & at every
step of the algorithm.

For an edge: € &£*, let fi (e) denote the predecessor
edge ofe on some flow path from the soureeto sink

t. Note that there can be at most one flowpath froto
any sink througte. After processing any edge the LIF
algorithm updates the s&t; and the matricesB; and
A;. The updated values far,, B; and A; are denoted
by C;, B, and A4, and are obtained as follows.

a) Gy =C\{fL(e)} U{e}.

b) By = B\ {b(/L ()} U {b(e)}

c) as(e) = (ble).ar(fL(e)))  a(fL(e)).
d) Forallc e G\ {fL (e)},

at(c) = at(c) — (ble).ag(c)) ar(c).  (3)

Ultimately the algorithm ends with the matri®; equal

to the network transfer matrix/; of the sinkt, whose
full-rank property is guaranteed by the algorithm, there-
fore rendering a feasible network code.

In the remainder of this section, we show that there existLet T'(e) be the number of sinks which have a flow path
several occasions in which a binary field is sufficient fathroughe, and letP(e) = {fL (e) : t € T'(e)} be the set of
constructing feasible network codes for unit delay netwprkall predecessor edges of The only non-zero local encoding
irrespective of the field size required for their instantane coefficients to be chosen for the edgeby the algorithm
counterparts. We concentrate only on the single-source mafte m.,, p € P(e). At every step of the algorithm where
ticast case. As the results in this section are all centerd global encoding vector of the next edge (according to a
on the deterministic version of theinear Information Flow chosen ancestral ordee) is selected, the seB; has to be
(LIF) algorithm in [4], we briefly discuss the terminologydan kept linearly independent, i.e., the choicerot , should be
lemmas related to the LIF algorithm before proving our rssul such thatB;\ {b(f% (e))} U {b(e)} is linearly independent.

The steps of the LIF algorithm for constructing a multicasthe following lemma proved in_[4] gives a fast way to test
network code in a single source acyclic instantaneous mitwdhis linear independence based on the dot produdt,inin

Ginst With |T| sinks are as follows.

the following lemma, we havé, , = 1, if a = b.

1) Identify theh edge-disjoint paths from the source to the Lemma 1:Consider a basi® of FZ and vectord € B,
sinks, whereh, is the number of information symbolsa € IFZ such thatvd’ € B, we haveb’.a = 4, ;. Then, any



vectorx € IFZ is linearly dependent o®\ {b} if and only network code in a given instantaneous netw@k;, or
if xz.a =0. the corresponding unit-delay netwok,,. Based on the LIF
Given the full-rank matrix B; of global encoding vec- algorithm, we now present another network coding scheme
tors {b(e) € IFZ ie € Ct}, we will denote the corre- called adelay-and-codscheme, which reduces the complexity
sponding columns of the inverse matri¥; of B;, as of encoding at the intermediate nodes at the cost of pothntia
{ai(e) e FI+ : e € C,}. Then the linear independence conincreased complexity of decoding at the sink nodes. Theefinit
dition to be checked in the LIF algorithm takes the followindield under consideration is alway®. As a theoretical by-
form due to Lemmall: product of this scheme, we show that there exist networks for
, , which the binary field is sufficient for constructing a mudist
Yt ET Ve e € Cribe).ar(e]) =deer. () network code irg,q, irrespective of the field size requirement
The following lemma gives the sufficient field size for thén Gips:.
construction of a feasible network code for multicast on a We assume that each node is equipped with memory ele-
single source acyclic network. ments and a linear combination of the stored symbols is then
Lemma 2:[4] Let ¢ > n. Consider pair§z;,y;) € ]FZ x  transmitted on the outgoing edges. Abusing the definition of
]FZ with x;.y; # 0 for i < i < n. There exists a linear the delay parameter, we also denote a memory element by
combinationu of x, s, ..., x, such thatu.y; # 0 for 1 < 2. We however do not allow all possiblg;(z)-linear com-
i < n. binations of the incoming symbols that is possible using the
Outline of proof:We provide only an outline here in ordermemory elements available at the node under considerdtion.
that we might use similar proof ideas later in Subsedfio©lV- other words, the input-output relationship of the edggiven
For the complete proof, the reader is referred o [4]. Theproby (1) is restricted to be of the form
involves the iterative construction of vectots, us, ..., U, te,
(eachu; € Fh:) such that for anyi, u; is some linear ye(2) = Z Mepz " Yp(2), ©6)
combination of the vectorgxy, : 1 < k <4} and for any; PEr's (fail(e))
such thatl < j <1, u;.y; # 0. As long as the field size is wherem, , € F2, anda.;, € 7=°, in general (for bothG,
more thann, the vectorsu; can always be found, with theandG,q). ForG.q, a.,, € Z*, to account for mandatory delay
final vectoru,, being the desired:. W incurred in the transmission through edge
With e being the edge under consideration, let If a delay-and-code scheme ¢his such that for any non-

(i) i <i<n)— {(b(fi(e)),at(fi(e))) e T(e)} source node € VU T, and for anyp € I';(v),

in Lemmal2. Then the vector found using Lemmdl2 Gep = ap, Ve € Lo(v) such thatme,, 70, 0
satisfies (by invoking Lemmal 1) the requirements for tHé&en we refer to the delay-and-code schemewsifarm delay-
global encoding vectab(e) of edgee, i.e., [4). The particular and-codescheme. Otherwise, we refer to it asian-uniform
linear combination of the vectofd(fL (e)) : e € P(e)} used delay-and-codecheme. In other words, in the uniform delay-
to obtainu gives the local encoding coefficientstatl(e), i.e., and-code scheme, an intermediate node is not allowed to code
{me,:p € P(e)}. By Lemmal2, a field sizeg such that differently delayed versions of the symbols arriving fronya
particular edge. In the non-uniform case, this is permitted
Note that we consider only intermediate nodes in the network

i,e., the non-source non-sink nodes. The non-uniform delay

T(?) being the ““_”?ber of sinks Whlch have flow_paths througkand-code technique was already mentioned_in [18] for acycli
e, is always sufficient for constructing a multicast networ

code forG:, , according to the LIF algorithm. Therefore, forand cyclic networks. It was however only conjectured that a

ins . . ; feasible multicast network code can be designed using the no

constructing a multicast network code in any single source. ) )

. : : . L uniform delay-and-code scheme. In this work, we prove this
acyclic network with| 7| sinks,q > |7 is sufficient.

Note that although the LIF designs a feasible netwo&Ogjiﬁizi};ﬁof?;ethuesjglsr?e?\]:vgﬁzglcl)%i?wet\lf\(l)c;:rliziation such linea
code forG;,s:, the extension of the LIF algorithm (and the 9 '

. i . . combinations also result in a network transfer matrix atheac
associated lemmas) t9,4 is straightforward. While the local sink, which should be full-rank oveF,(z) for the network
encoding coefficients (picked according to Lenima 2) comtingd_ " 2

to be overF,, the matricesd; and B; are overF,(z) for code to be feasible for that particular sink. The algoritton f

G sc0rdi o). Therir: e ot product e 27510619 % delayancco s for ey e oy
the Lemmdll and Lemnid 2 are the standard dot productt|!1ng

. e LIF algorithm, with the change that the local encoding
Fy(z), and full-rank property O.Bt is checked oveF,(z). .By coefficients are based on the formulation[df (6). The folluyvi
Corollary(d, [) holds for multicast network code constimict o . . ;
for G, t00. proposition shows that any acyclic network with multicast

demands can be solved using the non-uniform delay-and-code

scheme.

C. Delay-and—code: A technique for single-source multicas Proposition 4: Let G(V,&,s,T,C) be an acyclic single-

on acyclic networks source network with multicast demands with the mincut be-
As discussed in Subsectigon TV-B, the LIF algorithm usesveen s and anyt € 7T being at leasths, the number of

Lemmal2 together with Lemnid 1 for constructing a multicagtformation sequences generated.athen a feasible network

¢ > maxT(e), ©)



code can be designed f6f,,s; (or G,4) using the non-uniform irrespective of the minimum field size required to design a
delay-and-code scheme provided the total number of memdegasible network code for the corresponding instantaneous
elements present at each node for each incoming edge iqetiworks. In particular, given a single-source acyclionoek
least(|]7]—1). G with multicast demands and with at ledst node-disjoint
Proof: See AppendiXE. paths (s being the number of information symbols at source)
We now deal with the uniform delay-and-code scheme. Wiom the source to each sink, it is always possible to constru
consider only the special case of those networks in which thenodified networlG such thatg;,,.; has the same minimum
paths from the source to each sink are not only edge-disjofigld size requirement a§;,,s;, but a binary field size would
but also node-disjoint, i.e., the, paths from the source to suffice to obtain a feasible network code tor,.
any sink do not have any common node except the source &rdof: See Appendix G.
that particular sink itself. The general case, where paths a Although the delay-and-code scheme can be used to con-
not necessarily node-disjoint, is more difficult and migbt n struct feasible network codes in the multicast situatiam,&
be solvable because of the following reason. network with more general demands, it might not prove to be
Consider a network with paths that are not node-disjoiniseful. We now present an example where it is not possible
Because of the formulation specified Wy (7), for any giveto design a network code using the delay-and-code scheme.
intermediate node, all the priorly processed outgoing edges Example 4:Consider the networki shown in Fig.[#,
of v should be considered when processing any particular
e €To(v). Lete, e’ € Tp(v) and suppos&(e)NT' (') # .
Suppose the global encoding vector othas been decided
beforee’. Once edge’ has been processedi(¢’) has been
decided), note that the elements of the Sét), which was
used to determiné(e), would have been updated according
to (3). Therebyb(e) might no longer satisfy the required
properties of maintaining the ranks of tfi& matrices of some
t € T(e) N T(e'). Now if a new global encoding vectdr(e)
was chosen for edge then the setS(e’) might change, and
b(e’) might no longer be a valid global encoding vector ar
Because of such a see-saw effect, it might not be possible to
design a feasible network code using the uniform delay-and-
code scheme.
Now suppose thé edge-disjoint paths to each sink from
s are also node-disjoint, i.e., at any intermediate node én th
network, there exists at most one incoming-outgoing ed@re pa
which lies on any path from the source to any particular sink.
Therefore, for any € T'o(v) being the currently processed
edge, anyc € C;\{fL (e)} for any ¢t € T(e) is such that
¢ ¢ T'r(v). In other words, there are nae’ € T'p(v) such
thatT'(e)NT'(e’) # ®. Thus, fixing the global encoding vectorrig. 4. A network for which the delay-and-code scheme cameotised to
for anye’ € T'o(v) does not affect the seis(e) for any other construct a feasible network code
edgee € I'p(v). For this reason, we focus on networks with

s : with sources{s; : 1 < <3} and sinks{t; : 1 <i <21}.
node-disjoint paths for the uniform delay-and-code case. The sources; generates the information sequenee(z)
Proposition 5: Let G(V,€,s,7,C) be an acyclic single- si g q z).

source network with multicast demands with at ledst ghzxiléb?iw;kogg@Cogsr:zt";?nf I a"isn?j(leri/;n?crgﬂgfﬁem
node-disjoint paths betweem and anyt € 7, h, being P 13 2

the number of information sequences generated.aket 3 combination network, i.e., for every possible three-
6 := maxyey do(v). Then a feasible network code can begmpination of the nodeg$v; : 7 < i < 12}, there exists a
designed foGi,s; (0r Guq) using the uniform delay-and-codegjny 1o which there is precisely one edge incoming from

scheme provided the total number of memory elements presgid hree nodes, each of which demands all three of the

at each node for each incoming edge is at léa$7 | — 1). , 6
Proof: See AppendikF. information sequences. There are theref g )= 20 such

The following corollary to Propositioh] 5 shows that thersinks, and the bolded arrows indicate the ten outgoing edges
exist several unit-delay networks for which a binary field iffom each node; : 7 < i < 12, and the three incoming edges
sufficient for constructing a feasible network code, iretive from {v, : 7 <4 < 12} to each sink; : 1 < ¢ < 20. Each of
of the field size required for their instantaneous countgspa these20 sinks demand all three information sequences. The

Corollary 5: There exist acyclic networks for which a feasiadditional sinkts; demands the information sequencgz).
ble binary network code exists for the unit-delay networksia Note that there exists a solution to this network (for b@thy,
result of differently delayed information available at teeling and g, 4) if the field sizeq > 4.
nodes (where paths to different sinks intersect) in the agtwv ~ We now attempt to obtain a delay-and-code scheme on this
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network (in eitherG;,s; or G,q). Because each node is problem. Subsequent work might include the analysis of
only connected to the sourcg for 1 < ¢ < 3, each of the random network coding in unit-delay networks and the study

global encoding vectors of the outgoing edges from the nodefscyclic networks in a similar manner.

{v; : 1 <i < 3} has one component of the foraf, a being
some non-negative integer, with the other two components
being zero. Also, the three global encoding vectors of thelll
outgoing edges from the nod€s; : 4 <i < 6} have to be
linearly independent and of the forfa® 2* 2¢)” , because
each of these three vectors have to be linearly independgmt w
any two of the three global encoding vectors of the outgoing
edges from{v; : 1 <i < 3}. For4 < i < 6, let the global
encoding vector of node; be f;, = (z% 2% zci)T, for
some non-negative integeds, b; andc;.

To satisfy the requirements for sink;, a delay-and-code
based linear combination of the vectofs : 4 < i < 6

(2]
[3]

(4]

T
should generate a vector of the forfn® 0 0)° , for some  [g]
non-negative integef. In other words, for some non-negative
integersa, b and ¢, and for somen, ms, m3 € Fo, we want 7
a4 a5 a6 mlza Zd
Zb4 st st mng — 0 [8]
2% 2 ¢ msz° 0
[9]

Note thatmi, ms andms cannot all bed. They cannot all
be 1, as it is not possible to find non-negative integers
and ¢ such thatz@tbs 4 20Fbs 4 b6 — (_ or such that [10]
Z&+C4 + Zb+¢:5 + ZEJrcG =0.

Now, suppose two ofn;, mo andms are non-zero, then [11]
this means that the global encoding vector of the outgoin&
edge from nodev; lies in the space spanned by two of 2
the global encoding vectors of the outgoing edges from
{v; : 4 <1i < 6}. But this contradicts our original choice of [13]
these global encoding vectors, according to which any two
are linearly independent with the global encoding vector ofi4]
the outgoing edge from nodg. Therefore, a delay-and-code
based scheme cannot satisfy the requirements of all sinks fﬂ']
this network, in eitheG;,s: or G,q4.

V. CONCLUDING REMARKS el

We have discussed the effects of using the delay inhere t7]
in the network in problems related to network code existence
and designs. The delay-and-code algorithms presentedsin th
paper enable low-complexity encoding at the intermediatg o
nodes at the cost of using large memories for decoding at
the sinks. A simple upper bound for the maximum number
of memory elements required at any sink to decode th
information sequences which are encoded using a delay-
and-code scheme can be obtained without much difficulty20]

Similar algorithms can be found in [18]—[20]. Also, whileeth
equivalence between memory elements and delays might nei;
in practice make sense as the actual value of the delay adturr
in the two might not be equal, the parameteused can be 22]
equivalently used to express both and therefore CoroIIhry[S
still holds.

The results obtained in this work indicate that using delays
in the network might be beneficial in certain situations, le/hi

] A I
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APPENDIXA
PROOF OFPROPOSITIONT]

being not useful in others. In any case, the delays in the Proof: Let M/ be theh; x h; submatrix of the network
network cannot be ignored for analyzing any network codirtgansfer matrix of any particular sink nodec 7 in G;,4,
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involving the h, information symbols to be inverted. Let APPENDIXB

M](z) be the corresponding matrix of the same sink G,4. PROOF OFPROPOSITIONZ|
We first note that the matri&/; can be obtained from/;(z) Proof: Let m/ be a set of local encoding coefficients
by substituting: = 2° = 1, i.e., taking values from some fieldf, which result in a feasi-
M = M(2)] ble n_etwork code forg_u_d, sa_tisfying the invertibility and
zero-interference conditions, i.ef;(m’,z) = fa(m/,z) =
Given thatM/ is of full rank overF,, we prove thatM/(z) ... = fx(m',z) = 0 and the product of the determinants
is of full rank overF,(z) by contradiction. gm/, z) = % # 0, where g,(m’,2),g,(m’,z) €
Suppose that/{(z) was not of full rank oveiF,(z), then T,[z], the ring of polynomials in variable over F,[z], are
we have - the numerator and denominator polynomials corresponding t
t_ a;(z g.
bE iM (2) = M, (%), (8) Note that, if we assign some appropriate valueFinfor

the parameter in (@), we get a well-defined network code
where M/ (z) is thei'® column of M/(z) anda;(z),b;(z) € for Gin. In other words, if throughout the network, we let
Fyl2] Vi = 1,2,..,h; — 1 are such thab;(z) # 0 Vi, and =z = z, € F, such that(» — z,) does not divide any numerator
a;(z) # 0 for at least one, and gcd(a;(2),b;(z)) = 1, Vi. polynomial of m. ,(z) corresponding to any pair of edges

We have the following two cases andp, then the unit-delay equation

Case 1b;(2)|.=1 # 0 Vi. _ ,

Substitutingz = 1 in (@), we have Ye(2) = Z Mep(2)lz=20Yp(2)

peTr(tail(e))
htz:l a; M’ ) reduces to the instantaneous form, without the time indgx, a
Ye = Z mg,pypa

wherea; = a;(2)|.=1,b;i = bi(2)],=1 and M! = M!(2)|.—1 pel;(tail(e))
is the #*" column of M. wherem; , = m; ,(z)|.=.,, for all pairs of edges andp

Clearly M; # 0 since M; is of full rank, and hence the in the network. The new set of local encoding coefficients,
left hand side off{9) cannot be zero. Therefore, some nom-zelenoted bym/’ is a well-defined network code fog;,s;
linear combination of the firsk; — 1 columns of)/ is equal (although this might not be feasible). Using this technique
to its »,'" column, which contradicts the given statement thate now show that given a feasible network code’) for
My is of full rank over[F,. Therefore,M;(z) must be of full G,, over some fieldF,, we can obtain a feasible network

rank overF,(z). code forG;, s, over a possibly Iarger field'o.

Case 2 b;(z)|.=1 = 0 for at least ona. Given thatg(m’,z) = i’;EZ j), let F, be an exten-
LetZ' C {1,2,..., hi} be such thafz — 1)” |b;(2) for some sjon of F,, such thatQ > degree(gn) + degree(gq). As
positive integery’. Let p be an integer such that F, C Fg, we can view the coefficients’ to be elements
p = maxp'. of Fg, which we shall now refer to asnl,. We now

i€T choose somez, € Fg such thatgn(m’Q,z)|z:ZQ # 0,

and gd(m'Q,z)|Z:ZQ # 0. Such a choice is possible be-
cause the polynomial,, (mg,, 2)ga(mg,, 2) can have at most
a;i(2) degree(gn)-+degree(gq) zeros inFq. Therefore, withe = z,,
Z (z—1)P bi(2) i (2) = (z = 1)’ M}, (2). (10) we have a well-defined network code 61,5 With g # 0,
=1 satisfying the invertibility condition inG;,s;. Let the set of
Let Z C {1,2,..,h:} be such thatz — 1)?|b;(z) V = € Z. local encoding coefficients obtained fgf, . by assuming
Then, we must have thgt: — 1) ¢t az(z Vi e I, since z=z, bemg.
ged(ai(z),b;(2)) = 1. Also, letbl(z) = b;(2)/(2—1)? € Fy[z] As for the zero-interference conditiony;(mg,z) =
Vi € Z. Then we have fa(mg,z) = ... = fr(mg,z) all being zero polynomials
(2) ai(2) _ implies that any choice of does not alter their value. There-
<(z — 1) :(2)) |2=1 (@) |la=1 o € F,\ {0} fore the network code defined by} is a feasible network

code forG;,s:(V,€,S,T,C). This completes the proof. ®
where b, = b(z)],=1 € F,\{0}, since (z—1) 1 b(2).

Now, from (8) we have

h¢—1

e

(=l

Substitutingz = 1 in (I0), we have APPENDIXC
, PROOF OFCOROLLARY [3
—~ b;M =0, Proof: Let m’ be a set of local encoding coefficients
1€

taking values from some fiellf, which result in a feasible
i.e., a non-zero linear combination of the columnsidf is network code forG,,, satisfying the invertibility and zero-
equal to zero, which contradicts the full-rankness\éf, thus interference conditions. Let the resulting network transf
proving that)M/(z) has to be of full rank oveF,(z). As the matrix of any particular sink € 7 in G,q be M;(z) and
choice of the sink was arbitrary, this completes the prod. let M/(z) be theh; x h; submatrix ofM;(z) which involves
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those rows of M;(z) that correspond to the informationThus, if det (M{(z)) # 0, thendet (M]) # 0, which means
sequences to be obtained by sinlAlthough M/ (z) involves M is invertible. Also, any zero element 8f,(z) is also zero
rational functions inz, the denominators can be factored oun M;. As the choice of the sink was arbitrary, both the
to obtain a matrix of the formM/(z) = (a(z))~'M/(z) invertibility and the zero-interference conditions aréissaed
where a(z) € F,[z] and M/ (z) is a matrix consisting of for all sinks inG;,s., thus proving (A).
bounded-degree polynomials in It is known (seel[21], for =~ We now prove (B). Suppose there is a feasible solution
example) that the determinant of a polynomial matrix of size place forg;,.;. Because of the condition on the network
k x k and degree at/ can be calculated with complexitytopology, the network transfer matrices gy, is of the form
O(k*d?). The determinant of\//(z) can thus be calculated (IT). Then, by [(IR) the corresponding invertible x h;
with polynomial complexity. Thus, following the notationssubmatrix}//(z) of the network transfer matrik/;(z) of sink
from the proof of Propositiohl2, it is therefore clear thag tht in G,4 with the same local encoding coefficients @s;
productg(m’, z) = % of the determinants of all the has a non-zero determinant and is thus full-rank. Thus the
sinks can also be calculated in polynomial-time. invertibility conditions for sinkt are carried over t@, 4. To
The next step in the construction of a feasible netwoikove the zero-interference conditions, suppdsg;; is the
code for G;,s; according to the proof of Proposition 2element(i, j) of M; which is zero. Then the corresponding
is to pick a valuez, from a large enough field, so element ofM,(z), M; ;.(z), is such thatM; ;.(z) = 0, or
that g(mj,, 2,) # 0. Finding such az, involves at most M ;:(z) # 0 with (2 — 1)[M; ;:(2) (s M(z)].=1 = My).
degree(gy) + degree(gq) evaluations of the polynomial,g;. However, because df(L1)/; ;,(z) = 2% M; ;, which means
Such polynomial evaluations can be performed with completbat (z — 1) { M; ;(z). Thus M, ;:(2) = 0. The zero-
ity linear in the degree of the polynomial concerned (sdgterference conditions are also satisfied fan G,4. Again,
[22], for example). Therefore, identifying an appropriatg as the choice of sink was arbitrary, any solution fag;, s is

takes O ((degree(gn) + degree(gd))z) operations over the /S0 a solution foG,,. o _
field concerned. To prove (C), we first note that, by (B), the minimum field

Once such a, has been identified, the local encodin r:ze :re]qturfegment;lor abfeazlble solut||otn f@deéS r}ot larger
coefficientsm?’, for G,,.: can be obtained can be obtaine an that ofG,.s;. Also, by (A), any solution fog,.q from any

by evaluating the local encoding coefficientsy, of G,q at non-empty, is feasible fory,.«;, which holds forg = gpin

z = z,. All the elements ofmyg, are rational functions and too. This fact along with (B) proves (C). u
there are at most&|? of them, thus the total complexity

involved in these evaluations is also polynomial. Once ¢hes APPENDIXE

evaluations have been obtained, we have a feasible network PROOF OFPROPOSITIONZ!

code forGi,s. The complexity of obtaining such a feasible  prof. Throughout this proof, we assume that the network
network code forgG;,,; at each step has been polynomla‘j\,e are working with isG*(V*,£*), the subnetwork ofG

including that of the obtaining a feasible network code fo(fonsisting only of the nodes and edges on/thedge-disjoint

Gua, as assumed. This proves the corollary. B paths from the sourceto each sink € 7. Just as Lemmal 2
together with Lemmal1l justifies the maintenance of the rank

APPENDIXD of the matricesB; : t € T in every step of the LIF algorithm,
PROOF OFPROPOSITIONG we prove this proposition by showing a variant of Lemma

. . . ) [2 which will maintain the rank of the matriceB; : t € T
Proof: Consider a feasible network coding solution fron&ccording to the delay-and-code schemes

U for G,q. Because of the conditions on the topology of the
network, the columns of thé x h, (following the notations d
in Sectior[1l) network transfer matri®/;(z) of a sinkt € T L
are of the form

Let e be the edge whose global encoding vector is to be
ecided in the current step of the non-uniform delay-andieco
IF algorithm, and letv = tail(e). We have sets of ordered
pairs (elements fronf¥,(z)": x F,(z)") as in LemmdxR,

S(e) : ={(xzi,yi): i <i<n}
where M; () is the i column of M(z), M, € F" ={(b(fL(e)),at(fi(e)) : t €T(e)}, (13)

and a; € Z*. We also haveM; = M,(z)|.=1, the net- ) , o

work transfer matrix of the sink in Gi,., the ith col- SUCh thatriy; #0,1 < i <n, n being the cardinality of the

umn of which is M;,.. Let M!(z) be thevht « hy sub- set in the RHS. We seek to iteratively construct the vectors
25t t

. hes i
matrix of M, (z), involving those rows (say, those indexed'ts “2; - Un (eachu; € Fy(z)") such that the following

by {7: € {1,2,3,...,h} : 1 < i < hy}) of M;(z) which corre- cond|t|on hold for each, I <i < n. _ o
spond to the information sequences that need to be invetted al) u: is some delay-and-code based linear combination of

M;(2) = 2" M, 1 < i < hy (11)

t, and letM] be the corresponding matrix fef;,s;. Because the vectors{zy : 1 < k <i}.
of (I0), the determinant of//(z) is of the form 2) For anyj such thatl < j <4, u;.y; # 0.
hy If such vectors can be found_, then we fixe) = Up @S the
det (M(2)) = det (M) Hz%_ (12) global encoding vector of as it can be seen using Lemina 1

- that such a choice preserves the necessary requiremettig for
i
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current step of the non-uniform delay-and-code LIF algonit conditions1) and 2) (as in the proof of Propositionl 4) are

The vectorsuy, us, ..., u, are constructed as follows. satisfied. Also,[{[7) needs to be satisfied because we seek to
Let u; = ayxq, Wherea; € Fo anda; # 0 as we need design a uniform delay-and-code.

u1.y1 7 0. Now suppose for somg 1 <i <n—1, we have In the process of choosing eaeh) for any particulare €

u; such thatu;.y; # 0 V1 < j <. Then we will show that T',(v), the local encoding coefficient. , and the delay:. ,

we can getu; i such thatu;;.y; #0V1 <j <i+1,as (m., anda., are as in[(b)) corresponding t© and some

long as the total number of memory elements present at each I';(v) has to be chosen. Based on the arguments developed

node for each incoming edge is at legst| —1). ~in the proof of Propositiofil4, the choices for, , anda.,
Supposea;.yit1 # 0. Then we choose; 1 = u;, Which  gre restricted. For any particulare I';(v) and for any edge
then satisfies our requirements. Else, we choose e € To(v) for which m., # 0, it was shown that there are
Wit = Ui + Qip1 2P g1, (14) & most|7| — 1 choices that are not allowed far. , in the

non-uniform delay-and-code case.
Again, we havea;11 € F; and a1 # 0 as we want  For the uniform delay-and-code case, we need, =
Uit1.Yit1 # 0. Biy1 € Z2° is the number of memory o, Ve € To(v) such thatm., # 0. Thus the number of
elements used to delay the symbols on that particular ine@michoices ofa, that cannot be allowed for any edge= T';(v)

edge. Thusu; 11 = u; + 2P +1x41. is at mostd (|7] — 1), in the case ofn. , # 0 Ve € T'o(v).
Now suppose for some choice §t+1 = B and for some |t Me,p = 0 for anye € T'o(v), this number of disallowed
JL=j =i, wehaveu;y y; =0, i.e, choices fora. , can only reduce. Therefore if every node in

the given network hasg — 1) memory elements for each
w;yj = —2" (Ti41.95) (15) g (I71-1) y

incoming edge, then there exists at least one choicexfor
then g is not a valid choice fop;, 1, as [15) should not hold such that the conditions on the invertibility of tii& matrices

for any j,1 < j < 4. Note that there are at mostchoices (again by invoking Lemmal1) and the uniformity of the delay-
for 5 at which [I%) will hold. There are therefore at mast and-code scheme given byl (7) are satisfied.

choices forj3;, 1 that cannot be used. Als< i < n—1, if we Note that the proof hinges on the fact that the network has
have at least: choices forg; .1, then we can always choosenode-disjoint paths, as we have seen in Subselction IV-Eatha
one value such thaf(]L5) does not hold for dny. j < for feasible uniform delay-and-code scheme might not be plassib
any giveni, 1 <1i < n—1. With |T|—1 memory elements for to design in a general network with only edge-disjoint paths
each incoming edge at node we have|T| choices for any This concludes the proof. [
particularg;, ;. This, coupled with Lemm@l 1 and the fact that
n < |T| ensures that a non-uniform delay-and-code scheme

can be constructed for the given multicast problem. = APPENDIXG

PROOF OFCOROLLARY [H

APPENDIXF Proof: Propositior[ b shows that a feasible network code
PROOF OFPROPOSITIONS] based on the uniform delay-and-code scheme can be con-

Proof: As in Proposition[ﬂ_, we prove the propositiorﬁtrUCtEd for a multicast situation on networks with node-
using a variant of the proof for Lemn@ 2. We again assunﬁ’éSjOint paths. Note that given such a network, all that the
that the network we are working with i§*(V*,£*), the uniform delay-and-code scheme effectively does is to intro
subnetwork ofG consisting only of the nodes and edges ofiuce different delays on the incoming edges. Because of the
the h, edge-disjoint paths from the soureeto each sink uniformity of the delay-and-code scheme, i.e., the forrioie
t € T. We follow an ancestral ordering which enables us @ven by [T), thea, memory elements used for each edge
process all outgoing edges of a particular intermediatesnodl € I'7(v) at some intermediate node can be viewed as
before moving to the next. As the uniform delay-and-code additional delays on edge or equivalently as additional
technique is defined only for the intermediate nodes, we u§gwarding nodes withu, forwarding edges. In other words,
the non-uniform delay-and-code technique at the source ndtiven an acyclic networky with multicast demands and node-
to preserve the ranks of the matricBs for each sinkz, until  disjoint paths, a feasible uniform delay-and-code schemg w
all the edges |r1"o( ) have been processed obtained for the unit delay netwoik, ;. Then the unit- delay

Let v be the intermediate node whose outgoing edges d@tworkg,q along with the uniform delay-and-code network
to be processed together. As in the proof of Proposffion @ode naturally invokes the unit-delay netwafk, on which
for eache € I'o(v), we have the sef(e) as defined in[{13), there exists a feasible network code ow¥&y; by using the
and we seek to iteratively construgt, us, ..., un, such that edquivalence between the memory elements and delayss
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