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On Locality in Distributed Storage Systems
Ankit Singh Rawat and Sriram Vishwanath

Abstract—This paper studies the design of codes for distributed
storage systems (DSS) that enable local repair in the event of
node failure. This paper presents locally repairable codesbased
on low degree multivariate polynomials. Its code construction
mechanism extends work on Noisy Interpolating Set by Dvir et
al. [1]. The paper presents two classes of codes that allow node
repair to be performed by contacting 2 and 3 surviving nodes
respectively. It further shows that both classes are good interms
of their rate and minimum distance, and allow their rate to be
bartered for greater flexibility in the repair process.

Index Terms—Distributed storage systems, locally repairable
codes, punctured Reed-Muller codes.

I. I NTRODUCTION

The importance of ‘cloud’ storage has resulted in a growing
body of work in both theoretical analysis and practical designs
for efficient distributed storage systems. Conventionally, re-
silience in distributed storage is obtained by simple replication
of data; however, such replication can be highly inefficient
in terms of the number of nodes required for this resilience.
Thus, coding has come to play a central role in designs
for resilient distributed storage systems (DSS). In particular,
coding schemes for DSS must enable efficient system repair
in the event of (a small number of) node failures [2]. In
[2], Dimakis et al., the authors consider the total amount
of data downloaded during single node repair, i.e.,repair
bandwidth, as an important metric to gauge the efficiency of
any coding scheme employed in DSS and presents an lower
bound on repair bandwidth. Since then, multiple codes has
been proposed that achieve this lower bound.

In general, there are multiple, possibly apposing, metrics
using which the performance of a DSS can be characterized
such as security, locality, load-balancing and privacy; and the
metric of interest in this paper is locality [3], [4], [5]. The
goal of this line of research is to design coding mechanisms
for DSS that enable node repair to be accomplished while
requiring contact with only a small number of surviving nodes
in the system. In [3], Gopalan et al. establish an upper bound
analogous to the singleton bound on the minimum distance
of locally repairable codes and show that pyramid codes [6]
achieve this bound. Subsequently, the work in Prakash et
al. extends the bound to more general definition of locally
repairable codes [7].

In this paper, our goal is to generalize & extend the existing
literature on locality in repair (and decoding) in DSS [4],
[5], [6]. Our coding scheme builds on schemes studied in the
domain of locally decodable codes (LDC) [8]. Specifically,
our coding scheme employs a punctured Reed-Muller (RM)
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code based on low-degree multivariate polynomials to store
data. Our reason for choosing RM codes based on low-
degree multivariate polynomials is the inherent locality of
its codewords. Indeed, it is well known in LDC literature
that RM codes generated using low-degree polynomials afford
locality, at the cost of being low rate. In other words, the
extent of redundancy required in these codes is comparatively
much higher than a code without locality properties. This
has rendered an RM code based LDC unattractive, as the
advantage provided by locality is superseded by the large
storage space requirement of these codes.

In this paper, our approach is one of judiciously puncturing
RM codes in order to obtain ‘good’ rates for the resulting
codes while still retaining the locality property for repair. A
naı̈ve approach to puncturing RM codes compounds problems,
as one may lose aspects of algebraic structure that make RM
so desirable, including loss in structured decoding strategies as
well as locality. Keeping this in mind, we turn to a methodical
approach for puncturing of RM codes as introduced in [1]. In
[1], Dvir et al. develop an algorithm for puncturing RM codes
based on low-degree polynomials which results in ‘good’
codes, i.e., codes with constant rate and constant relativedis-
tance (in block length). Moreover, [1] also presents an efficient
decoding algorithm for these punctured codes. However, [1]
does not address locality properties of the resulting punctured
RM code. In this paper, we show that a modified version
of the punctured RM codes as studied in [1] exist that are
simultaneously ‘good’ from all three perspectives - rate (extent
of storage), distance (resilience) and locality for repairof DSS.

The remainder of this paper is organized as follows. In
Sec. II we provide a brief introduction to generalized RM
codes from polynomial evaluation perspective with their prop-
erties relevant to this paper. In Sec. III, we define the notion
of local repair and characterize the locality afforded by RM
codes. In Sec. IV and V, we present two closely related coding
schemes for DSS, which enable local repair based on2 and3
nodes respectively.

II. BACKGROUND: RM CODES

A generalized RM codeRMq(u,m) is defined with the
help of irreducible polynomials fromFq[x1, . . . , xm] of degree
at mostu. Here,Fq[x1, . . . , xm] denotes the ring ofm-variate
polynomials over fieldFq, and a polynomial in this ring is
called irreducible if its degree in each variable is less than
q − 1. Throughout the paper, we assumeFq to be a prime
field. Each irreducible polynomial of degree at mostu gives a
qm-length codeword inRMq(u,m) when this polynomial is
evaluated at allqm points inF

m
q . Thus,RMq(u,m) can be
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defined as follows:
RMq(u,m)

=
{

eval(f)Fm
q
∈ F

qm

q :f ∈ Fq[x1, . . . , xm] & deg(f) ≤ u
}

(1)

where eval(f)Fm
q

= (f(α1), . . . , f(αqm)) denotes evalua-
tions of the polynomialf at allqm points inFm

q . The dual code
of RMq(u,m) is also an RM code and is generated by irre-
ducible polynomials of degree at mostu⊥ = (q−1)m−u−1,
i.e.,

(RMq(u,m))
⊥
= RM⊥

q (u,m) = RMq((q−1)m−u−1,m).

Minimum distance ofRMq(u,m) is given by the following
[9]:

dmin(RMq(u,m)) = (q − θ)qm−µ−1 (2)

whereu = µ(q − 1) + θ with 0 ≤ θ ≤ q − 1. Moreover,
Delsarte et al. also characterize the codewords of minimum
weight for this code [9]. These minimum weight codewords
are associated with the polynomials of following form in
Fq[x1, . . . , xm]:

f(x) = ω0Π
µ
i=1

(
1− (ℓi(x)− ωi)

q−1
)
Πθ

j=1 (ℓµ+1(x) − ω̃j)
(3)

where{ω̃j}
θ
j=1 are distinct elements fromFq, and{ω}µi=0 are

arbitrary elements fromFq with ω0 6= 0. Here, {ℓi(·)}
µ+1
i=1

representµ + 1 linearly independent linear forms (functions)
on F

m
q .

III. O N LOCALITY PROPERTIES OFCODEWORDS

In this section, we illustrate the desired locality property
in a codeword of a generalized RM code. First, we formally
define the notion of locality of an encoded symbol:

Definition 1: A particular symbol in a codeword has local-
ity r if it can be recovered by accessing encoded symbols from
only r other positions, i.e., it is uniquely defined by a set of
r encoded symbols in a codeword.

For a particular encoded symbol, possessing a locality ofr

is equivalent to having a codeword of support at mostr + 1
in the dual code such that the support of this codeword in
dual code contains index of encoded symbol in interest. Since
our object of study is the codeRMq(u,m), we focus on the
codeword of minimum support in its dual code. For RM codes
based on polynomials of degree at mostu ≤ q − 2, we know
that the following holds forRM⊥

q (u,m) = RMq(m(q−1)−
u− 1,m):

u⊥ = (m− 1)(q − 1) + (q − u− 2) = µ(q − 1) + θ.

Thus, it follows from (2) thatdmin(RM⊥
q (u,m)) is u + 2.

Next, we present a Lemma that establishes a necessary
condition on the support of minimum weight codewords of
RM⊥

q (u,m).
Lemma 1:For every minimum weight codeword of

RM⊥
q (u,m), u+2 points corresponding to its support lie on

on a line inFm
q . In other words, allu+2 points(p1, . . . ,pu+2)

are of the form(p1,p1+t1h, . . . ,p1+tu+1h), where{ti}
u+1
i=1

are distinct and nonzero elements ofFq andh represents the
direction of the line.

Proof: Let c be a minimum weight codeword of
RM⊥

m(u, q). From (3), c is obtained as evaluations of a
polynomial of the following form at all points ofFm

q :

f(x) = ω0Π
m−1
i=1

(
1− (ℓi(x)− ωi)

q−1
)
Πq−u−2

j=1 (ℓm(x)− ω̃j)

where {ℓi(·)}
m
i=1 are m linearly independent linear forms

(functions) and{ω̃j}
q−u−2
j=1 are distinct elements inFq. Note

that each linear formℓi(·) can be represented by a vector
Li ∈ F

m
q containing the coefficient ofℓi(·). Let L be a

m × m matrix which hasLi as its ith row. Sinceℓi(·) are
linearly independent,L is a full-rank matrix. Foru+2 points
(p1, . . . ,pu+2) corresponding to the support ofc, we have

Lpi = Ωi (4)

where
{
Ωi = (ω1, ω2, . . . , ωm−1, ω̃i)

T
}u+2

i=1
. Now assume that

not allu+2 points lie on a line, i.e., without loss of generality
there exist three points in the set ofu+2 points{p1,p2,p3}
such that

p2 = p1 + t1h andp3 = p1 + t2g

whereg 6= rh for any r ∈ Fq\{0}. From (4) we have

Lh =
(
0, . . . , 0, ω̃2−ω̃1

t1

)
= Ω̂h

Lg =
(
0, . . . , 0, ω̃3−ω̃1

t2

)
= Ω̂g.

(5)

Note that it is possible to find(α1, α2) 6= (0, 0) ∈ F
2
q such

thatα1Ω̂h + α2Ω̂g = 0 ∈ F
m
q . Thus, it follows from (5),

L(α1h+ α2g) = α1Ω̂h + α2Ω̂g = 0.

This, however, contradicts the full-rank nature ofL asα1h+
α2g is a nonzero vector and a full-rank matrix must have a
trivial null space. So, allu+2 points corresponding to support
of a minimum weight codewordc must lie on a line.

In fact, an even stronger result holds in the sense that,
given any u + 2 points on a line inF

m
q , a minimum

weight codeword ofRM⊥
q (u,m) exists that is supported

on theseu + 2 points. Next, we illustrate a procedure for
determining a polynomial inFq[x1, . . . , xm] with degree at
most m(q − 1) − u − 1 that corresponds to a codeword in
RM⊥

q (u,m) supported on a particular set ofu + 2 points
on a line (p1, . . . ,pu+2) = (p1,p2 + t1h . . . ,p1 + tu+1h);
where{ti}

u+1
i=1 are nonzero distinct elements ofFq. First, pick

a vectorv = (0, . . . , 0, vm)T ∈ F
m
q which is nonzero only

at themth coordinate. Second, construct an invertible matrix
F
m×m
q such that

Mv = t1h,

i.e., the last column ofM is t1h. Finally, define a polynomial
g(·) of degreem(q−1)−q−1 = (m−1)(q−1)+(q−u−2),

g(x) = ω0Π
m−1
i=1

(
1− (ℓi(x)− ωi)

q−1
)
Πq−u−2

j=1 (ℓm(x)− ω̃j)

where linear functionsℓi(·) are defined by theith row Li of
L = M−1 ∈ F

m×m
q and (ω1, . . . , ωm−1, ω̂)

T = Lp1, and
{ω̃j}

q−u−2
j=1 are distinct elements inFq\{ω̂, ω̂ + t1

t1
vm, ω̂ +

t2
t1
vm, . . . , ω̂ + tu+1

t1
vm}.

It follows from Lemma 1 and the construction mecha-
nism described above that a minimum weight codeword of
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RM⊥
m(u, q) can only be supported onu+2 points on a line;

and givenu+ 2 points on line, there exist multiple minimum
weight codewords inRM⊥

m(u, q) supported on these points.
Note that there are multiple choices for the matrixM in
(6), and each choice ofM results in a different codeword
of RM⊥

q (u,m) supported onu+ 2 points.

IV. PUNCTURED RM CODES WITH LOCALITY 2

The stage is now set for a general method of designing
coding schemes for DSS with locality2 based onRMq(1,m).
LetG be a generator matrix of an[N,m, 2εN+1]q linear code.
We construct a setS1 = {a1, . . . , aN} ⊆ F

m
q , where{ai}Ni=2

areN rows ofG. For each pair(i, j) ∈ [N ]2 such thati < j,
we define a family of sets{Bi,j}i<j such that

Bi,j = ai + t((q − 1)ai + aj), 2 ≤ t ≤ 1 + L,

whereL is a design parameter of choice. Now, we construct
a setSI as follows

SI = S1

⋃

 ⋃

(i,j)∈I

Bi,j


 ,

whereI ⊆ [N ]2 such that(i, j) ∈ I only if i < j.

A. Encoding Data

Let the file to be encoded beF . We first divide the fileF
into K = m symbolsb = (b1, . . . , bm) ∈ F

m
q . Given the data

vectorb, we construct a polynomialfb(·) ∈ Fq[x1, . . . , xm]
of degree at most1 as

fb(x1, . . . , xm) =

m∑

i=1

bixi. (6)

The data vector b is encoded to a vectorcIb =(
fb(p1), . . . , f

b(p|SI |)
)

where {pi}
|SI|
i=1 are distinct points

of SI in any prespecified order. Each symbol incIb is now
stored on a different node in DSS. LetCI denote the codebook
obtained using the aforementioned encoding scheme. Note that

CI ⊆ (RMq(1,m))SI

, (7)

where (RMq(1,m))SI

denotes the codebook obtained by
puncturing a codeRMq(1,m) on SC

I .
Next, we show that the code as detailed above is well

defined in the sense that the dimension of the code isK.
Let y = (f(a1), . . . , f(aN ))

T denote the vector containing
evaluations offb(·) on S1 = {a1, . . . , aN} ⊆ SI . It follows
from (6) that

y = Gb (8)

where matrixG is the generator matrix of[N,m, 2εN + 1]q
linear code used to constructS1. Thus, b can be decoded
from y using a decoding algorithm corresponding to this
[N,m, 2εN + 1]q code. This implies that the dimension of
the proposed code is alsoK.

B. Local Node Repair

In this subsection, we describe a procedure for2−local
repair of a DSS based on our code. For eachi ∈ [N ], we
defineR(i) = {j ∈ [N ] : (i, j) or (j, i) ∈ I}. We assume that
I is such that

|R(i)|≥ 1 for all i ∈ [N ] (9)

i.e., for each i ∈ [N ] we add at least one setBi,j or
Bj,i while generatingSI . Without loss of generality, a node
corresponding a pointp1 ∈ SI fails. It follows from (9) that
there exists a set ofL+2 points{p1,p1+h, . . . ,p1+(L+1)h}
in SI . For example, if node corresponding toa1 fails and
(1, 2) ∈ I, thenL + 2 points {a1, a2 = a1 + (q − 1)a1 +
a2, . . . , a1 + (L + 1)((q − 1)a1 + a2)} are in SI . In this
example, we havep1 = a1 andh = (q− 1)a1+a2. Note that
theseL+ 2 points lie on a line, which has a directionh and
passes throughp1. For L ≥ 1, we obtainL + 2 ≥ 3 points
(includingp1) on a line inFm

q . Moreover, (7) implies that

(CI)⊥ ⊇
(
RM⊥

q (1,m)
)
|SI ,

where
(
RM⊥

q (1,m)
)
|SI denotes the shortened code of

RM⊥
q (1,m) corresponding to setSI ⊆ F

qm

q . We know
from Lemma 1 and the discussion following it that there
exist a codeword ofRM⊥

q (1,m), which is supported on
these3 points on a line. Moreover, this codeword is part of
the shortened code

(
RM⊥

q (1,m)
)
|SI . Therefore, using this

codeword in the dual code, we can recover the failed node’s
symbol by accessing encoded symbols corresponding to two
other points on the line from two other storage nodes. This
establishes2-locality, and therefore local repairability of our
coding scheme.

In terms of a traditional LDC understanding, the node
repair process can be viewed as polynomial interpolation using
at least 2 out of the remainingL + 1 points (excluding
the point p1 associated with the failed node) on the line
{p1 +h, . . . ,p1 +(L+1)h}. Considerg(t) = fb(p+ th), a
polynomial overt of degree at most1. Given its evaluation at
2 points,{p1 + ti1h,p+ ti2h}, we can uniquely recoverg(t)
using any standard polynomial interpolation method. Now the
desired symbolfb(p1) can be recovered by evaluatingg(t)
at t = 0.

Remark 1:Note that, once we know the polynomialg(t),
we can recover encoded symbols associated with allL + 2
points on the line defined by the pair(p1,h). This property
can be used for cooperative node repair in order to reduce
repair bandwidth by determining a particular line such that
it comprises of less thanL failures and then recovering all
failures on the line simultaneously.

C. Code Parameters

The rate and minimum distance of the proposed coding
scheme depends on three design parameters,I, L, and
[N,m, 2εN + 1]q linear code. In what follows, we pick an
[N,m,N−m+1]q maximum distance separable (MDS) code
for [N,m, 2εN + 1]q code and analyze two cases:
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1) Case 1:In this case, we considerI = {(1, 2), . . . , (i, i+
1), . . . , (N − 1, N)} (assuming thatN is even). Here, we
have |SI |≤ N + N

2 L, which results in the rate of the code
being greater than m

N+N
2
L
= Θ( 1

L
). A quick calculation that

combines locality with (8) shows that the proposed code is
resilient against anyN −m+ L node failures. Therefore we
have,

dmin(C
I) ≥ N −m+ L+ 1 (10)

It also follows from (8) that we can modify our code to
be a systematic code by picking any set ofm rows of G
(say {a1, . . . , am}) to be an identity matrix, without affect-
ing local repairability of the code. Now modifyI to be
{(1, 2), . . . , (m−1,m)} (assuming thatm is even). The upper
bound ondmin(C

I) established in [7] is applicable in this case.
For δ = L+ 1 andr = 2 this bound results in:

dmin(C
I) ≤ N +

m

2
L−m−

(m
2

− 1
)
L+ 1

= N −m+ L+ 1,

which, along with (10), proves the optimality of our codes,
given that locality for information symbols is to be ensured.
Note that this code is essentially a Pyramid code as presented
in [6], [7].

2) Case 2:Next we considerI = {(i, j) ∈ [N ]2 : i < j},
i.e., |I|=

(
N
2

)
. In this case, our rate becomes

rate(CI) =
K

|SI |
≈

m

N +
(
N
2

)
L

= Θ

(
1

mL

)
. (11)

The lower bound given in (10) holds for this case as well.
For this choice ofI, many points ofSI have multiple lines
passing through them inSI . Thus, it is more likely to be
able to combine the node failures in groups along a particular
line; then performing repair simultaneously for all of themby
contacting just2 nodes.

Remark 2: It is evident from previous two cases that setI
enable us to trade-off rate of the code for flexibility in node
repair and data access.

V. PUNCTURED RM CODES WITH LOCALITY 3

In this section, we generalize the method of designing codes
with locality 2 from the previous section to obtain coding
schemes that are3-local repairable. As opposed to2-local
repairable codes, codes designed in this section are based
on polynomials of degree at most2 in Fq[x1, . . . , xm] and
therefore related toRMq(2,m).

Let S1 be the set{a1, . . . , aN} ⊆ F
qm

q as defined in
Sec. IV with respect to an[N,m, 2εN+1]q linear code. In this
section, we also require that the maximal hamming weight of
a codeword in this[N,m, 2εN + 1]q linear code is less than
(1−2ε)N and minimum distance of its dual code is at least5.
We define another setS2 = S1 + S1 ⊆ F

qm

q . The requirement
on minimum distance of dual code implies thatS1 satisfies
condition ⋆2

1. For each pair(i, j) ∈ [N ]2 with i < j, we

1For definition of condition⋆2 and its importance for correctness of
algorithm A1 (defined in Sec. V-A), readers may refer to [1].

construct a family of sets{Ai,j}i<j similar to {Bi,j}i<j in
Sec. IV such that

Ai,j = 2ai + t((q − 1)ai + aj), 3 ≤ t ≤ 2 + L,

whereL is again a design parameter. Now, we generate a set
SI as follows:

SI = S2

⋃



⋃

(i,j)∈I

Ai,j


 , (12)

whereI is as defined in Sec. IV.

A. Encoding data

Given a fileF to be encoded, we divide it intoK =
(
m+2
m

)

symbolsb = [b1, . . . , bK ] ∈ F
K
q . The data vectorb is used to

construct a polynomialfb(x) ∈ Fq[x1, . . . , xm] as follows

fb(x1, . . . , xm) =
∑

i∈M

bix
α(i), (13)

where M is the index set for lexicographically arranged
irreducible monomials of degree at most2 in Fq[x1, . . . , xm]

and xα(i) = x
α(i,1)
1 . . . x

α(i,m
m is ith monomial in M,

which is uniquely defined by its exponent vectorα(i) =
[α(i, 1), . . . , α(i,m)]. In order to get codewordcIb correspond-
ing to data vectorb, we evaluate the polynomialfb(x) at
all points in SI . It follows from (1) that we haveCI =
(RMq(2,m))SI

, whereCI denotes the codebook that we get
from aforementioned encoding procedure.

In order to show thatCI is well defined, i.e., its dimension is
K, we can potentially utilize an approach similar to that used
in Sec. IV and show that a sub-matrix of the generator matrix
of CI is full rank. However, we follow a different approach
in which we show that a polynomial interpolation algorithm
recovers the data polynomialfb(x), therefore the original data
vector b, from the evaluations offb(x) on S2 ⊆ SI . The
interpolation algorithm is due to Dvir et al. [1], and plays an
important role in establishing a lower bound ondmin(C

I) in
Sec. V-C. We present an outline of the algorithm in context of
recovering a polynomial of degree at most2. Interested readers
may refer to [1] for complete algorithm and its analysis.

Interpolation Algorithm A1 [1]: For a polynomial
f(x), we define its partial derivate vector∆f (x) =(

∂f
∂x1

(x), . . . , ∂f
∂xm

(x)
)

and directional derivate in the direc-
tion of a ∈ F

m
q

∂f (x, a) =

m∑

i=1

ai ·
∂f

∂xi

(x)

It follows from Lemma 2.1 in [1] that for anya,b ∈ F
m
q and

the polynomial of interestfb(·) of degree at most2,

fb(x+ a) − fb(x+ b) = ∂fb

2
(x, a − b) + E (14)

whereE is a constant and∂fb

2
(x) is a degree1 polynomial

which represents directional derivative offb
2 (x), homoge-

neous part offb(x) with degree2. Given evaluations offb(x)
on S2 the algorithm works as follows:
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Step 1: Define

T (i) = S1 + ai = (a1 + ai, . . . , aN + ai)

and

cIb(i) = (cIb)T (i) = (fb(a1 + ai), . . . , f
b(aN + ai))

Note that it follows from (14) thatcIb(i)− cIb(j) = (fb(a1 +
ai)−fb(a1+aj), . . . , f

b(aN+ai)−fb(aN +aj)) represents
evaluations ofgi,j(x) = fb(x+ai)−fb(x+aj), a polynomial
of degree at most1, on S1. Thus, using decoding algorithm
for [N,m, 2εN + 1]q code, we can recovergi,j(x) as proved
in part 2 of Lemma 2.3 in [1]. Removing the constant term
within gi,j(x) results in∂fb

2
(x, ai − aj).

Step 2: The algorithm takes all
(
N
2

)
{∂fb

2
(x, ai − aj)}i<j

and recover∆fb

2
(x). As a homogeneous polynomial can be

recovered from its partial derivative vector [1], we getfb
2 (x)

from ∆fb

2
(x).

Step 3:Subtract the contribution of evaluations offb
2 (x) from

codeword, and recover degree1 polynomialξb(x) = fb(x)−
fb
2 (x) using the decoding algorithm for[N,m, 2εN+1]q code

that generatesS1. Output coefficients offb(x) = ξb(x) +
fb
2 (x) as the original data vector.

B. Local Node Repair

In this subsection, we explain that under the assumption
similar to (9) onI, all symbols inCI have locality at most3,
i.e., each failed storage node can be recovered by contacting
3 storage nodes. SinceCI = (RMq(2,m))SI

, we have(
CI

)⊥
= (RM⊥

q (2,m))|SI .
Following the reasoning used in Sec. IV-B with assumption

that I adds at least one local parity for each point for
each pointp ∈ SI , we can find a set ofL + 3 points
{p,p+t1h, . . . ,p+tL+2h} that lie on a line inFqm

q . We know
from Lemma 1 and the discussion that follows the Lemma that
for each set of4 points on this line there exist a codeword
of weight 4 in (CI)⊥ = (RM⊥

q (2,m))|SI supported on the
4 points under consideration. Therefore, for each encoded
symbol fb(p),p ∈ SI , we can locally recoverfb(p) by
contacting a set of3 nodes storing symbols associated with
3 points in the aforementioned set ofL + 3 points on a line
defined by the pair(p,h). In fact, fb(p) can be recovered
without knowing the dual codeword of weight4 supported on
4 points (includingp) by applying polynomial interpolation
based local decoding algorithm described in Sec. IV-B. This
establishes thatCI is 3-local repairable.

C. Code Parameters

In this subsection, we study the rate and minimum distance
of CI . For m large enough and under the assumption that
[N,m, 2εN + 1]q code satisfies requirements specified in the
beginning of Sec. V, it follows from Theorem 1.5 in [1] that
algorithm A1 recovers the data polynomialfb(x) from its
evaluations onS2 even whenε

2

18 |S2| evaluations are incorrect.
Therefore we have

dmin(C
I) ≥

ε2

9
|S2|+1 = Θ(m2), (15)

Similar to Sec. IV-C, we present rate ofCI for two choices
for I:

1) Case 1:Here we takeI = {(i, j) ∈ [N ]2 : i < j}. This
ensures that each symbol has at least one set ofL+3 points to
allow its local repair. Note that in this case, for some encoded
symbols there are multiple line passing through these symbols
in SI . For example, each symbol corresponding to a point in
{2ai}

N
i=1 can be repaired alongN − 1 lines. In this case, we

have that|SI |≤ (L+ 1)N2. Therefore,

rate(CI) ≈
(1− 2ε)2

2L
= Θ

(
1

L

)
. (16)

which can be considered as a good rate for locally repairable
codes, whenL is small.

2) Case 2: Present definition ofI andSI utilize the fact
that {2ai, ai + aj , 2aj} lie on a line. We may modify the
set I to be a subset of[|S2|]

2 such that(i, j) ∈ I only if
i < j. The setSI also needs to be modified accordingly.
Let {pi}

|S2|
i=1 be points ofS2 in a prespecified order. Take

I = {(1, 2), . . . , (i, i+1), . . . , (|S2|−1, |S2|)} (assuming|S2|
is even). Take a family of sets

Ci,j = pi + t((q − 1)pi + pj), 2 ≤ t ≤ 2 + L,

Now, we generate a setSI as follows:

SI = S2

⋃



⋃

(i,j)∈I

Ci,j


 , (17)

With these choices ofI and SI , each node has one set of
L+ 3 points to exploit for local repairablity, and it translates
into rate ofCI being greater than K

N2+N2

2
(L+1)

. Note that this

rate is at least that in previous case.
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