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Abstract— We propose here a new construction of spatially
coupled quantum LDPC codes using a small amount of entangled
qubit pairs shared between the encoder and the decoder which
improves quite significantly all other constructions of quantum
LDPC codes or turbo-codes with the same rate.

I. INTRODUCTION

Quantum codes suitable for iterative decoding. Turbo-codes
[1] and LDPC codes [2] and their variants are one of the
most satisfying answers to the problem of devising codes
promised by Shannon’s theorem. They display outstanding
performances for a large class of error models with a decoding
algorithm of reasonable complexity. Generalizing these codes
to the quantum setting seems a promising way to efficiently
approach the quantum capacity, and quantum generalizations
of LDPC codes have indeed been proposed in [3].

However, it has turned out that the design of high per-
formance quantum LDPC codes is much more complicated
than in the classical setting. In particular, most constructions
suggested in the literature [4], [3], [5], [6], [7], [8], [9], [10],
[11] suffer from having either a bounded minimum distance or
a vanishing rate. There are only a few exceptions, namely [12],
[13], [14], [15]. However in all these constructions, unlike in
the classical setting, there are issues with the decoder: 4-cycles
in their Tanner graph if decoding is performed over F4, code
degeneracy which impairs the decoder [16].

On the other hand, generalizing turbo-codes to the quantum
setting has first been achieved in [17]. However this construc-
tion had rather poor performance under iterative decoding.
In [18] it was shown that it was possible to come up with
quantum turbo-codes with good performance under iterative
decoding. However, the families of codes constructed in this
article have bounded minimum distance and the performance
of these codes degrades for large blocklength. It was even
proved there that it is not possible to obtain quantum serial
turbo-codes with unbounded minimum distance and with an
iterative decoding algorithm which converges. This is due to
the fact that it can be proved that quantum convolutional
encoders which are at the same time non-catastrophic and
recursive do not exist [18].

Spatially coupled quantum LDPC codes. Spatially coupled
LDPC have been introduced in [19] (they were named ter-
minated convolutional LDPC codes there). They might be
viewed in the following way, take several several instances
of a certain LDPC code family, arrange them in a row and
then mix the edges of the codes randomly among neighboring
layers. Moreover fix the bits of the first and last layers to zero.
It has soon been found out that iterative decoding behaves

much better for this code than for the original LDPC code.
A breakthrough occurred when it was proved that for the
binary erasure channel, the noise threshold (that is the maximal
probability of erasure which can be sustained by a code
of infinite length) under iterative decoding of the spatially
coupled ensemble coincides with the noise threshold under
Maximum A Priori (MAP) decoding of the underlying LDPC
code (which consists in taking the optimal decision for each
bit) [20]. This has some dramatic consequences.

• The MAP threshold can be significantly better than the
iterative decoding threshold and this especially when the
degrees of the LDPC code get large.

• The MAP threshold can be already quite close to capacity
for small regular degrees (for instance for a (4,8) regular
LDPC code) and converges to capacity quickly as the
degrees increase. This allows to use for instance regular
degrees in the construction and we do not need to
choose well optimized LDPC code ensembles with a large
amount of degree 2 nodes which give codes of minimum
distance at most logarithmic in the code length [21],
[22]. LDPC codes with linear minimum distance in the
blocklength can be chosen in the spatially coupled con-
struction. This simplifies considerably the design of long
codes with very low error floor and excellent performance
under iterative decoding.

• This nice behavior does not only hold for the erasure
channel, it actually holds for all binary input memo-
ryless output-symmetric channels (BIMS) [23] and this
universally: the authors construct there a single spatially
coupled ensemble which attains a desired probability of
error after decoding at a certain desired gap from capacity
for all BIMS channels.

All these nice features of classical spatially coupled LDPC
codes suggest to study whether they have a quantum analogue.
The fact that spatially coupled LDPC codes may afford to have
large degrees and still perform well under iterative decoding
would be quite interesting in the quantum setting, since by the
very nature of the quantum construction of stabilizer codes the
rows of the parity-check matrix of the quantum code have to
belong to the code which is decoded by the iterative decoder.
This implies that we should have rather large row weights to
avoid severe error-floor phenomena and/or oscillatory behavior
of iterative decoding which degrades significantly its perfor-
mance [16]. A first step in this direction was achieved in [24]
where a certain family of quantum spatially coupled LDPC
codes was suggested. They showed a family of (quantum)



rate 1
2 codes which correct for a length of 181, 000 qubits

a depolarizing error of 0.03 for a probability of error after
decoding of about 10−4. This improves the underlying LDPC
code construction since codes of this class which are 2 times
longer only have this error probability after decoding for a
depolarizing error probability of about 0.026. This should be
put in perspective with the hashing bound capacity of the
depolarizing channel (which is a lower bound for the true
capacity of this channel) which says that there are quantum
codes of rate 1

2 which can operate successfully up to a
depolarizing error probability of 0.075. The authors stayed in
the classical stabilizer formalism and this complicates matters
significantly, since there is no way with this construction alone
to have a satisfactory quantum analogue of bits fixed to zero.

We choose here another route which assumes some addi-
tional resource consisting of shared entangled qubits between
the transmitter and the receiver and which are noiseless on
the receiver side [25]. This is called entanglement-assisted
quantum error correction. In particular, the orthogonality con-
straints are less stringent than in the stabilizer formalism. It can
also be viewed as stabilizer codes where some qubits (namely
the halves of the maximally entangled qubits which are on the
receiver side) are noise free. This is exactly what is needed to
have an equivalent in the quantum world of information bits
set to zero. Entanglement is used here in order to have qubits
participating to the quantum code without having to sending
them and therefore allowing them to be error free.

Our construction can now be described as follows. We start
by giving a spatially coupled version of a construction of
quantum LDPC codes suggested by [6] based on a couple of
orthogonal (classical) LDPC codes obtained from low density
generator matrix (LDGM) codes. This gives a stabilizer code
of rate 1

4 and a few first layers and a few last layers of
the spatially coupled construction are error-free because these
outermost layers are formed by the qubits of the receiver
side which are not sent and are therefore noiseless. We use
therefore only a very moderate amount of this resource in
our construction. Despite this fact, we obtain a tremendous
performance improvement over other families of codes of rate
1
4 . In our case, the probability of error after decoding drops
down sharply after p = 0.102. This is not a real threshold since
these codes are LDGM codes and have therefore a constant
minimum distance, but no deterioration of the “threshold”
could be observed experimentally when the length increases
and this even for the quite large lengths (up to 76800) which
were considered. This should be compared to the hashing
bound capacity for codes of rate 1

4 which corresponds to a
depolarizing noise of pc ≈ 0.1269. Moreover our construction
belongs to the family of CSS codes [26], [27] and from the
way our codes are decoded, we decode namely two binary
codes of rate 3

8 affected by a binary symmetric channel
of crossover probability p

� = 2p
3 , we can not expect that

this kind of strategy would be able to operate successfully
for depolarizing noise above p0 ≈ 0.1087. Finally, we also
demonstrate that our scheme is able to tolerate some moderate
error noise on the qubits of the outermost layers without

suffering severe performance loss. This is in strong contrast
with catalytic error correction [28] or other coding strategies
making use entangled qubits such as quantum polar coding
[29] which can not not tolerate any amount of noise on these
qubits.

II. ENTANGLEMENT ASSISTED STABILIZER CODES

We review in this section the entanglement assisted stabi-
lizer code formalism [25]. The style of presentation we adopt
here is to suit a readership familiar with classical codes but
not with quantum information theory. Let us recall that the
trace hermitian inner product between E = (Ei)1≤i≤n and
F = (Fi)1≤i≤n in Fn

4 is given by:

E � F �
�

TrEiF̄i, (1)

where ū = u
2 and Tru = u+ ū for u in F4.

An entanglement assisted stabilizer code of type [[n, k; c]]
using c entangled qubit pairs shared between the transmitter
and the receiver is defined by

Definition 1 (entanglement assisted stabilizer code): An
entanglement assisted stabilizer code of type [[n, k; c]] is
specified by a matrix H over F4 of size (n+ c− k)× (n+ c)
and a choice of a set I of c columns of H such that:
(i) The rows of H are independent over F2 and orthogonal

with respect to the trace hermitian inner product,
(ii) If we let H� be the submatrix of H formed by erasing

the aforementioned c columns in H and if we denote
by H

�
i the i-th row of H

�, then the matrix M
� �(H�

i �

H
�
j)1≤i≤n+c−k

1≤j≤n+c−k
has rank c.

H is called a parity-check matrix for the stabilizer code. When
c = 0, the code is a called a stabilizer code.

Remarks

1) This definition is not completely standard, generally
such a code is specified by the subgroup generated by
the rows H

�
i which satisfy Condition (ii), but it is better

suited to our construction (we start with a construction
of stabilizer codes) and specify the c columns later on.

2) An equivalent way of expressing Condition (ii)
which can be proved by symplectic geometry ar-
guments (see for instance [30, Lemma 2]) is the
fact that the group generated by the H

�
i’s can be

generated by 2c + (n − k − c) elements of Fn
4

u1, u2, . . . , uc,v1, . . . , vc,w1, . . . , wn−k−c which are all
orthogonal to each other (meaning that ui � uj = 0 for
instance) with the exception of ui � vi = 1 for all i in
{1, . . . , c}.

3) Such a choice of matrix amounts to a particular syn-
drome measurement.

Error model and information available for decoding. We
consider Pauli channels and in this case the errors which occur
are elements of Fn+c

4 . A very important channel error of this
kind is the depolarizing channel model. It is given by the
following definition.

Definition 2 (Depolarizing channel): The depolarizing
channel on n qubits of error probability p picks up an



element E ∈ Fn
4 by choosing randomly the coordinates Ei

of E independently of each other according to P(Ei = 0) =
1− p,P(Ei = 1) = P(Ei = ω) = P(Ei = ω̄) = p

3 .
The entanglement assisted setting consists in encoding k

information qubits together with n− k − c ancilla qubits and
c maximally entangled pairs of qubits (making up for a total
of n+ c qubits), the transmitter and the receiver holding each
one qubit of these pairs, and encoding takes place only on
the transmitter side (the c qubits held by the receiver do
not participate in the encoding). The n qubits held by the
transmitter are sent through a noisy channel whereas the c

qubits on the receiver side are noiseless. We assume that the
noisy channel is a Pauli channel meaning that the error which
occurs is an element (Ei)1≤i≤n+c of Fn+c

4 with Ei = 0 for
the c positions i which correspond to the c qubits on the
receiver side. If the model is a depolarizing channel model
the n remaining coordinates of E are distributed as explained
in Definition 2. The c columns of H which are involved
in the definition of the entanglement assisted stabilizer code
correspond to these positions for which Ei = 0, that is the
positions belonging to I .

At this point the receiver measures n + c − k qubits and
obtains the following syndrome

Definition 3 (error syndrome): The error syndrome associ-
ated to an error E = (Ei)1≤i≤n+c ∈ Fn+c

4 with respect to
a parity-check matrix H with rows H1, . . . , Hn+c−k is the
binary vector

s(E)�(E � Hi)1≤i≤n+c−k.

By assumption on the error model, Ei = 0 if i ∈ I , therefore
if we let E� be the element of Fn

4 obtained by throwing away
the c positions which are associated to the c qubits on the
receiver side, that is E

� = (Ei)i/∈I , we have

s(E) = (E�
� H

�
i)1≤i≤n+c−k.

Minimum distance. Apart from the fact that the rows of
the parity-check matrix have to satisfy the aforementioned
orthogonality conditions there is another fundamental differ-
ence with the classical setting. It can be checked that not all
errors change the quantum state belonging to an entanglement
assisted stabilizer code. More precisely

Fact 1: Let G be the group generated by the rows of H and
let S be the subgroup of G of elements E which are such
that Ei = 0 on all positions belonging to I . S is called the
stabilizer group of the code. The set of errors which leaves the
(continuous) entanglement assisted stabilizer code invariant is
given by its stabilizer group.

For a classical linear code the minimum distance of the code
is equal to the minimum weight of an nonzero error of zero
syndrome. The minimum distance of an entanglement assisted
stabilizer code is defined by

Definition 4 (minimum distance): The minimum distance
of a stabilizer code is the minimum Hamming weight of an
error E with zero syndrome which does not belong to the
stabilizer group and which is such that Ei = 0 for i ∈ I .

Entanglement assisted CSS codes. The codes that we are
going to construct here belong to a subclass of entanglement

assisted stabilizer codes, which is called the class of entan-
glement assisted CSS codes. They consist of codes which are
defined by a parity-check matrix whose rows contain either
only 1’s and 0’s or only ω’s and 0’s. In this case we may
partition the rows of H as

H =

�
H1

ωHω

�

where H1 and Hω are binary matrices. The orthogonality
constraint on the rows of H translates into an orthogonality
constraint between the rows of H1 and Hω: the rows of H1

have to be orthogonal to the rows of Hω , or what is the same,
if we let C1 be the code with parity-check matrix H1 and Cω

be the code with parity-check matrix Hω , then we should have

C⊥
ω ⊂ C1.

Condition (ii) has also a simple expression in terms of H1

and Hω . Let I1 be the set of indices of the rows of H which
belong to H1 and Iω be the set of indices of the rows of H

which belong to Hω . If we let H�
1 and H

�
ω be the submatrices

of H1 and Hω formed by the columns which are not in I and
if we denote by H

�
1(i) the row of index i in H1 and H

�
ω(i)

the row of index i in H
�
ω , then Condition (ii) is equivalent

to the fact that the matrix M
� �(< H

�
1(i),H

�
ω(j) >)i∈I1,j∈Iω

has rank c where < x,y >=
�

i xiyi is the standard inner
product between x = (xi)i and y = (yi)i which are vectors
in Fn

2 . There is a simple way to check Condition (ii) which is
given by the following proposition.

Proposition 1: Let H
��

1 and H
��

ω be the submatrices of H1

formed by the c columns which belong to I . A necessary and
sufficient for Condition (ii) to hold is that H

��

1 and H
��

ω are
both of rank c.

Moreover a suboptimal decoding of the quantum code can
be performed by decoding C1 and Cω , since the error E can be
written in a unique way as E = E

1 + ωE
ω with E

1 and E
ω

in Fn+c
2 and by noticing that the only entries of s(E1) which

are non zero correspond to the rows of H which belong to
Hω . Take only these rows for the syndrome s

1 of E1, and we
obtain

s
1(E1) = (ωHω(i) � E

1)i∈Iω = (< Hω(i), E
1
>)i∈Iω .

Similarly we have

s
ω(ωEω) = (H1(i) � ωE

ω)i∈I1 = (< H1(i), E
ω
>)i∈I1 .

A depolarizing channel model of probability of error p

translates into a binary symmetric channel error model of
probability of error 2p

3 for E1 and E
ω .

III. OUR CONSTRUCTION

Basically the idea of our construction is to exploit an idea
due to [31], [6] which begins with the observation that the
dual of a low density generator matrix code is a low density
parity-check code. This can be exploited to yield a CSS code
at the expense of a constant minimum distance. However, if
the weights of the rows of the low density generator matrix are
chosen to be large enough, this is not necessarily a problem.



Our observation is now just that the dual of a spatially coupled
low density generator matrix code is (essentially) a spatially
coupled low density parity-check code.

A. Overview of the construction of [6]

Let us present the construction of a low density generator
matrix code given in [6]. A Tanner graph used for decoding
this code is depicted in Figure 1. The length of the code
is n and half of the variable nodes are of degree 1 (they
correspond to u1) in the Tanner graph, while the other half
(which corresponds to u2) is of some constant degree d.
There is a first set of check nodes, corresponding to c1, all
of degree d+ 1 which form a bipartite subgraph of degree d

with the variable nodes of degree d. There is a matching of
these check nodes with n/2 state nodes (corresponding to r1

in the figure) and there are two matchings between the n/2
check nodes of the second level (corresponding to c2) and the
variable nodes of u1 and r1 respectively. Then there is a last
matching between the n/2 check nodes of c2 and the n/2
state nodes of r2. Finally the subgraph of the Tanner graph
formed by the state nodes of r2 and the last level of check
nodes corresponding to c3 has three type of nodes:
- s1 check nodes of degree 1 (this implies that the associated
state node of r2 should be equal to 0,
- s2 check nodes of some constant degree x,
- all the state nodes of r2 are of some constant degree y in
the subgraph. The purpose of the check nodes of degree 1

Fig. 1
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of the last level is to ensure that iterative decoding does not
get stuck at the initial stage (it corresponds to some kind of
doping of the last level of state nodes corresponding to r2). If
we denote this code by C1, then it is proved in [6] that there
exists another code Cω with the same Tanner graph structure
which satisfies C⊥

ω ⊂ C1. This is basically a consequence of
the fact that C1 is an LDGM code whose dual is an LDPC
code and of the particular form of the low density generator
matrix of C1. The LDGM structure implies however that these
codes have constant minimum distance, the point is here that

the weight of the rows of the low density generator matrix can
be chosen to be large enough so that this does not deteriorate
iterative decoding performances.

B. The associated spatially coupled construction

There is a spatially coupled version of these codes which
can be described as follows. Take L+2δ such codes, number
them with 0, 1, . . . , L + 2δ − 1 and consider the associated
Tanner graphs (and say that the t-th Tanner graph corresponds
to level t). For each i ∈ {−δ, . . . , δ}, and t ∈ {0, 1, . . . , L +
2δ − 1}, we swap a fraction 1

2δ+1 of the edges which link
a variable node with a check node at level t with an edge
which links a variable node to a check node at level t + i

mod (L + 2δ) such that the variable node at level t is now
adjacent to the check node at level t+i mod (L+2δ) and vice
versa. We do not swap the edges which link the state nodes to
variable nodes on the other hand. The variable nodes and the
check nodes which are of degree 1 have their corresponding
edge which stays at the same level. The variable node positions
at positions {0, . . . , 2δ−1} will correspond to the set I of the
entanglement assisted code (and we also check that Condition
of Proposition 1 holds). In other words, these variable nodes
are set to zero when we perform iterative decoding. We used
the window decoder described in [32] to reduce its complexity.

We have performed the computations for the following
parameters

TABLE I

L δ d x y s1 s2
type 1 20 2 20 9 3 15n

64
9n
64

type 2 20 2 25 9 3 15n
64

9n
64

IV. RESULTS

The x-axis and the y-axis of the following curves give
respectively the depolarizing error probability and the prob-
ability of error after decoding.

Fig. 2: Comparison with other codes of rate 1
4 :

SC1C: spatially coupled code of type 1 and length 76800
Garcia-Liu: [6]
turbo codes: [33]
MacKay: [3]
Lou-Garcia: [31]
Camara-Ollivier-Tillich: [5]

As shown in Fig. 2, the spatially coupled codes clearly
outperform significantly the previously known LDPC code



constructions as well as the quantum turbo-code constructions.
The type 1 codes (SC1A of length N = 19200, SC 1B,
N = 38400 and SC 1C N = 76800) are slightly better than
the type 2 codes (SC 2A: N = 19200, SC 2B: N = 38400)
as illustrated by Fig. 3. These codes can also tolerate some

Fig. 3

moderate amount of depolarizing noise on the 2δ levels which
are fixed to 0 (they belong to I) as shown by Fig. 4 which
shows various depolarizing noise levels p on these positions
for a type 1 code of length 38400.

Fig. 4
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