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Abstract—In this paper, we study delivery of two nested
message sets over combination networks with an arbitrary
number of receivers, where a subset of receivers (public receivers)
demand only the lower priority message and a subset of receivers
(private receivers) demand both the lower and the higher priority
messages. We give a complete rate region characterization over
combination networks with three public and any number of
private receivers, where achievability is through linear coding.
Our encoding scheme is general and characterizes an achievable
region for arbitrary number of public and private receivers1.

I. INTRODUCTION

The optimal rates with which one message set could be mul-
ticast to multiple destinations was established in the original
work of Ahlswede et al. [1] and it was shown that performing
network coding is necessary to achieve the capacity. Later,
[2], [3], [4] showed that linear network coding is capacity
achieving and [5] demonstrated randomized construction of
multicast network codes.

The problem of delivering multiple messages is unresolved
in general, though there has been progress on some special
cases. In particular, [6], [7], [8] consider graphs with a single
source and two destinations and characterize the capacity
region for a common and two individual messages sets. In [9],
the capacity region of multicasting two nested message sets is
derived over combination networks with three destinations.

In this paper, we study optimal encoding schemes for mul-
ticasting two nested message sets towards many destinations
over a class of networks, known as combination networks.

A combination network is a three-layer single source multi-
terminal directed network, first introduced in [10] by Ngai and
Yeung (See Figure 1). The class of combination networks turn
out to be a rich class of networks in that they capture many of
the inherent difficulties of general networks, while being sim-
ple enough to explore new coding schemes. Furthermore, they
are among the simplest models for broadcast channels, where
the media sharing is modeled via the common resources.

In this paper, we study delivery of two nested messages, the
lower priority destined to all receivers and the higher priority
destined to a subset of receivers.

1This work was supported in part by ERC Grant NOWIRE ERC-2009-
StG-240317. Vinod M. Prabhakaran was partially supported by a Ramanujan
Fellowship from the Department of Science and Technology, Government of
India. Suhas Diggavi was partially supported by NSF-CPS award 1136174.
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Fig. 1: A combination network with two public and two private
receivers (indexed by I1 ={1, 2} and I2 ={3, 4}, respectively).

II. PROBLEM FORMULATION AND MAIN RESULTS

A source communicates a common message W1 of rate R1

and a private message W2 of rate R2 towards K destinations
over a combination network and the the goal is that m (public)
receivers indexed by I1 = {1, 2, . . . ,m} recover the common
message and the rest k − m (private) receivers indexed by
I2 = {m+1, . . . , k} recover both messages. The network over
which communication takes place is a general combination
network as depicted in Figure 1. All edges of the combination
network are assumed to be carrying symbols from a finite field
F. The problem of interest is characterizing the ultimate rates
(R1, R2) at which messages W1,W2 could be communicated
reliably. We express all rates in terms of log2 |F|.

Throughout this paper, we refer to the outgoing edges
of the source as the resources of the combination network
and we denote them by a set E . We denote the set of
all resources that are connected to every public receiver in
S ⊆ I1 and not connected to any public receiver not in
S by ES ⊆ E . Note that edges of set ES may or may
not be connected to the private receivers. Whenever needed,
however, we identify the subset of edges in ES that are also
connected to a private receiver p, by EpS . Figure 1 shows this
notation over a combination network with two public and two
private receivers. In this example, Eφ = {(S, v4), (S, v5)},
E{1} = {}, E{2} = {(S, v1)}, and E{1,2} = {(S, v2), (S, v3)}.
Also, we have E3

{2} = E4
{2} = {(S, v1)}, E3

{1,2} = {(S, v3)},
E4
{2} = {(S, v2)}, E3

φ = {(S, v4), (S, v5)}, and E4
φ = {}.

To communicate messages W1,W2, each edge of the net-
work carries symbols containing information about messages



W1 and/or W2. We denote the symbol carried over a resource
edge e by xe, which is a scalar from finite field F. We denote
by XS , where S ⊆ I1, the set of all symbols carried over
edges in ES , and by Xp

S , where S ⊆ I1 and p ∈ I2, the set of
all symbols carried over edges in EpS . To simplify notation, we
abbreviate the union sets

⋃
S∈S ES ,

⋃
S∈S E

p
S and

⋃
S∈S XS ,

by ES , EpS and XS , respectively. The vector of all received
symbols at receiver i is denoted by Yi. Finally, when working
with transmission blocks of length n, we use X̄ to denote the
vector of symbols over the block of length n.

We define superset saturated subsets of 2I1 as follows.

Definition 1 (Superset saturated). We say that subset T ⊆ 2I1
is superset saturated if inclusion of a set S in T implies
inclusion of all its supersets; e.g., over subsets of 2{1,2,3}, T =
{{1}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} is superset saturated, but
not T ={{1}, {1, 3}, {1, 2, 3}}. For notational matters, we ab-
breviate a subset T by the few sets that are not implied by the
other sets in T . E.g., {{1}, {1, 2}, {1, 3}, {1, 2, 3}} is abbre-
viated by {{1}?}, and {{1}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} is
abbreviated by {{1}?, {2, 3}?}.

Our main result is summarized in the following theorem.

Theorem 1. Consider a combination network with three
public receivers (indexed by I1 = {1, 2, 3}) and any number of
private receivers (indexed by I2 = {4, . . . ,K}). The capacity
region is characterized by all rate pairs (R1, R2) for which
there exist real-valued variables αS , S ⊆ I1, such that

αS ≥ 0 ∀S⊆I1, S 6=φ (1)

R2 =
∑
S⊆I1

αS (2)

R1 +
∑

S⊆I1, S3i

αS ≤
∑

S⊆I1, S3i

|ES | ∀i∈I1 (3)

R2 ≤
∑
S∈T

αS +
∑
S∈T c

|EpS | ∀T ⊆2I1 , ∀p∈I2
T superset saturated (4)

R1 +R2 ≤
∑
S⊆I1

|EpS | ∀p∈I2 (5)

We prove Theorem 1 by proposing an achievable scheme
and proving a matching outer-bound. The primary difficulty in
achievable code designs is how to resolve the tension between
delivering the common message to the public receivers while
delivering the common and private messages to the private
receivers. In particular, in order for the public receivers to de-
code the common message, one should not provide them with
too much information about the private message. One standard
approach to resolve this issue is to use linear superposition
coding and to reveal to public receivers partial message sets
of the private message. We show in Section III that this scheme
is not in general optimal. We enhance this scheme using an
appropriate pre-encoder, to obtain a general inner-bound to
the capacity region in Theorem 2. We prove optimality of our
encoding scheme for cases with three (or fewer) public and
any number of private receivers in Section IV.
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Fig. 2: To achieve rate pair (1, 2), the source needs to reveal
partial private information to public receiver 2.

III. ACHIEVABLE SCHEMES: RATE SPLITTING AND
LINEAR ENCODING

Throughout this section, we confine ourselves to linear
encoding at the source. For simplicity of notation, we demon-
strate all the proofs in this section assuming that there are
two public receivers, but our focus is on three and more
public receivers. Let w1,1, . . . , w1,R1 and w2,1, . . . , w2,R2 be
variables in finite field F for messages W1 and W2 respec-
tively. We call them the information symbols of the common
and the private message, respectively. Consider vector W ∈
FR1+R2 as the vector with coordinates in the standard basis
W = [w1,1 . . . w1,R2w2,1 . . . w2,R2 ]T . Within this section, we
assume rates R1 and R2 to be non-negative integer values2.

We use linear encoding at the source; i.e., after properly
rearranging the signals that are sent over the resources of the
combination network, we have

X{1,2}
X{2}
X{1}
Xφ

 = A ·W,

where A is the encoding matrix. Our task is to design the
encoding matrix A such that each receiver can decode its
messages of interest after receiving its incoming signals.

The challenge in the code design for this problem comes
from the tension between the two different demands of re-
ceivers: On the one hand, each private receiver would like its
available resources to bring information about all information
symbols of the common and private messages. On the other
hand, public receivers might not be able to decode the common
message if their received signals contain too much information
about the private message. This could be better seen through
the example of Figure 2, where the source communicates
a common message W1 = [w1,1] and a private message
W2 = [w2,1, w2,2] to four receivers. Receivers 1 and 2 are
public receivers and receivers 3 and 4 are private receivers. In
this example, one can easily verify that (i) randomly linearly

2There is no loss of generality in this assumption. One can deal with non-
integer values R1, R2, by considering blocks of large enough length n, and
working with (approximately) integer rates nR1 and nR2.



combining all information symbols and sending them out on
the resources of the combination network allows neither of
the public receivers decode their message of interest, and (ii)
combining the information symbols across the two message
sets is necessary to achieve rate pair (1, 2). More precisely, rate
pair (1, 2) is feasible only if signal X{2} carries information
about one symbol of message W2 (or one linear combination
out of the message space of W2), in addition to common
message W1. In general, we would like the encoding scheme to
allow mixing of the common message with a partial message
space of the private message.

We start by a linear superposition encoding scheme, to
which we refer as the basic encoding scheme. This code
design is such that different information symbols of the private
message get involved in linear combinations that are sent
out towards different subsets of the public receivers. More
precisely, we propose the encoding matrix A to have the
following structure, where the un-assigned entries are to be
chosen appropriately over the finite field F.

A =

R1←→
α{1,2}←→

α{1}↔
α{2}↔ αφ↔

0 0 0
0 0

0 0


l
l
l
l

|E{1,2}|

|E{1}|

|E{2}|

|Eφ|

.
(6)

In the above structure, parameters α{1,2}, α{1}, α{2}, αφ are
non-negative structural parameters to be designed, and satisfy3∑

S⊆I1

αS = R2. (7)

Let us pick the un-assigned elements of matrix A uniformly
at random over finite field F. We now examine the received
signals at each receiver and find constraints on parameters α
which allow all receivers to recover their messages of interest.
• Public receiver i ∈ I1: Received signal Yi is the vector

of all signals carried by resources available to receiver i.
Using the (structured) encoding matrix of equation (6),
received signal Yi is given as follows.

Yi =

R1←→
α{1,2}←→

α{1}↔
α{2}↔ αφ↔[

0 0 0
0 0

]
︸ ︷︷ ︸

Ai

l
l
|E{1,2}|

|E{i}|

[
W1

W2

]

To have message W1 decodable, the first R1 columns of
Ai need to be linearly independent and they need to span
a space which is disjoint from the column space of the
rest of the columns [11, Lemma 4.2]. Lemma 1 translates
this to conditions on parameters αS .
Lemma 1. A random structured encoding matrix A lets
receiver i ∈ I1 decode its message of interest W1 (with
a probability at least 1− 1

|F| ), if we have

R1 +
∑

S⊆I1, S3i

αS ≤
∑

S⊆I1, S3i

|ES |. (8)

3Although parameters αS are implicitly assumed integer, one can let them
be real and approximately attain them by coding over blocks of larger length.
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Fig. 3: Rate pair (0, 2) is not achievable using the basic
encoding scheme.

• Private receivers p ∈ I2: Received signal Yp is the
vector of all signals carried by resources in the sets
EpS , S ⊆ I1. Using the (structured) encoding matrix (6),
received signal Yp is given as follows.

Yp =

R1←→
α{1,2}←→

α{1}↔
α{2}↔ αφ↔

0 0 0
0 0

0 0


︸ ︷︷ ︸

Ap

l
l
l
l

|Ep
{1,2}

|

|Ep
{1}

|

|Ep
{2}

|

|Ep
φ
|

[
W1

W2

]

One can partially extend Lemma 4.5 of [11] to find
constraints on decodability of W1,W2 at private receiver
p. We refer the reader to [12] for the proof.
Lemma 2. A random structured encoding matrix A lets
receiver p ∈ I2 decode its messages of interest W1,W2

(with a probability at least 1− 1
|F| ), if we have

R2 ≤
∑
S∈T

αS +
∑
S∈T c

|EpS |, ∀T ⊆2I1

superset saturated (9)

R1 +R2 ≤
∑
S∈2I1

|EpS |. (10)

To summarize, Lemma 1 and Lemma 2 provide constraints on
the structural parameters αS , S ⊆ I1, under which a random
choice of matrix A satisfies all decodability requirements
with a probability at least 1 − K

F . Therefore, there exists an
assignment of the encoding matrix A for which all receivers
decode their messages of interest, provided that F > K. Note
that operation over a smaller field is also possible, by coding
over blocks of large lengths.

It turns out that in general, the above basic encoding scheme
performs optimally only when there are (at most) two public
and any number of private receivers. Example 1 discusses this
sub-optimality for more than two public receivers.

Example 1. Consider the combination network of Figure
3 where receivers 1, 2, 3 are public and receivers 4, 5,
6 are private receivers. It is clear that rate pair (0, 2) is
achievable (just multicast the private message towards the
private receivers using random linear network coding). How-
ever, there is no choice of αS ≥ 0, S ⊆ {1, 2, 3}, which
satisfies inequalities (7)-(10) for this rate pair, unless αφ



is allowed to be negative. One such set of parameters αS
is given by αφ = −1, α{1} = α{2} = α{3} = 1, and
α{1,2} = α{1,3} = α{2,3} = α{1,2,3} = 0.

Obviously, there is no longer a ”structural” meaning to this
negative parameter. Nonetheless, it still has a peculiar mean-
ing that we try to investigate in this example. As suggested
by the positive parameters α{1}, α{2}, α{3}, we would like to
reveal a subspace of dimension one (of the private message
space) to each public receiver. The subtlety comes in when one
notices that such partial (private) information that is revealed
to the public receiver subsets {1}, {2} and {3} cannot be
mutually independent, as message W2 is of rate only 2.

We use this observation to modify the encoding scheme and
achieve rate pair (0, 2). First, pre-encode message W2 through
a random pre-encoding matrix P ∈ F3×2, into a pseudo
private message W ′2. Then, encode W ′2 using a structured
encoding matrix, as follows. X{1}

X{2}
X{3}

 =

 1 0 0
0 1 0
0 0 1

 w′2,1
w′2,2
w′2,3


Notice that this structured encoding matrix does reveal a
subspace of dimension one (of the pseudo-private message
space) to each public receiver. Furthermore, using such a
pre-encoding/encoding scheme, each private receiver gets to
decode two symbols out of the three symbols of W ′2 and can,
therefore, decode the (original) private message W2 (w.h.p.).

Inspired by example 1, we modify the basic encoding
scheme, using an appropriate pre-encoder, to obtain a strictly
larger achievable region as expressed in Theorem 2.

Theorem 2. Consider a combination network with any num-
ber of public and private receivers (indexed by I1 and I2,
respectively). A rate pair (R1, R2) is achievable if there exist
real-valued variables αS , S ⊆ I1, that satisfy (1)-(5).

Sketch of the proof: Let (R1, R2) be in the rate region
of Theorem 2; i.e., there exist parameters αS , S ⊆ I1, that
satisfy inequalities (1)-(5). Since we already know what to
do if α ≥ 0, in this proof we assume αφ < 0, and propose
an achievable scheme for that. In the following we assume
(αφ)− = min(0, αφ) and (αφ)+ = max(0, αφ).

First of all, pre-encode message W2 into a message vector
W ′2 of dimension R2− (αφ)−, through a pre-encoding matrix
P. Then, encode messages W1 and W ′2 into the symbols
that are sent out, using a matrix A structured as in (6)
with parameters αS , φ 6= S ⊆ I1, and with no column
corresponding to αφ < 0.

Choose the elements of matrix P and the un-assigned
elements of matrix A uniformly at random over finite field
F. We now find the decodability requirements of the public
and private receivers. Conditions for decodability of W1 at
the public receivers are given in (3) as before. Conditions for
decodability of W1,W2 at the private receivers are found in a
manner similar to Lemma 2. This is summarized in Lemma 3
(stated below) and we refer the reader to [12] for its proof.

Lemma 3. A random choice of matrices P and A lets private
receiver p ∈ I2 decode messages W1,W2 (with a probability
at least 1− 1

|F| ), if inequalities (4)-(5) hold.

So by choosing parameters αS such that they satisfy con-
straints in (1)-(5), we ensure that a random choice for matrices
P and A satisfies all the decodability requirements at all
receivers with a probability at least 1− K

|F| . This proves that for
any rate pair (R1, R2) in Theorem 2, there exists an achievable
linear encoding scheme, if |F| > K. Operation over a smaller
field is also possible, by coding over blocks of large lengths.

IV. OPTIMALITY RESULTS

In this Section, we prove the converse of Theorem 1. To
this end, we prove an outer-bound on the rate-region which
looks similar to the inner-bound of Theorem 1 and then use
sub-modularity to show that they coincide. We refer the reader
to [12] for the detailed proofs.

Let us first give a more compact representation of the rate-
region of Theorem 1, via Lemma 4 which is proved in [12].

Lemma 4. Consider the rate region characterization of The-
orem 1 (where I1 = {1, 2, 3} and I2 = {4, . . . ,K}). The
constraints given by inequalities (1)-(2) in Theorem 1 can be
replaced by (11) given below, without affecting the rate-region.∑

S∈T
αS ≥ 0, ∀T ⊆ 2I superset saturated (11)

By Lemma 4, the rate region of Theorem 1 is equivalently
given by constraints (11), (3)-(5). Lemma 5, stated below and
proved in [12], gives an outer-bound which looks similar to
the inner-bound.

Lemma 5. Any achievable rate pair (R1, R2) satisfies outer-
bound constraints (12)-(15) for any given ε > 0.

1
n
H(X̄T |W1) ≥ 0 ∀T ⊆2I1 superset saturated (12)

R1 +
1
n
H(X̄{{i}?}|W1) ≤

∑
S∈{{i}?}

|ES |+ ε ∀i∈I1 (13)

R2 ≤
1
n
H(X̄T |W1) +

∑
S∈T c

|EpS |+ ε
∀p∈I2

∀T ⊆2I1 superset saturated
(14)

R1 +R2 ≤
∑
S⊆I1

|EpS |+ ε ∀p∈I2 (15)

Notice the similarity of inequalities (12), (13), (14), (15)
with constraints (11), (3), (4), (5), respectively.

In the rest of this section, we argue that the rate-region
characterized in Lemma 5 coincides with the rate-region of
Theorem 1. To this end, we need the following definitions
over multi-sets of subsets of 2I1 , where I1 = {1, 2, 3}.

Definition 2 (Multi-set of saturated pattern). A multi-set (of
subsets of 2I1 ) is said to be of (superset) saturated pattern
if all its elements are superset saturated. E.g., we have that
multi-set [{{1}, {1, 2}, {1, 3}, {1, 2, 3}}, {{2, 3}, {1, 2, 3}}] is
of saturated pattern, but not [{{2}, {1, 2}, {1, 2, 3}}].



Multi-set Q Compressed multi-set Q′

[ . . . , {{i}?} , {{j}?} , . . . ] [ . . . , {{i, j}?} , {{i}?, {j}?} , . . . ]
[ . . . , {{i}?} , {{j, k}?} , . . . ] [ . . . , {{1, 2, 3}} , {{i, j}?, {i, k}?} , . . . ]
[ . . . , {{i, j}?} , {{i, k}?} , . . . ] [ . . . , {{1, 2, 3}?} , {{i, j}?, {i, k}?, {j, k}?} , . . . ]
[ . . . , {{i}?, {j}?} , {{i}?, {k}?} , . . . ] [ . . . , {{1}?, {2}?, {3}?} , {{i}?, {j, k}?} , . . . ]
[ . . . , {{i}?} , {{j}?, {k}?} , . . . ] [ . . . , {{1}?, {2}?, {3}?} , {{i, j}?, {i, k}?} , . . . ]
[ . . . , {{i}?, {j}?} , {{k}?, {i, j}?} , . . . ] [ . . . , {{1}?, {2}?, {3}?} , {{i, j}?, {i, k}?, {j, k}?} , . . . ]

TABLE I: Each row shows the compression of a multi-set Q to Q′. Here, (i, j, k) is a permutation of (1, 2, 3).

Definition 3 (Multi-set of standard pattern). A multi-set (of
subsets of 2I1 ) is said to be of standard pattern if its elements
are all of the form {S ⊆ I1 : S 3 i}, for some i ∈ I1. E.g.,
[{{1}, {1, 2}, {1, 3}, {1, 2, 3}}, {{2}, {1, 2}, {2, 3}, {1, 2, 3}}]
is of standard pattern, but not [{{1, 2}, {1, 2, 3}}].

Definition 4 (Balanced multi-sets). Multi-sets A and B are
balanced if

∑
T ∈A 1T 3S=

∑
T ∈B 1T 3S , for all sets S ∈ 2I1 .

The sketch of the converse proof is now as follows. We
perform the Fourier-Motzkin elimination over the rate-region
representation of Theorem 1 (to eliminate parameters α). This
way, we reach to a set of inequalities of the form m1R1 +
m2R2 ≤ E, each obtained by summing potentially multiple
copies of constraints (11), (3)-(5) (so that all variables αS , S ⊆
I1, get eliminated). To show a converse for each such inner-
bound inequality, m1R1 +m2R2 ≤ E, we take copies of the
corresponding outer-bound constraints (12)-(15) in Lemma 5
and sum them up to yield the following outer-bound inequality.

m1R1+m2R2+
1
n

∑
T ∈A

H(X̄T |W1) ≤ E+
1
n

∑
T ∈B

H(X̄T |W1)

Here, A is a multi-set of standard pattern and B is a multi-set
of saturated pattern, both consisting of subsets of 2I1 where
I1 = {1, 2, 3}. Notice that A and B are balanced because
Fourier-Motzkin elimination ensures that all the αS’s are
eliminated. Finally, we use sub-modularity of the entropy func-
tion to prove that

∑
T ∈AH(X̄T |W1) ≥

∑
T ∈B H(X̄T |W1)

(Lemma 6 stated below) and conclude that the converse
inequality, m1R1 +m2R2 ≤ E, holds.

It remains to prove Lemma 6.

Lemma 6. Let B and A be multi-sets of subsets of 2{1,2,3},
where B is of saturated pattern and A is of standard pattern. If
B and A are balanced, then we have the following inequality.∑

T ∈A
H(X̄T |W1) ≥

∑
T ∈B

H(X̄T |W1) (16)

Sketch of the proof: The proof relies on the sub-
modularity of the entropy function. We use the formulation
of [13] with a slight change of notation.

Let [M] be a family of multi-sets of subsets of 2{1,2,3}.
Given a multi-set Q = {T1, . . . , Tl} ∈ [M], let multi-set Q′
be obtained from Q by replacing Ti and Tj by Ti ∩ Tj and
Ti ∪ Tj (where neither Ti ⊆ Tj nor Tj ⊆ Ti). Multi-set Q′ is
then said to be an elementary compression of Q. A sequence
of elementary compressions gives a compression. Table I gives

a list of some non-trivial elementary compressions for multi-
sets of subsets of 2{1,2,3}.

Let A and B be finite multi-sets of subsets of 2{1,2,3}

such that B is a compression of A. A simple conse-
quence of the sub-modularity of the entropy function is that∑
T ∈AH(X̄T |W1) ≥

∑
T ∈B H(X̄T |W1) [13, Theorem 5].

The core of the proof is, therefore, to show that multi-set B
is a compression of multi-set A, under the stated assumptions.
We show this by proving that such a compression exists and is
formed by a sequence of many elementary compressions each
in the form of one of the elementary compressions in Table I.
This implies inequality (16).

Remark 1. This converse proof does not generalize to m > 3
public receivers. More precisely, Lemma 4 and Lemma 6 are
valid only for m ≤ 3.
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