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Abstract-In this paper, we present novel probabilistic recovery 
guarantees for sparse signals subject to sparse interference, 
covering varying degrees of knowledge of the signal and in
terference support. Our results assume that the sparsifying 
dictionaries are characterized by coherence parameters and we 
require randomness only in the signal and/or interference. The 
obtained recovery guarantees show that one can recover sparsely 
corrupted signals with overwhelming probability, even if the 
sparsity of both the signal and interference scale (near) linearly 
with the number of measurements. 

I. INTRODUCTION 

We consider the problem of recovering the sparse signal 
vector x E ena with support set X (containing the locations 
of the non-zero entries of x) from m linear measurements [2] 

z = Ax+Be. (1) 

Here, A E emxna and B E emxnb are given (and known) 
dictionaries, i.e., matrices that are possibly over-complete and 
whose columns have unit Euclidean norm. The vector e E enb 
with support set £: represents the sparse interference. We 
investigate the following models for x and e, and their support 
sets X and £:: 

• The interference support set £: is arbitrary, i.e., £: � 
{I, . . .  , nb } can be any subset of cardinality ne' In 
particular, £: may depend upon the sparse signal vector x 
and/or the dictionary A, and hence, may also be chosen 
adversarially. The support set X of x is chosen uniformly 
at random from all subsets of {I, . . .  ,na } with cardinal
ity nx. 

• The support set £: of the sparse interference vector e 
is chosen uniformly at random from all subsets of 
{I, . . .  , nb } with cardinality ne' The support set X is 
assumed to be arbitrary and of cardinality nx. 

• Both X and £:, the support sets of the signal and of 
the interference with cardinality nx and ne, respectively, 
are chosen uniformly at random from all subsets of 
{I, . . .  ,na } and {l, ... , nb } with sizes nx and ne, re
spectively. 
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In addition, for each model on X and £: we may or may not 
know either of the support sets prior to recovery. 

As discussed in [2], recovery of x from the corrupted 
observation z in (1) is relevant in a large number of practical 
applications. In particular, the restoration of saturated signals 
or signals impaired by impulse noise is captured by the input
output relation (1). Furthermore, (1) enables one to investigate 
sparsity-based super-resolution and in-painting, as well as 
signal separation. Hence, identifying the fundamental limits 
on the recovery of x (and e if appropriate) from the sparsely 
corrupted observation z is of significant practical interest. 

Recovery guarantees for sparsely corrupted signals have 
been partially studied in [2]-[9]. In particular, [2], [3] investi
gated coherence-based recovery guarantees for both support 
sets X and £: being arbitrary and for varying levels of 
support-set knowledge; [4] analyzed the special case where 
both support sets are unknown, but one is chosen arbitrarily 
and the other at random. The recovery guarantees in [5] 
require a random matrix A and that B is unitary, whereas 
the results in [6]-[9] characterize A by the restricted isometry 
property (RIP), which is difficult to verify in practice. The 
specific models and assumptions underlying the results in [5]
[9] reduce their utility for the applications outlined above. 

A. Contributions 

In this paper, we focus exclusively on results where the 
randomness is in the signal and/or the interference but not in 
the dictionaries A or B. Furthermore, the dictionaries will 
be characterized only by their coherence parameters, their 
dimensions, and their spectral norms. Our results refine or 
improve upon the recovery guarantees in [2]-[4], [10] and 
cover novel cases for varying degrees of knowledge of the 
signal and interference support sets. In particular, we present 
novel recovery guarantees for the situations where the support 
sets X and/or £: are chosen at random, and for the cases 
where knowledge of neither, one, or both support sets is 
available prior to recovery. We furthermore show that f\
norm minimization is able to recover the vectors x and e 
with overwhelming probability, even if the number of non
zero entries in both scales (near) linearly with the number of 
measurements. 

A smmnary of all the cases studied in this paper is given 
in Table I; the theorems highlighted in dark gray indicate 
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TABLE I 
SUMMARY OF THE RECOVERY GUARANTEES FOR SPARSELY CORRUPTED 
SIGNALS; THE SETTING WITH X CHOSEN ARBITRARILY AND [; CHOSEN 

UNIFORMLY AT RANDOM FOLLOWS ANALOGOUSLY 

X, [; arbitrary X rand., [; arb. X, [; rand. 

X,£ Case Ia Case Ib Case Ie 
known [2, Thm. 3] Thm.l Thm.l 

[; known 
Case 2a Case 2b Case 2d 

[2, Thm. 4] Thm.2 Thm.3 

X known 
Case 2a Case 2e Case 2d 

[2, Cor. 6] Thm.4 Thm. 3 

neither Case 3a Case 3b Case 3e 
known [4, Thms. 2, 3] Thm. 5, [4, Thm. 6] Thm.6 

novel results, light gray indicates refined results. The cases 
shown in italics follow by reversing the roles of x and e in 
the appropriate symmetric case. 

B. Notation 

Lowercase and uppercase boldface letters stand for column 
vectors and matrices, respectively. For the matrix M, we 
denote its transpose, adjoint, and (Moore-Penrose) pseudo
inverse by MT, MH, and Mt, respectively; the spectral 
norm of M is IIM112 2, and the ith column of M is mi. 
Sets are designated by upper-case calligraphic letters; the 
cardinality of the set 5 is 151. The support set of v is given 
by supp(v) . The matrix Ms is obtained from M by retaining 
the columns of M with indices in 5; the vector v s is obtained 
analogously from v. We define :n.[/L i- 0] to be equal to 1 if 
/L i- 0 and 0 otherwise. Throughout the paper, X = supp(x) 
and [. = supp( e) with cardinality nx and ne, respectively. 
We furthermore define D = [A B], Dx,£ = [Ax B£], 
s = [xT eT ]T, and sx,£ = [xI enT. For two functions 
f and 9 we write f rv 9 to indicate that f(n)/g(n) -7 1 as 
n -7 00, and we say that "f scales with g." 

II. RELEVANT PRIOR WORK 
We next summarize relevant prior work on sparse signal 

recovery and sparsely corrupted signals. 

A. Coherence-Based Recovery Guarantees 

During the last decade, numerous deterministic and prob
abilistic guarantees for the recovery of sparse signals from 
linear (and non-adaptive) measurements have been developed, 
e.g., [10]-[14]. These results give sufficient conditions as to 
when one can reconstruct the sparse signal vector x from the 
(interference-less) observation y = Ax by solving 

(PO) minimize Ilxllo subject to y = Ax, 
x 

or its convex relaxation, basis pursuit, defined as 

(BP) minimize IIxl11 subject to y = AX. 
x 

In particular, in [11], [12] it is shown that if Ilxllo � nx for 
some nx < (1 + 1//La)/2 with the coherence parameter 

(2) 

then (PO) and (BP) are guaranteed to perfectly recover the 
sparse signal vector x. Such coherence-based recovery guar
antees are, however, subject to the "square-root bottleneck," 
so that recovery is only guaranteed for sparsity levels scaling 
as nx rv Vm [10]. In order to overcome the square-root 
bottleneck, one must either resort to a RIP-based analysis, 
e.g., [13], [14], which typically requires randomness in the 
dictionary A to show that a certain RIP holds, or a proba

bilistic analysis that considers randomness only in the vec
tor x. Probabilistic and coherence-based recovery guarantees 
that overcome the square-root bottleneck have been derived 
in [10]. The corresponding results, however, do not exploit the 
structure of the problem (1), i.e., the fact that we are dealing 
with two dictionaries and that knowledge of X and/or [. may 
be available prior to recovery. 

B. Recovery Guarantees for Sparsely Corrupted Signals 

Guarantees for the recovery of sparsely corrupted signals as 
modeled by (1) have been developed recently in [2]-[4]. The 
references [2], [3] consider deterministic and coherence-based 
results for several cases which arise in different applications: 
1) X = supp(x) and [. = supp(e) are known prior to 
recovery, 2) only one of X and [. is known, and 3) neither X 
nor [. are known. For case 1), the non-zero entries of both the 
signal and interference vectors can be recovered by [2] 

(3) 

if the recovery guarantee in [2, Thm. 3] is satisfied. For case 2), 
recovery is performed by using modified versions of (PO) and 
(BP); the associated recovery guarantees can be found in [2, 
Thm. 4 and Cor. 6]. For case 3), recovery guarantees for the 
standard (PO) or (BP) algorithms are given in [4, Thms. 2 
and 3]. However, all these recovery guarantees suffer from 
the square-root bottleneck, as they guarantee recovery for all 

signal and all interference vectors satisfying the given sparsity 
constraints. A notable exception for case 3) was discussed 
in [4, Thm. 6]. There, e is assumed to be random, but x is 
assumed to be arbitrary, which significantly improves upon the 
corresponding deterministic (and coherence-based) recovery 
guarantees in [4, Thms. 2 and 3]. To overcome the square
root bottleneck for various degrees of support-set knowledge, 
we next propose a generalization of the probabilistic signal 
models developed in [4], [10] for the cases 1), 2), and 3) 
outlined above. 

III. MAIN RESULTS 

The recovery guarantees developed next rely upon the mod
els M(PO) and M(BP) summarized in Modell and Model 2, 
respectively. In addition to these models, our results require 
the coherence parameters of the dictionaries A E cmxna 
and B E cmxn&, i.e., the coherence /La of A in (2), the 
coherence /Lb of B given by /Lb = maXi,j,i#j I (bi, bj) I, 
and the mutual coherence /Lm between A and B, defined 
as /Lm = maXi,j I (ai, bj) I. Our main results for the cases 
highlighted in Table I are detailed next. 
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Modell M(PO) 
• Let x E ena and e E eno have support set X and E, 

respectively, of which at least one is chosen uniformly at 
random from all subsets of {I, ... , na} and {I, ... , nb} 
with sizes nx and ne, as appropriate. If a support set is 
chosen at random, then assume that the corresponding 
non-zero entries of the associated vector are drawn from 
a continuous distribution. 

• The observation z is given by z = Ax + Be. 

Model 2 M(BP) 
• The conditions of M(PO) hold. 
• If X or E is chosen at random, then assume that the 

corresponding non-zero entries of the associated vector(s) 
are drawn from a continuous distribution, where the 
phases of the individual components are independent and 
uniformly distributed on [O,271-). 

A. Cases 1 b and 1 e: X and E Known 

We start with the case where both support sets X and E are 
known prior to recovery. The following theorem guarantees 
recovery of x and e from z using (3), with high probability. 

Theorem 1 (C ases lb and leY: Let x and e be signals sat
isfying the conditions of M(PO), assume that both X and E 
are known, and choose (3 � log(nx). If X is chosen uniformly 
at random, E is arbitrary, and if 

holds withl J = 1, then we can recover x and e using (3) 
with probability at least 1 - e-(3. 

If both X and E are chosen at random and if 
1 175 2nx 2 Je-4 � 12y (3 (fLaFx + fLbFeJ + :n.[fLa =F OJ-IIAI12 2 

+ :n.[fLb =F Oj
2ne liB II; 2 + min {3fLm V2(3nx nb ' 

na ' 

+ � IIAHBI122,3fLmV2(3ne+ � IIAHBI122} (5) y n; , y
n;" 

holds with J = 1 and (3 � max{log(nx),!og(ne)}, then we 
can recover x and e using (3) with probability at least 1- e-(3. 

Proof The proof can be found in [1]. • 

B. Cases 2b and 2d : E Known 

Consider the case where only the support set E of e is 
known prior to recovery. In this case, recovery of x (and the 
non-zero entries of e) from z can be achieved by solving2 

(PO, E) x,eE 

{ mil1il1lize Il xllo + IleE 110 
subject to z = Ax + BEeE, 

lLater, we will require (4) to hold for different values of o. 
2Note that since £ is known, the norm 1113£ 110 in (PO, £) can be omitted. 

or its convex relaxation3 

(BP, E) 
{ minimize 

x,ee 

subject to 
Ilxlll + IleE llI 
z = Ax+BEeE. 

The following theorems guarantee the recovery of x and e 
from z, using (PO, E) or (BP, E), with high probability. 

Theorem 2 (C ase 2b): Let x and e be signals satisfying the 
conditions of M(PO), assume that E is known prior to recovery 
and chosen arbitrarily, and assume that X is unknown and 
drawn uniformly at random. Choose (3 � log(nx). If (4) holds 
for some 0 < J < 1 and if 

(6) 

then we can recover x and e using (PO, E) with probability at 
least 1- e-(3. 

Moreover, if x and e are signals satisfying the conditions 
of M(BP) , and, in addition to (4) if 

2 2 (1 - J)2 
nxfLa + nefLm < 2(log(na) + (3) (7) 

holds then we can recover x and e using (BP, E) with 
probability at least 1 - 3e-(3. 

Proof The proof can be found in [1]. • 
Theorem 3 (C ase 2d): Let x and e be signals satisfying 

the conditions of M(PO) , assume that E is known but X is 
unknown prior to recovery, and assume that both X and E 
are drawn uniformly at random. If (5) and (6) hold for some 
o < J < 1 and (3 � max{log(nx),!og(ne)}, then we can 
recover x and e using (PO, E) with probability at least 1- e-(3. 

Moreover, if x and e satisfy the conditions of M(BP) and 
if (7) holds in addition to (5) and (6), then we can recover x 
and e using (BP, E) with probability at least 1 - 3e-(3. 

Proof The proof can be found in [1]. • 

C. C ase 2e: X Known 

The case where X is random and known, and E is unknown 
and arbitrary, differs slightly to the case where X is random 
and unknown, and E is arbitrary and known (covered by 
Thm. 2). Hence, we need to consider the two cases separately. 
The recovery problems (PO, X) and (BP, X) required here are 
defined analogously to (PO, E) and (BP, E). 

Theorem 4 (C ase 2e): Let x and e be signals satisfying the 
conditions of M(PO), assume that X is known and chosen 
uniformly at random, and assume that E is unknown and 
arbitrary. If 

Je-� � IIAI12 211BI12 2 � + 12fLbV (3ne + (nx - l)fLa , , vn; 
[ j

2ne 2 � + :n. fLb =F 0 - IIBI12 2 + 3fLm y 2(3nx (8) nb ' 
holds for some 0 < J < 1 and (3 � log(ne), and if 

(9) 

3Note that we consider a slightly different convex optimization problem to 
that proposed in [2] for the case where £ is known prior to recovery. 
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then we can recover x and e using (PO, X) with probability 
at least 1 - e-(3. 

Moreover, if x and e are signals satisfying the conditions 
of M (BP), and, in addition to (8), if 

2 2 (1 - 0)2 
nxJ.Lm + neJ.Lb < 2(log(nb) + (3) 

(10) 

holds then we can recover x and e using (BP, X) with 
probability at least 1- 3e-(3. 

Proof The proof can be found in [1]. • 

D. C ases 3b and 3c : No Support-Set Knowledge 

Recovery guarantees for the case of no support-set knowl
edge, but where one support set is chosen at random and the 
other arbitrarily can be found in [4]. The theorem shown next 
refines the result in [4, Thm. 6]. The refinements are due to 
the following facts: i) We allow for arbitrary 0 < 0 < 1, 
whereas 0 = 1/2 in [4, Thm. 6], ii) we do not use a global 
coherence parameter J.L = max{J.La, J.Lb, J.Lm}, but rather exploit 
the individual coherence parameters J.La, J.Lb, and J.Lm of A and 
B, and iii) the indicator functions in our recovery conditions 
improve our results in the cases where A and/or B are unitary. 

Theorem 5 (C ase 3b): Let x and e be signals satisfying the 
conditions of M(PO), assume that X is chosen uniformly at 
random, and assume that £: is arbitrary. If (4), (6), and (9) hold 
for some 0 < 0 < 1 and (3 ;? log(nx), then 

(PO*) min}�ze Ilxllo + lIello subject to z = Ax + Be, 
x,e 

recovers x and e with probability at least 1 - e-(3. 
Moreover, if x and e satisfy the conditions of M(BP) and 

if (7) and (10) hold in addition to (4), (6), and (9), then 

(BP*) min}l!lize Ilxlll + Ilelll subject to z = Ax + Be, 
x,e 

recovers x and e with probability at least 1 - 3e-(3. 
Proof The proof can be found in [1]. • 

The last theorem considers the case where neither support
set is known and both are chosen uniformly at random. 

Theorem 6 (C ase 3c): Let x and e be signals satisfying 
the conditions of M(PO) and assume that X and £: are both 
unknown and chosen uniformly at random. If (5), (6), and (9) 
hold for some 0 < 0 < 1 and (3 ;? max{log(nx), log(ne)}, 
then (PO*) recovers x and e with probability at least 1- e-(3. 

Moreover, if x and e are signals from M(BP) and if (7) and 
(10) hold in addition to (5), (6), and (9), then (BP*) recovers 
x and e with probability at least 1 - 3e -(3. 

Proof The proof can be found in [1]. • 

IV. DISCUSSION OF THE RECOVERY GUAR ANTEES 

We now briefly discuss a subset of the theorems presented 
in Sec. III. A detailed discussion of all recovery guarantees 
can be found in the journal version of the paper [1]. 

In what follows, we assume A and B are unitary, i.e., 
na = nb = m and J.La = J.Lb = 0, and maximally incoherent, 
i.e., J.Lm = I I rm. For example, A could be the discrete 
Fourier transform matrix and B the identity matrix. We 

108 
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H .::: 105 

.� 
Vl ..... 104 C':l 
0.. 
Vl 

C; 
::: 

.29 
Vl 

100 �· �������������� 
100 101 102 103 104 105 106 107 108 

interference sparsity, ne 
Fig. 1. Comparison of the recovery conditions for the case where only 
E is known prior to recovery. A and B are assumed to be unitary with 
m = na = nb = 108 and /-im = 1/ yrn. 

furthermore set (3 = log(m), so that recovery is guaranteed 
with probability at least I-11m and I-31m when solving the 
{'o-norm and {' I-norm-based recovery problems, respectively. 

A. Recovery Guarantees 

1) Only £: known : Fig. 1 shows the recovery conditions 
from Theorems 2 and 3 for the cases where only £: is known 
prior to recovery (the case of only X known behaves analo
gously). We see that for a random X and random £: successful 
recovery at high probability is guaranteed for significantly 
larger nx and ne compared to the case where one or both 
support sets are arbitrary. Hence, allowing for randomness in 
the support sets leads to less restrictive recovery conditions. 

2) No support-set knowledge.' Fig. 2 shows the recovery 
conditions for (BP*) for the case of no support-set knowledge. 
We see that for random X and £:, successful recovery is guar
anteed for significantly larger nx and ne compared to the case 
where one or both support sets are assumed to be arbitrary. As 
a comparison, we also show the recovery conditions derived in 
[4, Thm. 6] and the condition from [10], which does not take 
into account the structure of the problem (1). We see that the 
recovery conditions derived in Theorems 5 and 6 guarantee the 
successful recovery for a larger number of nonzero coefficients 
in both the sparse signal vector x and the sparse interference e. 

B. Asymptotic Behavior of the Recovery Conditions 

We now compare the asymptotic behavior of probabilistic 
and deterministic recovery conditions, i.e., we study the scal
ing behavior of nx and ne. To this end, we are interested in 
the largest nx for which recovery of x (and e) from z can be 
guaranteed with high probability. In particular, we consider 
the following models for the sparse interference vector e: 
i) constant sparsity, i.e., ne = 103, ii) sparsity proportional 
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Fig. 2. Comparison of the recovery conditions for the case of no support-set 
knowledge. A and B are assumed to be unitary with m = na = nb = 108 
and J.l.m = l/vrn· 

to the square root of the problem size, i.e., ne = ,;rn, and 
iii) sparsity proportional to the problem size, i.e., ne = m /105. 

Fig. 3 shows the largest nx (for a given ne) for which 
recovery can be guaranteed using (BP, £'). Here, £' is assumed 
to be known and arbitrary and X is unknown and chosen either 
at random or arbitrarily. Note that the other cases of support
set knowledge and arbitrary/random exhibit the same scaling 
behavior. We see from Fig. 3 that for a constant interference 
sparsity (i.e., ne = 103), the probabilistic and deterministic 
results show the same scaling behavior. For the cases where 
ne scales with ,;rn or m, however, the deterministic thresholds 
developed in [2] result in worse scaling, while the behavior of 
the probabilistic guarantees derived here remains unaffected. 

We now investigate the scaling behavior observed in Fig. 3 
analytically. Again, we only consider the case where X is 
unknown and chosen at random and £' is known and chosen 
arbitrarily; an analysis of the other cases yields similar results. 
From Thm. 2, the recovery of x from z using (BP, £') 
is guaranteed with probability at least 1 - 3/na (i.e., for 
13 = log(na» for maximally incoherent and unitary A and 
B (i.e., /-La = /-Lb = 0, na = nb = m, and /-Lm = 1/ ,;rn) if for 
some 6 E (0,1) , both 6e-1j4 ;? Jnx/na + 3/-LmV2f3ne and 
2ne/-L;' (log ( na) + 13) < (1 - 6)2 hold, that is, if 

e-�vm > vn; + (3V2 + 2e-�)Jnelog(m). (11) 

Hence, if nx rv m and ne rv m / log( m), the condition (11) 
can be satisfied. Consequently, recovery of x (and of e) is 
guaranteed with probability at least 1-3/m even if nx scales 
linearly in the number of (corrupted) measurements m and ne 
scales near-linearly (i.e., with m/ log(m» in m. 

We finally note that the recovery guarantees in [5] also allow 
for the sparsity of the interference vector to scale near-linearly 
in the number of measurements. The results in [5], however, 
require the matrix A to be random and B to be orthogonal, 

1013 �1-----+----1-----+---- \ 

� 1010 
�-+-----+-----+--

--:;- \ 

signal dimensions, na = nb = m 
Fig. 3. Maximum signal sparsity nx that ensures recovery of x for [; known 
and arbitrary. We assume ne = 103, ne = vrn, and ne = m/ 105. The 
probability of successful recovery is set to be at least 1 - 10-15. 

whereas the recovery guarantees shown here are for arbitrary 

pairs of dictionaries A and B (characterized by the coherence 
parameters) and for varying degrees of support-set knowledge. 
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