
Bidirectional Broadcast Channels
with Common and Confidential Messages

Rafael F. Wyrembelski and Holger Boche

Lehrstuhl für Theoretische Informationstechnik
Technische Universität München, Germany

Abstract—In this work, we study the bidirectional broadcast
channel with common and confidential messages and establish the
capacity-equivocation and secrecy capacity regions. This problem
is motivated by the concept of bidirectional relaying in a three-
node network, where a relay node establishes a bidirectional
communication between two other nodes using a decode-and-
forward protocol and thereby efficiently integrates additional
common and confidential services.

I. INTRODUCTION

Recent research developments show that the concept of
bidirectional relaying has the potential to significantly improve
the overall performance and coverage in wireless networks.
This is mainly based on the fact that the property of bidirec-
tional communication can efficiently be exploited to reduce
the inherent loss in spectral efficiency induced by half-duplex
relays [1, 2]. It applies to three-node networks, where a half-
duplex relay node establishes a bidirectional communication
between two other nodes using a decode-and-forward protocol
[3–5]. This is also known as two-way relaying.

Furthermore, already current cellular system operators offer
not only traditional services such as (bidirectional) voice
communication, but also additional multicast services or con-
fidential services that are subject to certain secrecy constraints.
Nowadays, this is realized by allocating different services
on different logical channels and further applying secrecy
techniques on higher levels. But there is a trend to merge coex-
isting services efficiently from an information theoretic point
of view such that they work on the same wireless resources.
This is referred to as physical layer service integration.

Secrecy techniques on higher layers are usually based on the
assumption of insufficient computational capabilities of non-
legitimated receivers. Thus, physical-layer secrecy techniques
are becoming more and more attractive since they do not rely
on such assumptions and therefore provide so-called uncondi-
tional security. In the seminal work [6] Wyner introduced the
wiretap channel which characterizes the secure communica-
tion problem for a point-to-point link with an eavesdropper.
Csiszár and Körner generalized this to the broadcast channel

The authors gratefully acknowledge the support of the TUM Graduate
School / Faculty Graduate Center FGC-EI at Technische Universität München,
Germany. The work was supported by the German Research Foundation
(DFG) under Grant BO 1734/25-1 and by the German Ministry of Education
and Research (BMBF) under Grant 01BU920.

R

1

R1

m
2

2

m

R 21

c

(a) MAC phase

m 1
mm

2

R1R0 R2

1

0

c
m

c
m

0
m

Rc

2

R

m

R 21

(b) BBC phase

Fig. 1. Decode-and-forward bidirectional relaying. In the initial MAC phase,
nodes 1 and 2 transmit their messages m1 and m2 with rates R2 and R1 to
the relay node. Then, in the BBC phase, the relay forwards the messages m1

and m2 and adds a common message m0 with rate R0 and a confidential
message mc for node 1 with rate Rc to the communication which should be
kept as secret as possible from node 2.

with confidential messages in [7]. Recently, there has been
growing interest in physical-layer secrecy, cf. for example [8].
Besides the (wireless) point-to-point link [6, 9, 10], there are
extensions to multi-user settings as the multiple access channel
with confidential messages [11], the interference channel with
confidential messages [12], the MIMO Gaussian broadcast
channel with common and confidential messages [13], or the
two-way wiretap channel [14, 15].

In this work, we consider bidirectional relaying where
the relay node integrates additional common and confiden-
tial services within such a network. We concentrate on the
broadcast phase where the relay has successfully decoded the
two individual messages the nodes have sent in the previous
multiple access (MAC) phase. In addition to the transmission
of both individual messages the relay node has the following
tasks as shown in Figure 1: the transmission of a common
message to both nodes and further the transmission of a
confidential message to one node, which should be kept as
secret as possible from the other, non-legitimated node. Since
the receiving nodes can use their own messages from the
previous phase for decoding, this channel differs from the
classical broadcast channel scenario and is therefore called
bidirectional broadcast channel (BBC) with common and
confidential messages. Note that this differs from the wiretap
scenario where the bidirectional communication itself should
be secure from eavesdroppers outside the wireless network as
for example studied in [16, 17].1

1Notation: Discrete random variables are denoted by non-italic capital
letters and their realizations and ranges by lower case letters and script
letters, respectively; H(·) and I(·; ·) are the traditional entropy and mutual
information; P(·) denotes the set of all probability distributions.



II. BIDIRECTIONAL BROADCAST CHANNEL WITH
COMMON AND CONFIDENTIAL MESSAGES

Let X and Yi, i = 1, 2, be finite input and output sets. Then
for input and output sequences xn ∈ Xn and yni ∈ Yn

i , i =
1, 2, of length n, the discrete memoryless broadcast channel is
given by W⊗n(yn1 , y

n
2 |xn) :=

∏n
k=1W (y1,k, y2,k|xk). We do

not allow any cooperation between the receiving nodes so that
it is sufficient to consider the marginal transition probabilities
W⊗ni :=

∏n
k=1Wi(yi,k|xk), i = 1, 2 only.

We consider the standard model with a block code of
arbitrary but fixed length n. The set of individual messages
of node i, i = 1, 2, is denoted byMi := {1, ...,M (n)

i }, which
is also known at the relay node. Further, the sets of common
and confidential messages of the relay node are denoted by
M0 := {1, ...,M (n)

0 } and Mc := {1, ...,M (n)
c }, respectively.

We make use of the abbreviationM :=Mc×M0×M1×M2.
In the bidirectional broadcast (BBC) phase, we assume that

the relay has successfully decoded both individual messages
m1 ∈ M1 and m2 ∈ M2 that nodes 1 and 2 transmitted
in the previous multiple access (MAC) phase. Besides both
individual messages the relay additionally transmits a common
message m0 ∈M0 to both nodes and a confidential message
mc ∈Mc to node 1, which should be kept as secret as possible
from the non-legitimated node 2.

Definition 1: An (n,M
(n)
c ,M

(n)
0 ,M

(n)
1 ,M

(n)
2 )-code for

the BBC with common and confidential messages consists of
one (stochastic) encoder at the relay node

f :Mc ×M0 ×M1 ×M2 → Xn

and decoders at nodes 1 and 2

g1 : Yn
1 ×M1 →Mc ×M0 ×M2 ∪ {0}

g2 : Yn
2 ×M2 →M0 ×M1 ∪ {0}

where the element 0 in the definition of the decoders plays the
role of an erasure symbol and is included for convenience.

Secure communication may benefit from randomized encod-
ing [7, 8] so that we allow the encoder f to be stochastic. More
precisely, the codeword xn ∈ Xn used to transmit message
m = (mc,m0,m1,m2) ∈ M is specified by conditional
probabilities f(xn|m) with

∑
xn∈Xn f(xn|m) = 1.

When the relay has sent the message m =
(mc,m0,m1,m2), and nodes 1 and 2 have received
yn1 and yn2 , the decoder at node 1 is in error if
g1(yn1 ,m1) 6= (mc,m0,m2). Accordingly, the decoder
at node 2 is in error if g2(yn2 ,m2) 6= (m0,m1). Then, the
average probability of error at node i, i = 1, 2 is given by

µ
(n)
i :=

1

|M|
∑

m∈M
λi(m)

with λ1(m) = P{g1(yn1 ,m1) 6= (mc,m0,m2)|m sent} and
λ2(m) = P{g2(yn2 ,m2) 6= (m0,m1)|m sent}.

The ignorance of the non-legitimated node 2 about the
confidential message mc ∈ Mc is measured by the
concept of equivocation rate. Here, the equivocation rate

1
nH(Mc|Yn

2 ,M2) characterizes the secrecy level of the con-
fidential message. The higher the equivocation rate, the more
ignorant is node 2 about the confidential message.

Definition 2: A rate-equivocation tuple
(Rc, Re, R0, R1, R2) ∈ R5

+ is said to be achievable for
the BBC with common and confidential messages if
for any δ > 0 there is an n(δ) ∈ N and a sequence
of (n,M

(n)
c ,M

(n)
0 ,M

(n)
1 ,M

(n)
2 )-codes such that for all

n ≥ n(δ) we have 1
n logM

(n)
c ≥ Rc−δ, 1

n logM
(n)
0 ≥ R0−δ,

1
n logM

(n)
2 ≥ R1 − δ, 1

n logM
(n)
1 ≥ R2 − δ, and

1
nH(Mc|Yn

2 ,M2) ≥ Re − δ (1)

while µ(n)
1 , µ

(n)
2 → 0 as n→∞. The set of all achievable rate-

equivocation tuples defines the capacity-equivocation region
of the BBC with common and confidential messages and is
denoted by CBBC.

Remark 1: The secrecy condition (1) is also referred to as
weak secrecy which is based on the fact that the information
the non-legitimated node receive is small in terms of the rate.
This does not imply that the absolute amount of information
is also small. Therefore, this concept includes the case where
the non-legitimated node might have partial knowledge about
the confidential message. There exist a stronger version where
(1) is strengthened by dropping the division by n. For details
we refer for example to [9, 10, 18].

Now we are in the position to present the capacity-
equivocation region of the BBC with common and confidential
messages which is the main result of this work.

Theorem 1: The capacity-equivocation region CBBC of the
BBC with common and confidential messages is the set of rate-
equivocation tuples (Rc, Re, R0, R1, R2) ∈ R5

+ that satisfy

0 ≤ Re ≤ Rc

Re ≤ I(V; Y1|U)− I(V; Y2|U)

Rc +R0 +Ri ≤ I(V; Y1|U) + I(U; Yi), i = 1, 2

R0 +Ri ≤ I(U; Yi), i = 1, 2

for random variables (U,V,X,Y1,Y2) ∈ U × V ×
X × Y1 × Y2 and joint probability distribution
PU(u)PV|U(v|u)PX|V(x|v)W (y1, y2|x). The cardinalities of
the ranges of U and V can be bounded by

|U| ≤ |X |+ 3, |V| ≤ |X |2 + 4|X |+ 3.

Theorem 1 immediately establishes the secrecy capacity re-
gion CSBBC of the BBC with common and confidential messages
that is given by the set of all rate tuples (Rc, R0, R1, R2) ∈
R4

+ for which (Rc, Rc, R0, R1, R2) ∈ CBBC holds.
Corollary 1: The secrecy capacity region CSBBC of the BBC

with common and confidential messages is the set of all rate
tuples (Rc, R0, R1, R2) ∈ R4

+ that satisfy

Rc ≤ I(V; Y1|U)− I(V; Y2|U)

R0 +Ri ≤ I(U; Yi), i = 1, 2

for random variables (U,V,X,Y1,Y2) ∈ U × V ×
X × Y1 × Y2 and joint probability distribution
PU(u)PV|U(v|u)PX|V(x|v)W (y1, y2|x).
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Fig. 2. The available resources of each link are split up into two parts:
one designated for the common and bidirectional communication (gray) and
one for the confidential message (white). Since Rc ≥ I(X;Y1|U), the
confidential message need some resources of the common communication.

Theorem 1 is proved in the following two sections which
present the proof of achievability and the weak converse.

III. ACHIEVABILITY

Here, we present a coding strategy that achieves the desired
rates with the required secrecy level. Fortunately, we are able
to use the codebook design that was presented in [19] for the
BBC with confidential messages (and no common message).

Lemma 1 ([19]): For any δ > 0 let U − X − (Y1,Y2)
be a Markov chain of random variables and I(X; Y1|U) >
I(X; Y2|U).

i) There exists a set of codewords unm′ ∈ Un, m′ =
(m′0,m

′
1,m

′
2) ∈M′0 ×M′1 ×M′2 =:M′, with

1
n

(
log |M′0|+ log |M′2|

)
≥ I(U; Y1)− δ

1
n

(
log |M′0|+ log |M′1|

)
≥ I(U; Y2)− δ

such that
1

|M′|
∑

m′∈M′

λ1(m′0,m
′
2|m′1) ≤ ε(n)

1

|M′|
∑

m′∈M′

λ2(m′0,m
′
1|m′2) ≤ ε(n)

and ε(n) → 0 as n → ∞. Thereby, λ1(m′0,m
′
2|m′1) denotes

the probability that node 1 decodes (m′0,m
′
2) ∈ M′0 ×M′2

incorrectly if m′1 ∈ M′1 is given. The probability of error
λ2(m′0,m

′
1|m′2) for node 2 is defined accordingly.

ii) For each unm′ ∈ Un there exists a set of codewords
xnjlm′ ∈ Xn, j ∈ J , l ∈ L, m′ ∈M′, with

1
n log |J | ≥ I(X; Y2|U)− δ
1
n log |L| ≥ I(X; Y1|U)− I(X; Y2|U)− δ

such that
1

|J ||L||M′|
∑
j∈J

∑
l∈L

∑
m′∈M′

λ1(j, l|m′) ≤ ε(n)

1

|J ||L||M′|
∑
j∈J

∑
l∈L

∑
m′∈M′

λ2(j|l,m′) ≤ ε(n)

and ε(n) → 0 as n → ∞. Here, λ1(j, l|m′) is the probability
that node 1 decodes j ∈ J or l ∈ L incorrectly if m′ ∈ M′
is known. Similarly, λ2(j|l,m′) is the probability that node 2
decodes j ∈ J incorrectly if (l,m′) ∈ L ×M′ are given.

This codebook reveals a specific structure with two layers.
The first layer corresponds to a codebook that already enables

I(X; Y2|U)

I(X; Y1|U)

I(U; Y2)

I(U; Y1)

M′0M′1M′2 LJ

Rc < I(X; Y1|U)

K

Fig. 3. Since Rc < I(X;Y1|U), there are more resources for the confidential
message available than needed. This allows the relay to enable a stochastic
encoding strategy which exploits all the available resources by introducing a
mapping from J to K.

the relay to transmit (bidirectional) individual messages and
a common message, while the second layer is used for the
transmission of the confidential message.

Next, we define suitable encoder and decoders for the
BBC with common and confidential messages which map
the confidential, common, and individual messages in an
appropriate way into the codebook of Lemma 1.

Lemma 2: Let U − X − (Y1,Y2) and I(X; Y1|U) >
I(X; Y2|U). Using the codebook from Lemma 1 all rate-
equivocation tuples (Rc, Re, R0, R1, R2) ∈ R5

+ that satisfy

0 ≤ Re = I(X; Y1|U)− I(X; Y2|U) ≤ Rc (2a)
Rc +R0 +Ri ≤ I(X; Y1|U) + I(U; Yi), i = 1, 2 (2b)

R0 +Ri ≤ I(U; Yi), i = 1, 2 (2c)

are achievable for the BBC with common and confidential
messages.

Proof: For given rate-equivocation tuple
(Rc, Re, R0, R1, R2) ∈ R5

+ that satisfy (2a)-(2c) we
have to construct message sets, encoder, and decoders with

1
n log |Mc| ≥ Rc − δ, (3a)
1
n log |M0| ≥ R0 − δ, (3b)

1
n log |M1| ≥ R2 − δ, 1

n log |M2| ≥ R1 − δ (3c)

and further, cf. also (1),
1
nH(Mc|Yn

2 ,M2) ≥ I(X; Y1|U)− I(X; Y2|U)− δ. (4)

The construction is an extension of [19] by further integrating
the common message and is mainly based on an idea of [7].
In the following we have to distinguish between two cases as
shown in Figures 2 and 3.

If Rc ≥ I(X; Y1|U), cf. Figure 2, the set of confidential
messages is given by

Mc := J × L×K

where J and L are chosen according to Lemma 1 and K is
an arbitrary set such that (3a) holds. The sets M′1 = M1,
M′2 = M2, and M′0 = M0 × K are chosen such that
(3b)-(3c) are satisfied. The deterministic encoder f maps the
confidential message (j, l, k) ∈ Mc, and the common and
individual messages mi ∈ Mi, i = 0, 1, 2, into the codeword
xnjlm′ ∈ Xn with m′ = (m′0,m

′
1,m

′
2) with m′0 = (m0, k) and

m′i = mi, i = 1, 2.
If Rc < I(X; Y1|U), cf. Figure 3, the set of confidential

messages is given by Mc := K × L where K is arbitrary



chosen such that (3a) is satisfied. In addition, we define a
mapping h : J → K which partitions the set J into subsets
of ”nearly equal size” [7], i.e.,

|h−1(k)| ≤ 2|h−1(k′)|, for all k, k′ ∈ K.

The sets M′i = Mi, i = 0, 1, 2, are arbitrary such that
(3b)-(3c) are satisfied. The stochastic encoder f maps the
confidential message (k, l) ∈ Mc and the common and
individual messages mi ∈ Mi, i = 0, 1, 2, into the codeword
xnjlm′ ∈ Xn with m′ = (m′0,m

′
1,m

′
2) and m′i = mi,

i = 0, 1, 2. The index j is uniformly drawn from the set
h−1(k) ⊂ J .

In both cases the decoders are immediately determined by
the codebook design from Lemma 1. It remains to show
that the equivocation rate fulfills (4). Since the confidential
message is encoded in the same way as in [19] for the BBC
with confidential messages (and no common message), we
omit the details for brevity.

Once we have established the achievable rate-equivocation
region in Lemma 2, it is straightforward to show that this
region equals the capacity-equivocation region stated in The-
orem 1. Since the argumentation follows exactly the one
presented in [19] or [7] we omit the details for brevity.

IV. WEAK CONVERSE

We have to show that for any given sequence of
(n,M

(n)
c ,M

(n)
0 ,M

(n)
1 ,M

(n)
2 )-codes with µ

(n)
1 , µ

(n)
2 → 0

there exist random variables U−V−X− (Y1,Y2) such that

1
nH(Mc|Yn

2 ,M2)≤I(V; Y1|U)−I(V; Y2|U)+o(n0)
1
n

(
H(Mc)+H(M0)+H(M2)

)
≤I(V; Y1|U)+I(U; Y1)+o(n0)

1
n

(
H(Mc)+H(M0)+H(M1)

)
≤I(V; Y1|U)+I(U; Y2)+o(n0)

1
n

(
H(M0) +H(M2)

)
≤I(U; Y1)+o(n0)

1
n

(
H(M0) +H(M1)

)
≤I(U; Y2)+o(n0)

are satisfied. For this purpose we need a version of Fano’s
lemma suitable for the BBC with common and confidential
messages.

Lemma 3 (Fano’s inequality): For the BBC with common
and confidential messages we have the following versions of
Fano’s inequality

H(Mc,M0,M2|Yn
1 ,M1)

≤ µ(n)
1 log(M (n)

c M
(n)
0 M

(n)
2 ) + 1 = nε

(n)
1 ,

H(M0,M1|Yn
2 ,M2)

≤ µ(n)
2 log(M

(n)
0 M

(n)
1 ) + 1 = nε

(n)
2 ,

with ε(n)1 = 1
n log(M

(n)
c M

(n)
0 M

(n)
2 )µ

(n)
1 + 1

n → 0 and ε(n)2 =
1
n log(M

(n)
0 M

(n)
1 )µ

(n)
2 + 1

n → 0 for n→∞ as µ(n)
1 , µ

(n)
2 → 0.

Proof: The lemma can be shown analogously as in [3,
20], where similar versions of Fano’s inequality for the BBC
(without confidential messages) are presented. Therefore, we
omit the details for brevity.

For notational convenience we introduce the following ab-
breviation M012 = (M0,M1,M2). From the independence of

Mc, M0, M1, M2, the chain rule for entropy, the definition of
mutual information, Fano’s inequality, cf. Lemma 3, and the
chain rule for mutual information we get for the entropies of
the individual and common messages

H(M0)+H(M2) = H(M0,M2|M1)

= I(M0,M2; Yn
1 |M1) +H(M0,M2|Yn

1 ,M1)

≤ I(M0,M2; Yn
1 |M1) + nε

(n)
1

≤ I(M012; Yn
1 ) + nε

(n)
1 (5)

and similarly

H(M0) +H(M1) ≤ I(M012; Yn
2 ) + nε

(n)
2 . (6)

For the entropy of the confidential message we obtain

H(Mc) = H(Mc|M012)

= I(Mc; Yn
1 |M012) +H(Mc|Yn

1 ,M012)

≤ I(Mc; Yn
1 |M012) +H(Mc,M0,M2|Yn

1 ,M1)

≤ I(Mc; Yn
1 |M012) + nε

(n)
1 (7)

and further for the equivocation at the non-legitimated node

H(Mc|Yn
2 ,M2)=H(Mc|Yn

2 ,M012)+I(Mc; M0,M1|Yn
2 ,M2)

= H(Mc|M012)− I(Mc; Yn
2 |M012)

+ I(Mc; M0,M1|Yn
2 ,M2)

= I(Mc; Yn
1 |M012)− I(Mc; Y2|M012)

+H(Mc|Yn
1 ,M012) + I(Mc; M0,M1|Yn

2 ,M2)

≤ I(Mc; Yn
1 |M012)− I(Mc; Yn

2 |M012)

+ nε
(n)
1 + nε

(n)
2 (8)

where the last inequality follows from H(Mc|Yn
1 ,M012) ≤

H(Mc,M0,M2|Yn
1 ,M1) ≤ nε

(n)
1 , I(Mc; M0,M1|Yn

2 ,M2) =
H(M0,M1|Yn

2 ,M2) − H(M0,M1|Yn
2 ,Mc,M2) ≤

H(M0,M1|Yn
2 ,M2) ≤ nε

(n)
2 , and Fano’s inequality, cf.

Lemma 3.
Next, we expand the mutual information terms in (5)-

(8) by making extensively use of the chain rule for mutual
information. For notational convenience we define Yk

1 =
(Y1,1, ...,Y1,k) and Ỹk

2 = (Y2,k, ...,Y2,n) as suggested in [7,
Sec. V] for the classical broadcast channel with confidential
messages. By replacing the common message in [7, Sec. V]
with our (bidirectional) individual and common messages, it
is straightforward to show that, similarly as in [7, Eqs. (38)-
(41)], the mutual information terms appearing in (5)-(8) can
be expressed as

I(Mc; Yn
1 |M012) =

n∑
k=1

I(Mc; Y1,k|Yk−1
1 , Ỹk+1

2 ,M012)

+ Σ1 − Σ2 (9a)

I(Mc; Yn
2 |M012) =

n∑
k=1

I(Mc; Y2,k|Yk−1
1 , Ỹk+1

2 ,M012)

+ Σ∗1 − Σ∗2 (9b)



and

I(M012; Yn
1 ) ≤

n∑
k=1

I(Yk−1
1 , Ỹk+1

2 ,M012; Y1,k)− Σ1 (10a)

I(M012; Yn
2 ) ≤

n∑
k=1

I(Yk−1
1 , Ỹk+1

2 ,M012; Y2,k)− Σ∗1 (10b)

where

Σ1 =

n∑
k=1

I(Ỹk+1
2 ; Y1,k|Yk−1

1 ,M012)

Σ∗1 =

n∑
k=1

I(Yk−1
1 ; Y2,k|Ỹk+1

2 ,M012)

and the analogous terms Σ2 and Σ∗2 with M012 replaced by
Mc,M012.

Lemma 4: We have the following identities: Σ1 = Σ∗1 and
Σ2 = Σ∗2.

Proof: In [7, Lemma 7] a similar result for the classical
broadcast channel with confidential messages is given. The
proof for our result follows immediately by simply replacing
the common message in [7, Lemma 7] by our (bidirectional)
individual and common messages M1, M2, and M0.

As in [7, Sec. V], the final step is to introduce an auxiliary
random variable J that is independent of Mc, M0, M1, M2,
Xn, Yn

1 , and Yn
2 and uniformly distributed over {1, ..., n}.

Further, let

U := (YJ−1
1 , ỸJ+1

2 ,M012, J),

V := (U,Mc),

X := XJ,

Yi := Yi,J, i = 1, 2

so that

1

n

n∑
k=1

I(Mc; Y1,k|Yk−1
1 , Ỹk+1

2 ,M012) = I(V; Y1|U)

1

n

n∑
k=1

I(Mc; Y2,k|Yk−1
1 , Ỹk+1

2 ,M012) = I(V; Y2|U)

and

1

n

n∑
k=1

I(Yk−1
1 , Ỹk+1

2 ,M012; Y1,k) = I(U; Y1|J) ≤ I(U; Y1)

1

n

n∑
k=1

I(Yk−1
1 , Ỹk+1

2 ,M012; Y2,k) = I(U; Y2|J) ≤ I(U; Y2).

Now, to complete the proof it remains to substitute this
into (9)-(10), apply Lemma 4, so that with (5)-(8) the weak
converse is established.

V. CONCLUSION

We established the capacity-equivocation and secrecy ca-
pacity regions of the BBC with common and confidential
messages. This work unifies previous partial results such as
the BBC with common messages [20] or the BBC with
confidential messages [19]. Therefore, it constitutes a general

characterization for physical layer service integration in bidi-
rectional relay networks.

This is an important step towards the convergence of wire-
less services where different services are merged efficiently
from an information-theoretic point of view. This is beneficial
since it enables a joint resource allocation policy and it
is expected that this will result in a significantly reduced
complexity and an improved energy efficiency.
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