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On Locality in Distributed Storage Systems

Ankit Singh Rawat and Sriram Vishwanath

Abstract—This paper studies the design of codes for distributed code based on low-degree multivariate polynomials to store
storage systems (DSS) that enable local repair in the evenf o0 data. Our reason for choosing RM codes based on low-
node failure. This paper presents locally repairable codevased degree multivariate polynomials is the inherent locality o

on low degree multivariate polynomials. Its code construdgon . oo . .
mechanism extends work on Noisy Interpolating Set by Dvir et its codewords. Indeed, it is well known in LDC literature

al. [1]. The paper presents two classes of codes that allow de that RM codes generated using low-degree polynomialsaffor
repair to be performed by contacting 2 and 3 surviving nodes locality, at the cost of being low rate. In other words, the

respec_:tively. It furth_er_ shows_that both classes are gOOd iterms  extent of redundancy required in these codes is compalative
of their rate and minimum distance, and allow their rate to be ) ch higher than a code without locality properties. This
bartered for greater flexibility in the repair process. has rendered an RM code based LDC unattractive, as the

Index Terms—Distributed storage systems, locally repairable advantage provided by |0ca|ity is superseded by the |arge
codes, punctured Reed-Muller codes. storage space requirement of these codes.

In this paper, our approach is one of judiciously puncturing
|. INTRODUCTION RM codes in order to obtain ‘good’ rates for the resulting
.ncodes while still retaining the locality property for repah
Ihive approach to puncturing RM codes compounds problems,
as one may lose aspects of algebraic structure that make RM
so desirable, including loss in structured decoding sjiegeas
r\1/{/ell as locality. Keeping this in mind, we turn to a methodica
approach for puncturing of RM codes as introducedin [1]. In

, Dvir et al. develop an algorithm for puncturing RM codes

body of work in both theoretical analysis and practical gesi
for efficient distributed storage systems. Conventionaky
silience in distributed storage is obtained by simple cegion
of data; however, such replication can be highly inefficie
in terms of the number of nodes required for this resilienc

Thus, coding has come to play a central role in desig : ; o ,
for resilient distributed storage systems (DSS). In paki ased on low-degree polynomials which results in ‘good
” Istribu ge sy - N parag codes, i.e., codes with constant rate and constant reldisve

coding schemes for DSS must enable efficient system repair = . o
in the event of (a small number of) node failurés [2]. Itance (in block length). Moreovel,|[1] also presents anieffic

n . )

[2], Dimakis et al., the authors consider the total amougteCOdIng algorithm for_ these pu_nctured codes. .HowetZér, [1
) : o . oes not address locality properties of the resulting puedt

of data downloaded during single node repair, irepair

. : . o M code. In this paper, we show that a modified version
bandwidth as an important metric to gauge the efficiency o . .
. . of the punctured RM codes as studied [in [1] exist that are
any coding scheme employed in DSS and presents an IOV\slfarrrwItaneously ‘good’ from all three perspectives - ratdent
bound on repair bandwidth. Since then, multiple codes hais

been proposed that achieve this lower bound. of storage), distance (resilience) and locality for repaiDSS.

In general, there are multiple, possibly apposing, metricsThe remalnde_rd of thb|s_ ?a_per (;S o_rgamzed as f?llO\éVSI.?I\llln
using which the performance of a DSS can be characteriz‘(aﬁc'l:[I we provide a briet introduction to generalize
such as security, locality, load-balancing and privacyl Hre Cofies from polynom|al evaluation perspective W.'th thetrnar_
metric of interest in this paper is locality][3].][4]][5]. & erties relevant to this paper. In S&cl Ill, we define the motio

goal of this line of research is to design coding mechanisrﬂ]‘scljOcal respair and characterize the Iocallity a}ﬁor?ed dby l:M
for DSS that enable node repair to be accomplished whfigdes. In e¢.IV aridlV, we present two closely related coding

requiring contact with only a small number of surviving nts)deSChemeS for DSS, which enable local repair based and3

in the system. IN[[3], Gopalan et al. establish an upper bouﬂadeS respectively.

analogous to the singleton bound on the minimum distance

of locally repairable codes and show that pyramid codés [6]

achieve this bound. Subsequently, the work in Prakash et [I. BACKGROUND: RM CODES
al. extends the bound to more general definition of locally

repairable codes [7]. A generalized RM cod&R M, (u,m) is defined with the
In this paper, our goal is to generalize & extend the existirlgh|p of irreducible polynomials frof, [z, .. ., z,,] of degree
literature on locality in repair (and decoding) in DSS [4]at mostu. Here,F,[z1, . .., z,,] denotes the ring of-variate
[51, [6]. Our coding scheme builds on schemes studied in thg)ynomials over fieldF,, and a polynomial in this ring is
domain of locally decodable codes (LDQ) [8]. Specificallyza|ieq irreducible if its degree in each variable is lessntha
our coding scheme employs a punctured Reed-Muller (Rl\g)_ 1. Throughout the paper, we assurfig to be a prime

. _ , _ field. Each irreducible polynomial of degree at maggives a
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defined as follows: Proof: Let ¢ be a minimum weight codeword of
RM,(u, m) RM,{%(u,q). From [3), c is obtained as evaluations of a

- I ial of the following f t all points af":
_ {evaKf)]F;n c ]FZ ;f c ]Fq[xh - 7xm] P deg(f) < u} polynomial O e 1ollowing torm at all points q
@) S0 =woll2y (1= (6i(x) —wi) ™) 1 (b (%) — @)

where evalf)r: = (f(a1),.... f(agn)) denotes evalua- Where {fz‘(')}?LNars_T_Ji”ear'Y independent linear forms
tions of the polynomiaf at all¢™ points inF:. The dual code (functions) and{w; };_; " are distinct elements iff,. Note
of RM,(u,m) is also an RM code and is generated by irrdhat each linear fornt;(-) can be represented by a vector

ducible polynomials of degree at mast = (¢—1)m—u—1, Li € Fy' containing the coefficient of;(.). Let L be a
ie., m x m matrix which hasL; as itsi'" row. Since/,(-) are

N N linearly independentl. is a full-rank matrix. For: + 2 points
(RMg(u,m))™ = RMy (u,m) = RMq((g=1)m—u—1,m). (p, ... p..2) corresponding to the support of we have

Minimum distance olR M, (u, m) is given by the following Lp: = (4)
[9:

- +2
i (RMg(u,m)) = (q — 0)g"™ (2) where{Q; = (w1, w2, ... 7wm_1,wi)T}?:1 . Now assume that
, not allu+2 points lie on a line, i.e., without loss of generality
whereu = pu(q — 1) + 6 with 0 < § < g — 1. MOreover, pore exist three points in the setwf- 2 points{p1, p2, p3}
Delsarte et al. also characterize the codewords of mMiNiMWYch that

weight for this code[]9]. These minimum weight codewords

are associated with the polynomials of following form in p2 = p1 +tih andps = p; +t2g
Folo, ., wm]: whereg # rh for anyr € F,\{0}. From [4) we have
x) = woll”_, (1 — (4;(x) — w;)?T" 1) TI0_, (¢ X) — W; I .
P60 =Ty (1= (66) =) ™) T (ora ) = 3) Dhe (0,085 =, 5
where{w;}?_, are distinct elements froffi,, and{w}/_, are Lg = (0,...,0, @ — Qg. ®)
p+1 2

arbitrary elements fronff, with wy # 0. Here, {¢;(-)}5 o . .
represenf + 1 linearly independent linear forms (functions)Note that it is possible to finda1,a2) # (0,0) € F; such
onfF;". that a; O + a2Qg = 0 € . Thus, it follows from [(®),

[1l. ON LOCALITY PROPERTIES OFCODEWORDS L(anh + azg) = a10n + a2Qg = 0.

In this section, we illustrate the desired locality progertThis, however, contradicts the full-rank naturelofisah +
in a codeword of a generalized RM code. First, we formally.g is a nonzero vector and a full-rank matrix must have a
define the notion of locality of an encoded symbol: trivial null space. So, all:+ 2 points corresponding to support
Definition 1: A particular symbol in a codeword has local-of a minimum weight codeword must lie on a line. |
ity r if it can be recovered by accessing encoded symbols fromin fact, an even stronger result holds in the sense that,

only r other positions, i.e., it is uniquely defined by a set ajiven any « + 2 points on a line inF;*, a minimum

r encoded symbols in a codeword. weight codeword ofR/\/lj(u,m) exists that is supported
For a particular encoded symbol, possessing a locality ofon theseu + 2 points. Next, we illustrate a procedure for
is equivalent to having a codeword of support at most 1 determining a polynomial irF,[xz1,...,z,,] with degree at

in the dual code such that the support of this codeword ifost m(q — 1) — u — 1 that corresponds to a codeword in
dual code contains index of encoded symbol in interest.eSinRMql(u, m) supported on a particular set af+ 2 points
our object of study is the codR M, (u, m), we focus on the on a line(p1,...,pui2) = (P1,P2 + t1h...,p1 + tus1h);
codeword of minimum support in its dual code. For RM codeghere{t;}“f]' are nonzero distinct elementsBf. First, pick
based on polynomials of degrfe at mest ¢ — 2, we know  a vectorv = (0,...,0,v,)7 € F which is nonzero only
that the following holds foR M (u, m) = RMy(m(q—1)— at them!™ coordinate. Second, construct an invertible matrix
u—1,m): [Fy">™ such that
ut=(m—=1)(¢—=1)+(g—u—2)=pulg—1)+9.
Thus, it follows from [2) thatdmin(RMj(u,m)) isu o e, the last column ol is ¢1 h. Finally, define a polynomial
Next, we present a Lemma that establishes a necessary) Of degreen(¢—1)—g—1=(m—1)(¢—1)+(¢g—u—2),
;gx/?itl&nng? the support of minimum weight codewords oé(x) = woll™ 7! (1 — (t;(x) — wi)q‘l) H;Z_;if—2 (b (x) — @)
Le?nm’a 1:For every minimum weight codeword ofwhere linear functiong;(-) are defined by theé'" row L; of

Mv = t1h,

RM (u,m), u+2 points corresponding to its support lie onl = M_; e F™ and (wi, .. .,wm-1,0)" = Lp, and
on aline inF7". In other words, alli+2 points(p1, . . ., Pu+2) {@;}j=) " are distinct elements iff,\{©,& + i—jvm,@ +

are of the form(py, py +t1h, ..., p1 +tus1h), where{t;}15 2oy, o &+ tﬁlvm}.

are distinct and nonzero elementslof and h represents the "It follows from Lemma[l and the construction mecha-
direction of the line. nism described above that a minimum weight codeword of



RM}n(u, q) can only be supported om-+ 2 points on a line; B. Local Node Repair

and givenu + 2 points onLIine, there exist multiple minimum |, this subsection. we describe a procedure Zerocal
weight codewords iR M. (u, q) supported on these po'nts-repair of a DSS based on our code. For each [N], we

Note that there are multiple choices for the matfiX in defineR(i) = {j € [N]: (i, ) or (j,i) € T}. We assume that
@), and each choice o/ results in a different codeword 7 is sych that ’ ’

of RM (u,m) supported on: + 2 points.
|R(:)|>1 forall i € [N] 9)

IV. PUNCTURED RM CODES WITHLOCALITY 2 i.e., for eachi € [N] we add at least one seB;; or

.+ while generatingSz. Without loss of generality, a node

. . .B
The stage is now set for a general method of deS|gn|ng’ . . .
. ; . corresponding a poinp; € Sz fails. It follows from (@) that
coding schemes for DSS with locali®ybased orR M, (1, m). there exists a set df+2 points{pi, p1+h, ..., pr-+(L-+1)h}

Let G be a generator matrix of §V, m, 2e N+1], linear cc;vde. in Sz. For example, if node corresponding #g fails and
We construct a se$; = {ai,...,ax} C F}", where{a;};_, ;

S L =2 (1,2) € Z, then L + 2 points {a;,a; = a; + (¢ — 1)a; +

are N rows of G. For each paifi, j) € [N]* such thati < j, . .
e define a familv of St 1. - such that ag,...,a; + (L + 1)((¢ — 1)a; + az)} are in Sz. In this
W : a2 $Bi;}i<; s example, we have, = a; andh = (¢ — 1)a; + as. Note that
Bij=a;+t((g—1)a; +a;), 2<t<1+1L, theseL + 2 points lie on a line, which has a directidnf_;md
passes througp,. For L > 1, we obtainL + 2 > 3 points

where L is a design parameter of choice. Now, we construgncluding p;) on a line inFF;*. Moreover, [7) implies that

a setS7 as follows
(€ 2 (RM(1,m)) 157,

SI:SIU U Bij | where (RMql(l,m)) |2 denotes the shortened code of
(G.5)€2 RM (1,m) corresponding to seS; C F?¢". We know
whereZ C [N]2 such that(i, j) € Z only if i < j. from Lemmall and the discussion following it that there

exist a codeword oﬁz/\/lj(l,m), which is supported on
these3 points on a line. Moreover, this codeword is part of

A. Encoding Data the shortened cod RMj(l,m)) |97. Therefore, using this
Let the file to be encoded h&. We first divide the file” codeword in the dual code, we can recover the failed node’s
into K = m symbolsb = (by,...,b,) € F;*. Given the data symbol by accessing encoded symbols corresponding to two
vectorb, we construct a polynomiaf®(-) € Fy[z1,...,z,,] other points on the line from two other storage nodes. This

of degree at most as establishe®-locality, and therefore local repairability of our

coding scheme.
Fo(e1,. . xm) =zm:bi:vi. 6) In_terms of a tradit?onal LDC under_standing, thg node
P repair process can be viewed as polynomial interpolatigrgus

at least2 out of the remainingl. + 1 points (excluding
The data vectorb is encoded to a vectorcf = the pointp, associated with the failed node) on the line
(f°(p1),---, fP(ps;|)) Where {p:}}?2! are distinct points {p1+h,...,p1+ (L+1)h}. Considerg(t) = f*(p+th), a
of Sz in any prespecified order. Each symboldfj is now polynomial overt of degree at most. Given its evaluation at
stored on a different node in DSS. L&t denote the codebook 2 points,{p; +t;, h, p+1t;,h}, we can uniquely recovey(t)
obtained using the aforementioned encoding scheme. Nate thsing any standard polynomial interpolation method. Nogv th

desired symbolfP(p;) can be recovered by evaluatingt)

ct (RMq(lvm))SI ) (7) att=0.
, Remark 1:Note that, once we know the polynomig(t),
where (RM,(1,m))s, denotes the codebook obtained by,e can recover encoded symbols associated withl.all 2
puncturing a codRM,(1,m) on % points on the line defined by the pdip;,h). This property
Next, we show that the code as detailed above is welhn pe used for cooperative node repair in order to reduce

defined in the sense that the dimension of the COd&'is repajr bandwidth by determining a particular line such that
Lety = (f(a1),...,f(an))" denote the vector containingjt comprises of less thai failures and then recovering all
evaluations off®(-) on S, = {ai,...,ay} C Sz. It follows  fajlures on the line simultaneously.
from (@) that

y=Gb ®) ¢ code Parameters

where matrixG is the generator matrix ofV, m,2e N + 1], The rate and minimum distance of the proposed coding
linear code used to construét. Thus,b can be decoded scheme depends on three design parametéys,l, and
from y using a decoding algorithm corresponding to thi§V,m,2eN + 1], linear code. In what follows, we pick an
[N,m,2eN + 1], code. This implies that the dimension ofl N, m, N —m+ 1], maximum distance separable (MDS) code
the proposed code is aldg. for [N, m,2eN + 1], code and analyze two cases:



1) Case 1:Inthis case, we considé€r= {(1,2),...,(i,i+ construct a family of set§A; ;};<; similar to {B; ;}i<; In
1),...,(N — 1,N)} (assuming thatV is even). Here, we Sec[IV such that
have |Sz|< N + %L, which results in the rate of the code
being greater thaqwm—ﬁL = @(%). A quick calculation that

combines locality with [(8) shows that the proposed code jgherer, is again a design parameter. Now, we generate a set
resilient against anyv — m + L node failures. Therefore we s a5 follows:

A;j=2a;+t((g—1a; +a;), 3<t<2+1L,

have,
dmin(cz) > N-m+L+1 (10) SZ _ 52 U U A (12)
- 1, )
It also follows from [B) that we can modify our code to (i,4)€T
be a systematic code by picking any setofrows of G whereZ is as defined in SeE 1V
(say {ai,...,a,,}) to be an identity matrix, without affect- '

ing local repairability of the code. Now modiff to be .
{(1,2),...,(m—1,m)} (assuming that is even). The upper A. Encoding data

bound ond,,i»(C*) established in[7] is applicable in this case. Given a file F to be encoded, we divide it inth = (mr:;z)

Ford = L + 1 andr = 2 this bound results in: symbolsb = [by, ..., bx] € FX. The data vectob is used to
iaqkb
doin(CT) < N4 %L o (% _ 1) L+l construct a polynomiaf®(x) € Fy[z1, ..., x| as follows
- N-m+L+1, Plen,. o am) = Y bix®®), (13)
icM

which, along with [(ID), proves the optimality of our codes . . . .
. g w ) P . P Y (yvhere/\/l is the index set for lexicographically arranged
given that locality for information symbols is to be ensure : .
. - - . |{redu0|ble monomials of degree at masin F,[z1,. ..,z
Note that this code is essentially a Pyramid code as prasente : a(i,1) aGm i th 2
o) = MY ™ is it monomial in M,

in [E[Ia [m and x

2) Case 2:Next we conside = {(i,j) € [N]> : i < j}, which is uniquely defined by its exponent vectafi) =

ie., [Z]= (N) In this case, our rate becomes [a(i, 1), ..., a(i,m)]. In order to get codeword; correspond-
2 ing to data vectob, we evaluate the polynomigf?(x) at
I K m 1 all points in Sz. It follows from (1) that we haveC? =
rate(C”) = & TNt (L R (11) (RMy(2,m)) ., whereCT denotes the codebook that we get
2 z

from aforementioned encoding procedure.
The lower bound given in[{10) holds for this case as well. |n order to show thatZ is well defined, i.e., its dimension is
For this choice ofZ, many points ofSz have multiple lines [ we can potentially utilize an approach similar to that used
passing through them i$z. Thus, it is more likely to be in Sec[T¥ and show that a sub-matrix of the generator matrix
able to combine the node failures in groups along a particutsf ¢7 is full rank. However, we follow a different approach
line; then performing repair simultaneously for all of théy in which we show that a polynomial interpolation algorithm
contacting just nodes. recovers the data polynomiaP (x), therefore the original data

Remark 2:1t is evident from previous two cases that Zet vector b, from the evaluations off®(x) on Sy C Sz. The
enable us to trade-off rate of the code for flexibility in nodgterpolation algorithm is due to Dvir et al][1], and plays a
repair and data access. important role in establishing a lower bound dg;, (C%) in
Sec[V-C. We present an outline of the algorithm in context of
recovering a polynomial of degree at mastnterested readers
may refer to[[1] for complete algorithm and its analysis.

In this section, we generalize the method of designing COdeﬂnterpolation Algorithm Al [1] For a polynomial
with locality 2 from the previous section to obtain codingf(x), we define its partial derivate vector\;(x) =

schemes that ar8-local repairable. As opposed t@local gaf af ) s . . .
: . . ! . L (x),..., and directional derivate in the direc-
repairable codes, codes designed in this section are ba (x) Ozm (x)

V. PUNCTURED RM CODES WITHLOCALITY 3

Qe X

fion of a € Fg

on polynomials of degree at mostin F,[x1,...,z,,] and

therefore related tR M, (2, m). m of
Let Si be the set{a;,...,ay} C F¢" as defined in Jy(x,a) ZZ%‘ : 8x-(x)

Sec[1V with respect to afiV, m, 2e N +1], linear code. In this i=1 !

section, we also require that the maximal hamming weight fffollows from Lemma 2.1 in[[1] that for any, b € F7 and
a codeword in thigV,m,2eN + 1], linear code is less than the polynomial of interesf®(-) of degree at mos2,
(1—-2¢)N and minimum distance of its dual code is at least

We define another set, = S + 51 C F?". The requirement fPx+a)— fP(x+b)=0dp(x,a~b)+ E (14)
on minimum distance of dual code implies thgt satisfies

condition +41. For each pairi, j) € [N]2 with i < j, we where E is a constant and);» (x) is a degreel polynomial

which represents directional derivative ¢f(x), homoge-

b ; : : b
IFor definition of conditionxs and its importance for correctness of NEOUS part off (X) with degree2. Given evaluations of ®(x)
algorithm A1 (defined in Se€_VAA), readers may refer[t [1]. on S; the algorithm works as follows:



Step 1:Define Similar to Sec[1V-C, we present rate 6f for two choices
_ for Z:
T(@) =8 +a;= (a1 +ai....ay +ai) 1) Case 1:Here we takeZ = {(i,j) € [N]?:i < j}. This
and ensures that each symbol has at least one settdf points to
I . b b allow its local repair. Note that in this case, for some emebd
(i) = (Cp)r@) = (f7 (a1 +ai),..., fPlay +ai)) symbols there are multiple line passing through these signbo
Note that it follows from [TH) thatZ (i) — cZ(j) = (fP(as + in S7. For example, each symbol corresponding to a point in
a;)— fP(a;+a;),..., fP(an+a;)— fP(an +a,)) represents {2a;}Y ; can be repaired alongy — 1 lines. In this case, we
evaluations ofy; ; (x) = fP(x+a;)— f®(x+a;), a polynomial have thatSz|< (L + 1)N?. Therefore,
of degree at most, on S;. Thus, using decoding algorithm . (1—2¢)2 1
for [N, m,2eN + 1], code, we can recovey; ;(x) as proved rateC”) ~ YA e <f> .

in part2 of Lemma 2.3 in[[l]. Removing the constant term ) _
within g, ;(x) results ind s (x, a; — a;) which can be considered as a good rate for locally repairable
,J f2 g

: ; N .. codes, wherl is small.
Step 2: The algorithm takes all,) {0y (x,a: —a)bic; 5" 200> present definition of andS; uilize the fact
and recoverAf;, (x). As a homogeneous polynomial can b?h

) . L at {2a;,a; + a;,2a;} lie on a line. We may modify the
recovered from its partial derivative vectoi [1], we g8t(x) I{ o be a sdbse?[}oﬂSQH? such that(i, j) € Z only if
from Ap (x). ’

o ) i < j. The setSz also needs to be modified accordingly.
Step 3: Subtract the contribution of eva!uat|0nsf§1‘(x) from | {pi}l-izll be points ofS, in a prespecified order. Take
codeword, and recover degré@olynomialé® (x) = [*(x) ~ 7 _ {(1.9) . (i,i+1),...,(1S:/~1,|S])} (assuming S,

2 (x) using the decoding algorithm foN, m, 2e N +1], code ¢ even)’ Take a family of sets ’

that generates;. Output coefficients off?(x) = ¢P(x) + '
fP(x) as the original data vector. Cij=pi+tl(¢g—1)pi+p;), 2<t<2+1L,

(16)

Now, we generate a s& as follows:
B. Local Node Repair

In this subsection, we explain that under the assumption S =S C. - 17
similar to [9) onZ, all symbols inC* have locality at mos3, e U U “ (7
i.e., each failed storage node can be recovered by corgactin
3 storage nodes. Sincé” = (RM,(2,m))s,, we have With these choices of and Sz, each node has one set of

(CI)J_ _ (RMqL(Zm))ISI. L + 3 points to exploit for local repairablity, and it translates

) Py K :
Following the reasoning used in SEC_TV-B with assumptidft© rate ofC™ being greater than7N2+N72(L+l). Note that this

that Z adds at least one local parity for each point forate is at least that in previous case.

each pointp € Sz, we can find a set ofL + 3 points

{p,p+tih,...,p+iri2h} thatlie on aline iriFgm. We know ACKNOWLEDGMENT
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. 2 . .
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