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Abstract—We study the problem of multiple hypothesis testing
(HT) in view of a rejection option. That model of HT has
many different applications. Errors in testing of M hypotheses
regarding the source distribution with an option of rejecting
all those hypotheses are considered. The source is discrete and
arbitrarily varying (AVS). The tradeoffs among error probability
exponents/reliabilities associated with false acceptance of rejection
decision and false rejection of true distribution are investigated,
the optimal decision strategies are outlined. The special case
of discrete memoryless source (DMS) is also discussed. An
interesting insight that the analysis implies is the phenomenon
(comprehensible in terms of supervised/unsupervised learning)
that in optimal discrimination within M hypothetical distribu-
tions one permits always lower error than in deciding to decline
the set of hypotheses. Geometric interpretations of the optimal
decision schemes and bounds in multi-HT for AVS’s are given.

I. INTRODUCTION

Recent impetuous progress in computer and public network
infrastructure as well as in multimedia data manipulating
software created an unprecedented yet often uncontrolled
possibilities for multimedia content modification and redistri-
bution over various public services and networks including
Flickr and YouTube. Since in multiple cases these actions
concern privacy sensitive data, a significant research effort
was made targeting efficient means of their identification
as well as related performance analysis [11], [12], [17].
While early reported results [13] were mostly dedicated to
the capacity analysis of identification systems, more recent
considerations are based on multiple HT framework with a
rejection option. Possible examples for binary data statistics
are presented in [20] and [22]. Motivated by the prior art, we
extend the problem of content identification as multiple HT
with rejection to a broader class of source priors including
AVS’s. In this regard, the current study implies a solution
to a new biometric identification problem [24]. Our analysis
lies within the frames of the works by Hoeffding [1], Csiszár
and Longo [2], Blahut [3], Birgé [4], Haroutunian [6], Fu
and Shen [10], Tuncel [14], Grigoryan and Harutyunyan [21]
with the aim of specifying the asymptotic bounds for error
probabilities. Those papers do not treat an option of rejection.
In particular, [3] characterizes the optimum relation between
two error exponents in binary HT and [6] (see also [15],
[19]) and [14] study the multiple (M > 2) HT for DMS’s
in terms of logarithmically asymptotic optimality (LAO) and
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error exponent achievability, respectively. Later advances in
the binary and M -ary HT for a more general class of sources
– AVS’s (see also its coding framework [16]), are the subjects
of [10] and [21], respectively. The latter derives also Chernoff
bounds for HT on AVS’s and extends the finding by Leang and
Johnson [9] for DMS’s. Our work is a further extension of M -
ary HT for discrete sources in terms of errors occurring with
respect to an additional rejection decision. The focus is on the
attainable region of error exponents which trade-off between
the false acceptance of rejection decision and false rejection
of true distribution. A similar model of HT with empirically
observed statistics for Markov sources has been explored by
Gutman in [5]. Compared to [5] we make a new look into the
compromises among error events. Another relevant prior work
[7] investigates the exponential rate in binary HT of sources
with known and unknown statistics.

II. MODELS OF SOURCE AND HT

Let X and S be finite alphabets of an information source and
its states, respectively. Let P(X ) be the set of all probability
distributions (PD) on X . The source in our focus is defined
by the following family of conditional PD’s G∗

s depending on
arbitrarily and not probabilistically varying source state s ∈ S:

G∗ △
= {G∗

s, s ∈ S} (1)

with G∗
s

△
= {G∗(x|s), x ∈ X}. An output source vector

x
△
= (x1, ..., xN ) ∈ XN will have the following probability if

dictated by a state vector s ∈ SN : G∗N (x|s) △
= G∗

s(x)
△
=∏N

n=1 G
∗(xn|sn). Furthermore, the probability of a subset

AN ⊂ XN subject to s ∈ SN is measured by the sum
G∗N (AN |s) △

= G∗
s(AN )

△
=

∑
x∈AN

G∗
s(x).

Our model of HT is determined by M+1 hypotheses about
the source distribution (1):

Hm : G∗ = Gm, HR : none of Hm’s is true

with
Gm

△
= {Gm,s, s ∈ S}, (2)

where Gm,s
△
= {Gm(x|s), x ∈ X}, s ∈ S , m = 1,M .

Let Gm be the stochastic matrix defined by (2). Based on N
observations of the source one should make a decision in favor
of one of those hypotheses. Typically it can be performed by



a decision maker/detector applying a test φN as a partition
of XN into M + 1 disjoint subsets Am

N , m = 1,M , and
AR

N . If x ∈ Am
N then the test adopts the hypothesis Hm. If

x ∈ AR
N , the test rejects all the hypotheses Hm, m = 1,M .

The test design aims at achieving certain level of errors during
the process of decision making. (M +1)M different kinds of
errors are possible. The probability of an erroneous acceptance
of hypothesis Hl, when Hm was true is

αl,m(φN )
△
= max

s∈SN
GN

m(Al
N |s), 1 ≤ l ̸= m ≤ M. (3)

And the error probability of false rejection, when Hm was true
is defined by

αR,m(φN )
△
= max

s∈SN
GN

m(AR
N |s), m = 1,M. (4)

Another type of error can be observed related to wrong
decision in case of true Hm with the probability

αm(φN )
△
= max

s∈SN
GN

m(Am

N |s)

=
M∑

l ̸=m

αl,m(φN ) + αR,m(φN ), m = 1,M.(5)

So, we study the following error probability exponents/relia-
bilities (log-s and exp-s being to the base 2) by (3) and (4):

El|m(φ)
△
= lim sup

N→∞
− 1

N
logαN

l|m(φN ), l ̸= m = 1,M, (6)

ER,m(φ)
△
= lim sup

N→∞
− 1

N
logαN

R,m(φN ), m = 1,M, (7)

where φ
△
= {φN}∞N=1. From (5), (6), and (7) it follows that

Em(φ) = min
l ̸=m

[
El|m(φ), ER,m(φ)

]
. (8)

In view of achievability concept [14] for reliabilities in
M -ary HT, consider the M(M + 1)-dimensional point E

△
=

{ER,m, Em}m=1,M with respect to the error exponent pairs
(− 1

N logαR,m(φN ),− 1
N logαm(φN )), where the decision

regions Am
N (m = 1,M ) and AR

N satisfy Am
N ∩ Al

N = ∅
for m ̸= l, Am

N ∩ AR
N = ∅ and

∪
m
Am

N = XN/AR
N .

Definition 1. E is called achievable if for all ε > 0 there exists
a decision scheme {Am

N ,AR
N}Mm=1 such that

− 1

N
logαR,m(φN ) > ER,m−ε, − 1

N
logαm(φN ) > Em−ε

for N large enough. Let RAVS(M) denotes the set of all
achievable reliabilities.

III. BASIC PROPERTIES

Here we resume some necessary material on the typical
sequences [8]. Let P(S) △

= {P (s), s ∈ S} be the collection
of all PD’s on S and let PG be a marginal PD on X defined
by PG(x)

△
=

∑
s∈S

P (s)G(x|s), x ∈ X .

The type of the vector s ∈ SN is the empirical PD Ps(s)
△
=

1
NN(s|s), where N(s|s) is the number of occurrences of s in

s. Let’s denote the set of all types of N -length state vectors
by PN (S). For a pair of sequences x ∈ XN and s ∈ SN

let N(x, s|x, s) be the number of occurrences of (x, s) in
{xn, sn}Nn=1. The conditional type Gx,s of the vector x with
respect to the vector s is defined by

Gx,s(x|s)
△
= N(x, s|x, s)/N(s|s), x ∈ X , s ∈ S. (9)

The joint type of vectors x and s is the PD Ps ◦ Gx,s
△
=

{Ps(s)Gx,s(x|s), x ∈ X , s ∈ S}. For brevity the type nota-
tions can be used without indices. Let GN (X|S) be the set of
all conditional types (9) and G(X ) be the set of all distributions
defined on X . Denote by T N

G (X|s) the set of vectors x which
have the conditional type G for given s having type P . Let
the conditional entropy of G given type P be H(G|P ). The
notation H(Q) will stand for the unconditional entropy of
Q ∈ P(X ). Denote by D(G ∥ Gm|P ) the KL divergence
between G and Gm given type P and by D(PG ∥ PGm)
the one between marginals PG and PGm. The following
inequality holds for every Gm ∈ Gm:

D(G ∥ Gm|P ) ≥ D(PG ∥ PGm). (10)

We need the next properties:

|GN (X|S)| ≤ (N + 1)|X ||S|, (11)

|T N
G (X|s)| ≤ exp{NH(G|P )}. (12)

For a PD Gm ∈ G(X|S) the sequence x ∈ T N
G (X|s) has the

probability

GN
m(x|s) = exp{−N [H(G|P ) +D(G ∥ Gm|P )]}. (13)

(12) and (13) give an estimate for conditional type class
probability

GN
m(T N

G (X|s)|s) ≥ (N +1)−|X||S| exp{−ND(G ∥ Gm|P )},
(14)

GN
m(T N

G (X|s)|s) ≤ exp{−ND(G ∥ Gm|P )}. (15)

IV. REGION OF ACHEIVABLE RELIABILITIES

Introduce the following convex hulls for each m = 1,M

Wm
△
= {Wm(x)

△
=

∑
s∈S

λsGm,s(x|s)}, (16)

where x ∈ X , 0 ≤ λs ≤ 1,
∑
s∈S

λs = 1, and the region

EAVS(M)
△
= {E : ∀W ∃ m (m = 1,M), s. t.
min

Wm∈Wm

D(W ∥ Wm) > Em and ∃W s. t.

min
Wm∈Wm

D(W ∥ Wm)>ER,m for all m}. (17)

Our main result shows that (17) completely characterizes
RAVS(M).

Theorem 1: EAVS(M) is an achievable region of reliabilities
EAVS(M) ⊂ RAVS(M). Moreover, if E ∈ RAVS(M), then for
any δ > 0, Eδ ∈ EAVS(M), where Eδ

△
= {ER,m − δ, Em −

δ}m=1,M .



Proof: For the direct part, if E ∈ EAVS(M), then from
(10), (12), (13) and (15) for any type G ∈ GN (X|S) and
s ∈ SN with type Ps = P we have

GN
m,s(A

m

N |s) =
∑

x∈Am

N

GN
m,s(x|s)

≤
∑

T N
G

(X|s)⊂Am

N

exp{−ND(G ∥ Gm,s|P )}

≤ |GN (X|S)|exp{−ND(PG ∥ PGm,s)}. (18)

For every Wm ∈ Wm there exists s ∈ SN , such that Wm =
PsGm,s. Hence, from (18) and (11) we come to

αm(φN ) ≤ |GN (X|S)|exp{−N min
Wm

D(W ∥ Wm)}

≤ |GN (X|S)|exp{−NEm}
≤ exp{−N(Em − δ)}.

In the same way we could get the necessary inequality for
αR,m(φN ), that is

αR,m(φN ) ≤ exp{−N(ER,m − δ)}. (19)

This closes the proof of the direct part.
For the converse we assume that E ∈ RAVS(M). This

provides that for every ε > 0 there exists a decision scheme
{Am

N ,AR
N}Mm=1 that makes the following inequalities true as

soon as N > N0(ε):

− 1

N
logαR,m(φN ) > ER,m−ε, − 1

N
logαm(φN ) > Em−ε,

(20)
for all m’s. Pick a δ > 0 and show that

∀W ∃m s. t. min
Wm∈Wm

D(W ∥ Wm) > Em − δ, (21)

∃W s. t. min
Wm∈Wm

D(W ∥ Wm) > ER,m − δ for all m. (22)

For that we prove the next fact. For every Wm ∈ Wm and
Am

N ⊆ XN the inequality holds:

WN
m (Am

N ) ≤ max
s∈SN

GN
m(Am

N |s). (23)

To show (23), first note that for Wm ∈ Wm there exists a
collection of λs’s (by (16)) s.t. Wm =

∑
s∈S

λsGm,s. Whence,

for λs
△
=

N∏
n=1

λsn and any Am
N ⊂ XN , x ∈ Am

N , the following

estimate implies

WN
m (x) =

N∏
n=1

Wm(xn)

=

N∏
n=1

∑
s∈S

λsGm(xn|s)

=
∑
s∈SN

λs

N∏
n=1

Gm(xn|sn)

≤ max
s∈SN

N∏
n=1

Gm(xn|sn)

≤ max
s∈SN

GN
m(x|s).

Therefore we get (23).
Turning to (21), by the continuity of D(· ∥ Wm) there exists

a type Q ∈ PN (X ) that for N > N1(ε) and a fixed m satisfies

D(Q ∥ Wm) ≤ D(W ∥ Wm) + δ/2. (24)

Let Wm∗
△
= arg[max

m
min

Wm∈Wm

D(W ∥ Wm)], then in light of

(23) and (12) we have

αm∗(φN ) ≥ W
N

m∗(Am∗

N )

≥ W
N

m∗(Am∗

N ∩ T N
Q (X))

=
∑

Am∗
N ∩T N

Q
(X)

exp{−N [H(Q)

+D(Q ∥ Wm∗)]}

≥ |Am∗

N ∩ T N
Q (X)| exp{−NH(Q)} ×

× exp{−ND(Q ∥ Wm∗)},

where Q is a type-approximation of W defined by (24)
for W

N

m∗ . Note that |Am∗

N ∩ T N
Q (X)| exp{−NH(Q)} ≥

exp{−Nδ/4} for N > N2(δ). It follows from the inequality
|Am∗

N ∩ T N
Q (X)| ≥ |T N

Q (X)|
M :

|Am∗

N ∩ T N
Q (X)| exp{−NH(Q)}

≥ |T N
Q (X)| exp{−NH(Q)} exp{−N

logM

N
}

≥ exp{−Nδ/4}. (25)

Whence, for N > max{N1(δ), N2(δ)} we have

αm∗(φN ) ≥ exp{−N [D(Q ∥ Wm∗)− δ/4]}
≥ exp{−N [D(W ∥ Wm∗) + δ/4]}

that with (20) and ε = 3δ/4 gives

Em∗ − δ < − 1

N
logαm∗(φN ) < D(W ∥ Wm∗)

for N > max{N0(ε), N1(δ), N2(δ)} and for every W .
Now we have to proceed with the proof of (22). Suppose

Wm
△
= arg min

Wm∈Wm

D(W ∥ Wm). For a picked δ > 0, if

Eδ /∈ EAVS(M) then ∀W ∃m satisfying D(W ∥ Wm) ≤
ER,m − δ.

According to (23), (12), (24) and (25) we have

αR,m(φN ) ≥ W
N

m(AR
N )

≥ W
N

m(AR
N ∩ T N

Q (X))

=
∑

AR
N
∩T N

Q
(X)

exp{−N [H(Q)

+D(Q ∥ Wm)]}
≥ |AR

N ∩ T N
Q (X)| exp{−NH(Q)} ×

× exp{−ND(Q ∥ Wm)}
≥ exp{−N [D(W ∥ Wm)− δ/4]}
≥ exp{−N [ER,m − δ/4]}.

However the last inequality is in conflict with (20) for ε <
δ/4 and N > max{N0(ε), N1(δ), N2(δ)}.



V. OPTIMAL DECISION SCHEMES

Here we look for optimal decision schemes and the corre-
sponding best error exponents in the following sense (similar
to LAO test [6], [15]). Let Em, m = 1,M, be fixed:
what are the “maximum” values for {E∗

l,m, E∗
R,m}l ̸=m=1,M

such that there is no other {E′
l,m, E′

R,m}l ̸=m=1,M satisfying
E′

l,m > E∗
l,m and E′

R,m > E∗
R,m for all l ̸= m = 1,M?

Consider the following test sequence φ∗ in terms of the sets

BR
△
= {W : min

Wm∈Wm

D(W ∥ Wm) > Em for all m},

Bm
△
= {W : min

Wm∈Wm

D(W ∥ Wm) < Em}, m = 1,M.

Define (l ̸= m = 1,M ):

ER,m(φ∗)
△
= E∗

R,m
△
= min

W∈BR

min
Wm∈Wm

D(W ∥ Wm), (26)

El,m(φ∗)
△
= E∗

l,m
△
= min

W∈Bl

min
Wm∈Wm

D(W ∥ Wm). (27)

Theorem 2: Let the following inequalities hold:

E1 < min
m

{ min
Wm∈Wm,W1∈W1

D(Wm ∥ W1)},

Em < min
l ̸=m

{ min
l=1,m−1

El,m, min
l=m+1,M

min
Wl∈Wl,

Wm∈Wm

D(Wl ∥ Wm)},

then there exist optimal sequence of tests and the correspond-
ing optimal vector of reliabilities are defined by (26)-(27).

Proof: Let the decision on R or an m be made
based on the partition: Dm

△
=

∪
W∈Bm

T N
W (X), DR

△
=∪

W∈BR
T N
W (X). Note that Dm ∩Dl ̸= ∅ and Dm ∩DR ̸= ∅,

m ̸= l = 1,M .
For Wm

△
= arg min

Wm∈Wm

D(W ∥ Wm), m = 1,M , and φ
△
=

{φ∗
N}∞N=1 perform (applying unconditional verion of (14))

αR,m(φN ) ≥ W
N

m(DR)

≥ W
N

m(
∪

W∈BR

T N
W (X))

≥ max
W∈BR

exp{−N [D(W ∥ Wm) + oN (1)]}

= exp{−N [ min
W∈BR

D(W ∥ Wm) + oN (1)]}.

In a similar way we can obtain the inequality

αl,m(φN ) ≥ exp{−N [ min
Wm∈Wm

min
W∈Dl

D(W ∥ Wm)+oN (1)]}.
(28)

The proof of the converse inequalities

αR,m(φN ) ≤ exp{−N [ min
Wm∈Wm

min
W∈DR

D(W ∥ Wm)+oN (1)]}
(29)

αl,m(φN ) ≤ exp{−N [ min
Wm∈Wm

min
W∈Dl

D(W ∥ Wm)+oN (1)]}
(30)

are omitted here because of space restrictions.
Taking into account (28), (29), (30) and the continuity

of the functional D(W ∥ Wm) we obtain that the limit
lim

N→∞
{sup−N−1 logαN

l,m(φ∗
N )} exists and equals to E∗

l,m.

The proof will be accomplished if we demonstrate that φ∗

is optimal. Let φ′ be a test defined by the sets (D′
m,D′

R) s.t.

E′
l,m > E∗

l|m, E′
R,m > E∗

R|m, l ̸= m = 1,M.

It yields for N large enough that

αN
l,m(φ′

N ) < αN
l,m(φ∗

N ), αN
R,m(φ′

N ) < αN
R,m(φ∗

N ).

Below we examine the relation between (Dm,DR) and
(D′

m,D′
R). Four cases are possible: 1) Dm ∩ D′

m = ∅, 2)
Dm ⊂ D′

m, 3) D′
m ⊂ Dm, 4) Dm ∩D′

m ̸= ∅. The same cases
exist also for DR and D′

R. Consider Dm ∩ D′
m = ∅ case. It

follows that there exists l ̸= m such that Dm ∩ D′
l ̸= ∅. That

is ∃W such that D(W ∥ Wm) < E′
m, so T N

W (X) ⊂ D′
l.

Compute

αN
l,m(φ′

N ) = max
s∈SN

Gm(D′
l|s)

≥ W
N

m(T N
W (X))

≥ exp{−N [D(W ∥ Wm) + oN (1)]}
> exp{−N [E′

m + oN (1)]}.

Thus E′
l,m < E′

m = E∗
m which contradicts to (8).

Remark 1: It can be proved also that

min

[
min

l=1,M,l ̸=m
E∗

l,m, E∗
R,m

]
= E∗

R,m for all m = 1,M.

This means that discrimination is always easier than rejection.

VI. GEOMETRIC INTERPRETATIONS

Fig. 1 presents a geometric interpretation for the decision
scheme in Theorem 1. Relevantly, Fig. 2 and 3 illustrate the
geometry of the Chernoff bounds derived in [21] for the
multi-HT where the rejection is not an alternative (c.f. [18]
for DMS’s). Those interpretations are comprehensible with
conceptual details given in [21].

VII. RESULTS FOR DMS

With assumption of S = 1 we get the model of multi-HT
with rejection for DMS:

Hm : G∗ = Gm, HR : none of Hm’s is true,

with Gm
△
= {Gm(x), x ∈ X}, m = 1,M . The problem here

is to make a decision regarding the generic G∗ among M
alternative PD’s Gm, m = 1,M , and the rejection. Let

E(M)
△
= {E : ∀Q ∃ m (m = 1,M), s. t.

D(Q ∥ Gm) > Em and ∃Q s. t.
D(Q ∥ Gm) > ER,m for all m}

and let R(M) be the DMS version of RAVS(M).
Theorem 3: Theorem 1 implies that E(M) ⊂ R(M). Con-

versely, if E ∈ R(M), then for any δ > 0, Eδ ∈ E(M), where
Eδ

△
= {ER,m − δ, Em − δ}m=1,M .

To formulate the DMS counterpart of Theorem 2 define the
sets:

BR(DMS)
△
= {Q : D(Q ∥ Gm) > Em, for allm = 1,M},



Bm(DMS)
△
= {Q : D(Q ∥ Gm) < Em}, m = 1,M.

Furthermore

E∗
R,m

△
= min

Q∈BR(DMS)
D(Q ∥ Gm), m = 1,M, (31)

E∗
l,m

△
= min

Q∈Bl(DMS)
D(Q ∥ Gm), l ̸= m = 1,M. (32)

Fig. 1: Multiple HT with rejection.

Fig. 2: Chernoff bounds: binary HT: AVS.

Fig. 3: Chernoff bounds: multiple HT: AVS.

Theorem 4: If D(Gm ∥ Gl) > 0, m ̸= l = 1,M , and

E1 < min
m

{D(Gm ∥ G1)},

Em < min
l ̸=m

{ min
l=1,m−1

El,m, min
l=m+1,M

D(Gl ∥ Gm)},

then the optimal vector of reliabilities are defined by (31)-(32).

According to [23] the authors claim to have obtained
Theorem 4 independently.
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