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Abstract—We consider the Gaussian wiretap channel with
an amplitude constraint, i.e., a peak power constraint, on the
channel input. We show that the entire rate-equivocation region
of the Gaussian wiretap channel with an amplitude constraint
is obtained by discrete input distributions with finite support.
We prove this result by considering the existing single-letter
description of the rate-equivocation region, and showing that
discrete distributions with finite support exhaust this region. Our
result highlights an important difference between the peak power
constraint and the average power constraint cases: Although, in
the average power constraint case, both the secrecy capacity and
the capacity can be achieved simultaneously, our results show
that in the peak power constraint case, in general, there is a
tradeoff between the secrecy capacity and the capacity, in the
sense that, both may not be achieved simultaneously.

I. INTRODUCTION

We consider the Gaussian wiretap channel [1]–[3] which

consists of a transmitter, a legitimate user and an eavesdropper

as shown in Fig. 1. In the Gaussian wiretap channel, each

link is a memoryless additive white Gaussian noise (AWGN)

channel. In this model, the goal of the transmitter is to have

secure communication with the legitimate user while keeping

the eavesdropper ignorant of this communication as much as

possible.

Since the Gaussian wiretap channel is stochastically de-

graded, its rate-equivocation region is known in a single-letter

form due to [1]. Under an average power constraint, the entire

rate-equivocation region of the Gaussian wiretap channel can

be obtained by evaluating this single-letter expression. In par-

ticular, under an average power constraint, Gaussian input with

full power attains both the secrecy capacity and the capacity

of the channel between the transmitter and the legitimate user,

providing the entire rate-equivocation region. One important

implication of this result is that the transmitter and the legiti-

mate user do not compromise from their communication rate in

order to maximize the equivocation of their communication at

the eavesdropper. In other words, there is no tradeoff between

the rate and the equivocation for the average power constrained

Gaussian wiretap channel.

In this work, we consider the Gaussian wiretap channel

under a peak power constraint, i.e., an amplitude constraint on

the channel input. Similar to the average power constraint case,

here also, we can use the existing single-letter description for
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Ŵ

Fig. 1. The Gaussian wiretap channel.

the rate-equivocation region of the Gaussian wiretap channel

due to [1]. However, unlike the average power constraint case,

here, due to the peak power constraint, the corresponding

optimization problems are harder to solve explicitly. For

example, the entropy-power inequality, which is the key tool

to obtain the rate-equivocation region under an average power

constraint, falls short of providing a tight result for the rate-

equivocation region under a peak-power constraint.

We circumvent difficulties arising from the existence of a

peak power constraint by using the methodology originally

devised by [4], and later, extended further by [5]–[10]. In

[4], Smith studied the AWGN channel under a peak power

constraint and proved that the optimal input distribution is

discrete with finite support. This methodology considers the

functional optimization problem associated with the capacity

of the AWGN channel, obtains the necessary and sufficient

conditions for the optimal input distribution, and proves by

contradiction that the optimal input distribution should be

discrete with finite support.

In this work, we use this methodology [4], [8], [10] to

study the Gaussian wiretap channel with an amplitude con-

straint. First, we consider the single-letter description of the

rate-equivocation region under a peak power constraint, and

obtain necessary and sufficient conditions for the optimal input

distribution. Next, we prove by contradiction that the optimal

input distribution should be discrete with finite support.

In the last part of our paper, we provide some numerical

results which highlight an important difference between the

peak power constraint and the average power constraint cases.

As mentioned, in the average power constraint case, both

the secrecy capacity and the capacity are simultaneously

achieved by the same input distribution (Gaussian distribution



with full power). On the other hand, our numerical results

demonstrate that under a peak power constraint, in general,

the secrecy capacity and the capacity are not achieved by

the same distribution. In other words, under a peak power

constraint, in general, there is a tradeoff between the rate and

its equivocation in the sense that when we want to maximize

the equivocation, we may need to compromise from the rate.

II. SYSTEM MODEL AND MAIN RESULTS

The Gaussian wiretap channel is defined by

Yi = Xi + NBi
, i = 1, . . . , n (1)

Zi = Xi + NEi
, i = 1, . . . , n (2)

where Xi, Yi, Zi denote the channel input, the legitimate user’s

observation and the eavesdropper’s observation, respectively.

NBi
and NEi

are i.i.d. zero-mean Gaussian random variables

with variances σ2
B and σ2

E , respectively, where σ2
B < σ2

E . We

assume that there is an amplitude constraint on the channel

input Xi as

|Xi| ≤ A, i = 1, . . . , n (3)

An (n, 2nR) code for the Gaussian wiretap channel with

peak power constraint consists of a message set W ∈ W =
{1, . . . , 2nR}, an encoder at the transmitter fn : W → R

n

satisfying the peak power constraint in (3), and a decoder

at the legitimate user gn : R
n → W . Equivocation of

a code is measured by the normalized conditional entropy

(1/n)H(W |Zn), where W is a uniformly distributed random

variable over W . Probability of error for a code is defined

as Pn
e = Pr[gn(fn(W )) 6= W ]. A rate-equivocation pair

(R,Re) is said to be achievable if there exists an (n, 2nR)
code satisfying limn→∞ Pn

e = 0, and

Re ≤ lim
n→∞

1

n
H(W |Zn) (4)

The rate-equivocation region consists of all achievable rate-

equivocation pairs, and is denoted by C. A rate R is said to

be perfectly secure if we have Re = R, i.e., if there exists

an (n, 2nR) code satisfying limn→0(1/n)I(W ;Zn) = 0.

Supremum of such rates is defined to be the secrecy capacity

and denoted by Cs.

Since the Gaussian wiretap channel is stochastically de-

graded, its entire rate-equivocation region C can be expressed

in a single-letter form by using the result of [1].

Theorem 1 The rate-equivocation region of the Gaussian

wiretap channel with a peak power constraint is given by the

union of the rate-equivocation pairs (R,Re) satisfying

R ≤ I(X;Y ) (5)

Re ≤ I(X;Y ) − I(X;Z) (6)

for some input distribution FX ∈ Ω, where the feasible set Ω
is given by

Ω ,

{

FX :

∫ A

−A

dFX(x) = 1

}

(7)

Since the rate-equivocation region C is convex due to time-

sharing, it can be characterized by finding the tangent lines to

the region C, which are given by the solutions of

max
FX∈Ω

gµ(FX) = max
FX∈Ω

(µ + 1)I(X;Y ) − I(X;Z) (8)

for all µ ≥ 0.

Our main result is to show that the maximizer distribution

for (8) is discrete with finite support.

Theorem 2 Let F ∗
X be the maximizer of the optimization

problem in (8) with a support set SF∗

X
. The support set SF∗

X

is a finite set.

Theorem 2 implies that the secrecy capacity Cs is also

achieved by a discrete distribution with finite support.

Corollary 1 Let F ∗
X be the distribution that attains the se-

crecy capacity of the Gaussian wiretap channel with a peak

power constraint. The support set SF∗

X
is a finite set.

In the next two sections, we first prove Corollary 1, and

next, by using the proof of Corollary 1, we prove Theorem 2.

III. PROOF OF COROLLARY 1

We note that the secrecy capacity of the Gaussian wiretap

channel with peak power constraint is given by

Cs = max
FX∈Ω

g0(FX) = max
FX∈Ω

I(X;Y ) − I(X;Z) (9)

where the objective function g0(FX) is a strictly concave

functional of the input distribution FX due to the assumption

σ2
B < σ2

E . Moreover, the feasible set Ω is convex and

sequentially compact with respect to the Levy metric [4]. Thus,

(9) is a convex optimization problem with a unique solution.

Next, we obtain the necessary and sufficient conditions that

the optimal distribution F ∗
X of the optimization problem in

(9) should satisfy. To this end, we introduce some notation

which will be frequently used throughout the paper. Since both

channels are AWGN, the output densities for Y and Z exist

for any input distribution FX , and are given by

pY (y;FX) =

∫ A

−A

φB(y − x)dFX (10)

pZ(z;FZ) =

∫ A

−A

φE(z − x)dFX (11)

where φB(y), φE(z) are zero-mean Gaussian densities with

variances σ2
B and σ2

E , respectively.

We define the equivocation density re(x;FX) as

re(x;FX) = iB(x;FX) − iE(x;FX) (12)

where iB(x;FX) and iE(x;FX) are the mutual information

densities for the main channel and the wiretapper’s channel

iB(x;FX) = −φB(x) ∗ log (pY (x;FX)) −
1

2
log

(

2πeσ2
B

)

(13)



iE(x;FX) = −φE(x) ∗ log (pZ(x;FX)) −
1

2
log

(

2πeσ2
E

)

(14)

where ∗ denotes the convolution. We note that the convolutions

in (13) and (14) follow from the symmetry of the Gaussian

density function. The mutual information and the mutual

information density are related through

I(X;Y ) =

∫ A

−A

iB(x;FX)dFX(x) (15)

I(X;Z) =

∫ A

−A

iE(x;FX)dFX(x) (16)

Since the Gaussian wiretap channel is stochastically degraded,

without loss of generality, we can assume Z = Y + ZD for

some zero-mean Gaussian random variable ZD with variance

σ2
D = σ2

E−σ2
B . We denote the density of ZD by φD(x) which

leads to the identity φE = φB ∗ φD. Using this identity in

conjunction with (13)-(14), the equivocation density re(x;FX)
in (12) can be expressed as

re(x;FX) =
1

2
log

(

σ2
E

σ2
B

)

− φB(x) ∗ [log (pY (x;FX)) − φD(x) ∗ log (pZ(x;FX))]
(17)

Now, we are ready to obtain the necessary and sufficient con-

ditions for the optimal distribution of the optimization problem

in (9). To this end, first, we note that the objective function

g0(FX) in (9) is Frechet differentiable and the derivative of

g0(FX) at FX0
in the direction of FX is given by [4], [10]

lim
θ→0

1

θ
[g0(θFX + (1 − θ)FX0

) − g0(FX0
)]

=

∫

R

(pY (y;FX0
) − pY (y;FX)) log (pY (y;FX0

)) dy

−

∫

R

(pZ(z;FX0
) − pZ(z;FX)) log (pZ(z;FX0

)) dz

(18)

which, using the equivocation density in (17), is expressed as

lim
θ→0

1

θ
[g0(θFX0

+ (1 − θ)FX) − g0(FX)]

=

∫ A

−A

re(x;FX0
)dFX − g0(FX0

) (19)

Following similar arguments to those in [4], the necessary and

sufficient Kuhn-Tucker conditions for the optimal distribution

F ∗
X maximizing (9) can be obtained from (19) as follows

re(x;F ∗
X) ≤ Cs, ∀x ∈ [−A,A] (20)

re(x;F ∗
X) = Cs, ∀x ∈ SF∗

X
(21)

where the secrecy capacity Cs can be expressed as

Cs = hY (F ∗
X) − hZ(F ∗

X) +
1

2
log

(

σ2
E

σ2
B

)

(22)

We now prove that the support set SF∗

X
of the optimal distri-

bution is a finite set by contradiction. To reach a contradiction,

we use the optimality conditions given by (20)-(21). To this

end, we note that both iB(x;FX) and iE(x;FX) have analytic

extensions over the whole complex plane C [4], and, hence, the

equivocation density re(x;FX) also has an analytic extension

over C. Now, let us assume that SF∗

X
has infinite number of

elements. In view of the optimality condition (21), analyticity

of re(z, FX) over all C and the identity theorem for complex

numbers, if SF∗

X
has infinite number of elements, we should

have re(z;F ∗
X) = Cs for all z ∈ C, which, in turn, implies

re(x;F ∗
X) = Cs, ∀x ∈ R (23)

Next, we show that (23) results in a contradiction. To this end,

we rearrange (23) by using (17) to get
∫

R

φB(y − x)v(y)dy = 0, ∀x ∈ R (24)

where v(y) and c are defined as

v(y) = c + log (pY (y;F ∗
X))

−

∫

R

φD(τ) log (pZ(y − τ ;F ∗
X)) dτ (25)

c = hY (F ∗
X) − hZ(F ∗

X) (26)

Next, we show that if (24) holds, we should have v(y) =
0, ∀y ∈ R. To this end, we note that since pY (y;F ∗

X) =
∫ A

−A
φB(y − x)dF ∗

X(x), Jensen’s inequality implies

1
√

2πσ2
B

≥ pY (y;F ∗
X) ≥

1
√

2πσ2
B

e
−

1

2σ2

B

∫

A

−A
(y−x)2dF∗

X
(x)

(27)

which, in turn, implies | log (pY (y;F ∗
X)) | ≤ αy2+β for some

α, β > 0. Similarly, we can show that | log (pZ(y;F ∗
X)) | ≤

κy2 + γ for some κ, γ > 0. Consequently, we have |v(y)| ≤
ηy2 + ζ for some η, ζ > 0, which, in conjunction with (24),

implies that v(y) = 0 for all y ∈ R [8, Corollary 9].

Now, we show that we cannot have v(y) = 0, ∀y ∈ R,

and therefore, reach a contradiction. In particular, we show

that there exists y′ such that v(y) < 0,∀y ≥ y′. To this end,

we first note that since the wiretap channel is stochastically

degraded, we have c < 0. Next, we introduce the following

lemma.

Lemma 1 There exists sufficiently large y′ such that ∀y ≥ y′,

we have
∫

R

φD(τ) log (pZ(y − τ ;F ∗
X)) dτ ≥ log (pY (y;F ∗

X)) (28)

To prove Lemma 1, first, we find lower and upper bounds

for the output densities pZ(y;F ∗
X) and pY (y;F ∗

X) in terms

of φE(y) and φZ(y), respectively. Next, we show that for

sufficiently large y, there is a non-zero gap between these two

bounds, which implies (28). Due to the space limitations here,

we omit the details of the proof.

Lemma 1 and the fact that c < 0 imply that v(y) < 0,∀y ≥
y′, which, in turn, implies that (24) cannot hold. This, in turn,

implies that S∗
FX

cannot have infinite number of elements;



completing the proof of Corollary 1.

We provide a plot of the equivocation density for an optimal

input distribution in Fig. 2. We set the associated parameters

as A = 2.6, σ2
B = 1 and σ2

E = 2, for which the optimal input

distribution is quaternary located at x = ±0.64 and x = ±2.6
with probability masses 0.2496 at x = ±0.64 and 0.2504 at

x = ±2.6. We observe that the equivocation density is less

than or equal to the secrecy capacity and it is equal to the

secrecy capacity at the mass points; verifying the optimality

conditions in (20)-(21).

IV. PROOF OF THEOREM 2

In this section, we extend our analysis in the previous

section to the entire rate-equivocation region which can be

characterized by solving the following optimization problem

max
FX∈Ω

gµ(FX) = max
FX∈Ω

µI(X;Y ) + I(X;Y ) − I(X;Z)

(29)

for all µ ≥ 0. Since the objective function gµ(FX) in (29)

is strictly concave, and the feasible set Ω is convex and

sequentially compact with respect to the Levy metric, the

optimization problem in (29) has a unique maximizer. We

denote the optimal input distribution for (29) as F ∗
X which

depends on the value of µ.

Now, we obtain the necessary and sufficient conditions for

the optimal distribution of the optimization problem in (29).

To this end, we note that gµ(FX) is Frechet differentiable, and

its derivative at FX0
in the direction of FX is given as

lim
θ→0

1

θ
[gµ(θFX + (1 − θ)FX0

) − gµ(FX0
)]

=

∫ A

−A

[µiB(x;FX0
) + re(x;FX0

)] dFX − gµ(FX0
) (30)

Using similar arguments to those in [4], the necessary and

sufficient conditions for the optimal distribution of the opti-

mization problem in (29) can be obtained as follows

µiB(x;F ∗
X) + re(x;F ∗

X) ≤ (µ + 1)IB(F ∗
X) − IE(F ∗

X),

x ∈ [−A,A] (31)

µiB(x;F ∗
X) + re(x;F ∗

X) = (µ + 1)IB(F ∗
X) − IE(F ∗

X),

x ∈ SF∗

X
(32)

Now, we show that the optimal input distribution F ∗
X should

have finite support. Similar to the proof of Corollary 1, here

also, we prove the finiteness of the support set by contradiction

and using the optimality conditions in (31)-(32).

Let us assume that SF∗

X
has infinite number of elements.

Under this assumption, (32), analyticity of iB(x;F ∗
X) and

re(x;F ∗
X) over all C and identity theorem of complex numbers

imply that µiB(x;F ∗
X) + re(x;F ∗

X) = (µ + 1)IB(F ∗
X) −

IE(F ∗
X) over all C, which, in turn, implies that

µiB(x;F ∗
X) + re(x;F ∗

X) = (µ + 1)IB(F ∗
X) − IE(F ∗

X) (33)

over all x ∈ R. Next, we show that (33) results in a
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Fig. 2. Illustration of the equivocation density yielded by the optimal input
distribution when σ2

B
= 1, σ2

E
= 2 and A = 2.6.

contradiction. To this end, we first rearrange (33) to obtain
∫

R

φB(y − x)v̂(y)dy = 0 (34)

where v̂(y) and ĉ are given by

v̂(y) = ĉ + (µ + 1) log (p(y;F ∗
X))

−

∫

R

φD(τ) log (p(y − τ ;F ∗
X)) dτ (35)

ĉ = (µ + 1)hY (F ∗
X) − hZ(F ∗

X) (36)

By using similar arguments to those we provided in the proof

of Corollary 1, one can show that |v̂(y)| ≤ ηy2 + ζ for some

η, ζ > 0. By [8, Corollary 9], this implies that if (34) holds,

we should have v̂(y) = 0,∀y ∈ R. Next, we show that we

cannot have v̂(y) = 0,∀y ∈ R. Using Lemma 1 and the fact

that hY (F ∗
X) − hZ(F ∗

X) < 0 in (35), we get

v̂(y) − µ
(

hY (F ∗
X) + log (pY (y;F ∗

X))
)

< 0, ∀y ≥ y′ (37)

Hence, if v̂(y) = 0,∀y ∈ R holds, due to (37), we should

have

hY (F ∗
X) + log (pY (y;F ∗

X)) > 0, ∀y ≥ y′ (38)

which implies

pY (y;F ∗
X) ≥ e−hY (F∗

X
), ∀y ≥ y′ (39)

However, since pY (y;F ∗
X) is a density function, it has to

vanish as y → ∞, and (39) cannot hold. Hence, we reach

a contradiction; implying that the optimal input distribution

should have a finite support set. This completes the proof of

Theorem 2.

V. NUMERICAL RESULTS

In this section, we provide numerical illustrations for the

secrecy capacity and the rate-equivocation region of the Gaus-

sian wiretap channel under a peak power constraint.

We first consider how the secrecy capacity changes with
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the amplitude constraint A.

respect to the amplitude constraint A for σ2
B = 1 and σ2

E = 2.

We observe in Fig. 3 that the increase rate of both the

secrecy capacity under a peak power constraint A and the

secrecy capacity under an average power constraints A2 are

similar. A similar observation was made by Smith [4] for

the capacities under a peak power constraint and under an

average power constraint. Moreover, in Fig. 3, we also plot the

difference between the legitimate user’s and the eavesdropper’s

capacities, i.e., CB − CE , which in general, provides a lower

bound for the secrecy capacity Cs. On the other hand, for

small values of A, CB − CE and Cs are identical. However,

as A increases, CB − CE and Cs become different.

In Fig. 4, we plot the entire rate-equivocation region of

the wiretap channel when σ2
B = 1 and σ2

E = 1.6 for two

different values of A. When A = 1, it is clear from Fig. 4 that

both the secrecy capacity and the capacity can be attained

simultaneously. In particular, for A = 1, the binary input

distribution located at ±A achieves both the capacity and

the secrecy capacity, i.e., the optimal input distributions for

the secrecy capacity and the capacity are identical. In other

words, when A = 1, the transmitter can communicate with the

legitimate user at the capacity while achieving the maximum

equivocation at the same time. On the other hand, when

A = 1.6, the secrecy capacity and the capacity cannot be

achieved simultaneously. In particular, for A = 1.6, the binary

input distribution located at ±A achieves the capacity, while

a ternary distribution located at x = ±1.6 and x = 0 with

probability masses 0.358 at ±1.6 and 0.284 at 0 achieves the

secrecy capacity, i.e., the optimal input distributions for the

secrecy capacity and the capacity are different. In other words,

there is a tradeoff between the rate and the equivocation in

the sense that, to increase the communication rate, we should

compromise from the equivocation of this communication, and

to increase the achieved equivocation, we should compromise

from the communication rate. This result is in contrast with

the average power constraint case, where irrespective of the
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Fig. 4. The rate-equivocation regions for σ2

B
= 1 and σ2

E
= 1.6 under

amplitude constraints A = 1 and A = 1.6.

average power constraint, both the secrecy capacity and the

capacity can be simultaneously achieved by a Gaussian distri-

bution with full power.

VI. CONCLUSION

In this paper, we study the Gaussian wiretap channel under a

peak power constraint. We show that the boundary of the entire

rate-equivocation region is achieved by input distributions

that have finite support. We prove this result by using the

methodology in [4] for our setting. An interesting aspect that

our result reveals is that, unlike the average power constrained

Gaussian wiretap channel, under a peak power constraint,

the secrecy capacity and the capacity cannot be obtained

simultaneously in general, i.e., there is a tradeoff between the

rate and equivocation for the peak power constrained case.
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