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A refined analysis of the Poisson channel in the
high-photon-efficiency regime
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Abstract—We study the discrete-time Poisson channel under outputy is the actual number of photons that are detected in
the constraint that its average input power (in photons per the pulse duration. The dark currentis the average number

channel use) must not exceed some constafit We consider the of extraneous counts that appearnjinWe note that, although

\év(;(:g bzﬂg,v\t\;]ger:ép{whoéoglﬁ:ﬁlﬁéergc%:ﬁrimfem’bzrsgroaﬁcrggs Czheeos the name “dark current” is traditionally used in the Poisson
proportionally with £. Improving over a previously obtained first-  channel literature, these extraneous counts usuallydedboth

order capacity approximation, we derive a refined approximaion, the detector’s “dark clicks” (which are where the name “dark
which includes the exact characterization of the second-der current” comes from) and photons in background radiation.

term, as well as an asymptotic characterization of the third ; _ ; ;
order term with respect to the dark current. We also show that We impose araverage-power constraifion the Input

pulse-position modulation is nearly optimal in this regime E[X] <& 3)

Index Terms—Optical communication, Poisson channel, chan-
nel capacity, wideband, low SNR. for some€& > 0.

In applications like free-space optical communicatiohs, t
cost of producing and successfully transmitting photons is
high, hence highphoton-information efficieneyamount of
3Rformation transmitted per photon, which we henceforth ca
P I simply “photon efficiency”—is desirable. As we later demon-
and whose outpuj is in the setZj of nonnegative INtEYErs. girate, this can be achieved in tedebandregime, where
Conditional on the inpufy = z, the outputY” has a POISSON the pulse duration of the input approaches zero and, asgumin
dlstrlbuPon of mear(A +x), whereA > 0 is called the “dark ¢ thecontinuous-timeaverage input power is fixed, whefe
current” and is a constant that does not depend on the lput 355 0aches zero proportionally with the pulse durationteNo
We denote the Poisson distribution of me@aby Poig(-) SO 4t i this regime the average number of detected backgroun
photons or dark clicks also tends to zero proportionallyhwit

|. INTRODUCTION

W E consider the discrete-time memoryless Poisson ch
nel whose input: is in the seR{ of nonnegative reals

i () — o6& +
Poig (y) = e PR €Ly @) the pulse duration. Hence we have the linear relation
With this notation the channel laW/(-|-) is A\ =cE, (4)
W(ylz) = Pois\y.(y), ze€Rg,y€Zyg. (2)  wherec is some nonnegative constant that does not change

This channel models pulse-amplitude modulated opticWith E. In.practice, as_ymptotic results in th_is regime are useful
communication where the transmitter sends light signals /fy Scenarios wher€ is small and where\ is comparable to
coherent stategwhich are usually produced using laser de?" much smaller tharf. Scenarios where is small butA
vices), and where the receiver emplayigect detection(i.e., 1S Much larger is better captured by the model whersiays

photon counting) [1]. The channel input describes the constant while tends to zero; see [2, Proposition 2].

expected number ofignal photons(i.e., photons that come Ve denote the capacity (in nats per channel use) of the
from the input light signal rather than noise) to be deteated channel (2) under power constraint (3) with dark current (4)

the pulse duration, and is proportional to the light sigsnalby C(€,¢), then
intensity! the pulse duration, the channel's transmissivity, . )
and the detector’s efficiency; see [1] for details. The clehnn Cl&,e) = E&%Eg HX;y), )
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1We assume that the pulses are square, which is usually thércpeactice. 2Here “power” is in discrete time, means expected number ¢éatied
If they are not square, the light signal’s intensity shoutdaveraged over the signal photons per channel use, and is proportional to tméirtmus-time
pulse duration. physical power times the pulse duration.

X <A with probability 1 (6)
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is imposed or not, as long ad is positive and does not Some progress has been made in improving the approx-

approach zero together with imation (9). It is noticed in [10] that the photon efficiency
We now formally define the maximum achievable photoachievable on the Poisson channel (2) with- 0 may be of

efficiency Cpe(€, ¢), where the subscript notation serviceshe form

a reminder that this quantity is photon efficiency and not 1og% _10g10g% +0(1), (11)

capacity:
pacty » C(€,0) which means that restriction to coherent-state inputs #edtd
Cre(&,0) = —5— (") detection may induce a loss in theecond-order termin

he photon efficiency on the pure-loss bosonic channel. For
actical values of, this second-order term can be significant.
cg example, fol€ = 1077, the difference between the first-

Various capacity results for the discrete-time Poissomehd
nel have been obtained [2]-[6]. Among them, [2, Propositi
1] considers the same scenario as the present paper ants ass

th order term in (9) and the first- and second-order terms in (11)
at .
. C(&, 0 is about20%.
151?01@ =1, c€[0,00). (8)  The analysis in [10] (whose main focus is not on the

] . o Poisson channel itself) is based on certain assumptionseon t
In other words, the maximum photon efficiency satisfies  inpyt distribution? It is therefore unclear from [10] if (11)
1 1 is the maximum photon efficiency achievable on the Poisson
Cre(€, c) = log z +o (10g g) , c€0,00). (9 channel (2) withA = 0 subject to constraint (3) alone, i.e.,
. if (11) is the correct expression fa@rpe(€,0). In the present
Furthermore, the proof of [2, Proposition 1] shows that th&aper, we prove that this is indeed the case.
limit (8) is achievable using on-off keying. In the AppendiX pecent works such as [10], [11] often ignore the dark current
we provide a proof for the converse part of (8) that is muG he poisson channel. It has been unknown to us whether
simpler than the original proof in [2]. _ the dark current, i.e., whether the constaninfluences the
The approximation in (9) can be compared to the maximu@cong term in (11) and, if not, whether it influences the next
photon efficiency achievable on tipeire-loss bosonic channeliarm in photon efficiency. We show that the constardoes

[7]. This is a quantum optical communication channel thaf i influence the second-order term (€, ¢), but does
attenuates the input optical signal, but that doesadd any . fluence the third-order. constant term.

noise to it. The transmitter and the receiver of this channel|; pag long been knov;/n that that infinite photon efficiency
may employ any structure permitted by quantum physiGgy the poisson channel with zero dark current can be achieved
When the transmitter is restricted to sending coherentabpti using pulse-position modulation (PPMyombined with an
states, and when the receiver is restricted to ideal dirggiier code [3], [4]. Further, [11] observes that PPM can
detection (with no dark counts), the pure-loss bosonic BBEN 5chieve (11) on such a channel. PPM greatly simplifies the
becomes the Poisson channel (2) wih= 0. We denote cqging task for this channel, since one can easily appliegis

by Cpe-bosoni¢€) the maximum photon efficiency of the pureqges such as a Reed-Solomon code, to the PPM “super
loss bosonic channel under an average-power constraint %bols”; while the on-off keying scheme that achieves (11)
is equivalent to (3). The value @pe.posonié€) can be easily pag 4 highly skewed input distribution and is hence difficult

computed using the explicit capacity formula [7, Ed. (4)ko code. The question then arises: how useful is PPM when
which yields there is a positive dark current? This question has two parts

1 First, is PPM still near optimal in terms of capacity (or porot
Cpe-bosonié&) = log R o(1). (10) efficiency) when there is a positive dark current? Secondsdo
Comparing (9) and (10) shows the following: PPM still simplify coding when there.is a darll< current.? We
. For the pure-loss bosonic channel in the widebardpswer the first part of the question in the affirmative in our
main results. We cannot fully answer the second question in

regime, coherent-state inputs and direct detection e . o .
g : P . - %5 paper, but we shall discuss it in the concluding remarks
optimal up to the first-order term in photon efficiency

(or, equivalently, in capacity). For example, the achieve section VII.
Lor, €q o, pactty). pie, they The rest of this paper is arranged as follows. We introduce
infinite capacity per unit cosf8], [9]. . . . :
. some notation and formally define PPM in Section II. We state
o The dark current does not affect this first-order term. . . . .
) o ) and discuss our main results in Section Ill. We then prove the

In the present paper, we refine the analysis in [2] in tWQchieyability parts of these results in Sections IV and \4 an

aspects. First, we provide a more accurate approximation {3,ye the converse parts in Section VI. We conclude the paper

Cpe(€, c) that contains higher-order terms, and that reflects g, numerical comparison of the bounds and some remarks
influence of the dark current, i.e., of the constar8econd, we ,, section ViII.

identify near-optimal modulation schemes that facilitatele
design for this channel. Il. NOTATION AND PPM

SFor the achievability part of (8), we note that its proof candimplified We usua”y use a lower-case letter like to denote a
by letting the decoder ignore multiple photons, rather toansidering all Constant, and an upper-case letter liKeto denote a random

possible values ot as in [2]. This can be seen via the achievability proofsyariable.
in the current paper, which do ignore multiple photons at ribeeiver, and
which yield stronger results than those in [2]. 4According to conversation with the authors.



We use natural logarithms, and measure information in nats.The achievability part of Theorem 1 follows from Theo-
We use the usual(-) andO(-) notation to describe behav-rem 2. To prove the latter, we need to show two things: first,
iors of functions of€ in the limit where& approaches zero that the largest photon efficiency that is achievable withpde
with other parameters, if any, held fixe8pecifically, given PPM, which we henceforth denote Be.ppr(E, ¢), Satisfies
a reference functiorf(-) (which might be the constarif), a

. . - 1 1
function described as(f(£)) satisfies Cpe-ppME, ¢) > log E—log log E+O(1), c€10,00); (18)
i o(f(£)) =0, (12) and second, that the maximum photon efficiency that is achiev
gl f(€) able with soft-decision PPM, which we henceforth denote by
and a function described @3(f(&)) satisfies Cpe-ppm(spf€,; ¢), satisfies
S 1 1
o O(f(g)) ’ < 0. (13) OPE_ppM(SDig, C) — log E + log 10g E
glo] f(€) lim lim > —1. (19)
. . . c—o0 £10 log c
We emphasize that, in particular, we dot useo(-) andO(-)
to describe how functions behave with respect.to To prove the converse part of Theorem 1, we note that the
We adopt the convention capacity of the channel is monotonically decreasing {2],
and hence so is the photon efficiency. It thus suffices to show
0log0 = 0. (24)

two things: first, that, in the absence of dark current, thgdst
We next formally describe what we mean by PPM. On tHehoton efficiency achievable with any scheme satisfies
transmitter side:
« The channel uses are divided into frames of equal lengths;
e In ga_\ch frame, there is only one char_mel input that $hd second, that
positive, which we call the “pulse”, while all the other

Cre(€,0) < 1og% — loglog % + O(1); (20)

: . 1 1
inputs are zeros, . Cpe(€, ¢) — log = + loglog =
« The pulses in all frames have the same amplitude. lim Lim € € < 1. (21)
c—00 £10 logc -

On the receiver side, we distinguish between two cases hwhic
we call simple PPMand soft-decision PPMrespectively. In ~ We prove (18) in Section 1V, (19) in Section V, and (20)
simple PPM, the receiver record$ most one pulsén each and (21) in Section VI.

frame; if more than one pulse is detected in a frame, then thaflo better understand the capacity results in Theorem 1, we
frame is recorded as an “erasure”, as if no pulse is detectadke the following remarks.

at all. In soft-decision PPM, the receiver recoms to two  , Choosinge = 0 in (15) confirms that (11) is the correct
pulsesin each frame; frames containing no or more than tWo  asymptotic expression up to the second-order term for

detected pulses are treated as erasures. Cpe(€,0). Compared to (10) this means that, on the

pure-loss bosonic channel, for smal| restricting the
[1l. M AIN RESULTS AND DISCUSSIONS receiver to using direct detection induces a loss in photon
The following theorem provides an approximation for  efficiency of aboutoglog ¢ nats per photon. Note that

the photon efficiencyCpe(€, ¢) in the high-photon-efficiency ~ the capacity of the pure-loss bosonic channel can be

regime. achieved using coherent input states only [7], so this loss
is indeed due to direct detection, and not due to coherent

Theorem 1. The maximum photon efficien€ye(€, ¢) achiev- input states.

able on the Poisson channg?) subject to constrain{3) and Attempts to overcome this loss by employing other fea-

with dark current(4), which we define irf7), satisfies sible detection techniques have so far been unsuccessful

[10], [12].

« The expression on the right-hand side of (15) does not
depend one, so the value of: affects neither the first-
order term nor the second-order term @g(&,c). In

1 1
Cpe(€, ¢) = log - log log z +0(1), ce€[0,00). (15)

Furthermore, denote

K(&,¢) 2 Cpe(€,¢) — 1og% + loglog %, (16) particular, these two terms do not depend on whether
is zero or positive.
then « The first term inCpg(€, ¢) that ¢ does affect is the third,
... K(& ¢ . —K(&¢) constant term. Indeed, though we have not given an exact
clggolg% log ¢ - cli{go léf% log ¢ =-1 19 expression for the constant term, the asymptotic property

) ) ~ (17) shows thatc affects the constant term in such a
Our second theorem shows that PPM is nearly optimal in way that, for larger, the constant term is approximately

the regime of interest. —loge.

Theorem 2. The asymptotic expression on the right-hand side ¢« Theorem 1 suggests the approximation

of (15)is achievable with simple PPM. The limits (b7) are 1 1
achievable with soft-decision PPM. Cre(€,¢) m log & —loglog = —loge.  (22)



The terms constituting the approximation error, roughly
speaking, are either vanishing for smdll or small
compared tdog ¢ for largec. Note that if we fix the dark
current, i.e., if we fix the producte, then the first and
third terms on the right-hand side of (22) cancel. This is
intuitively in agreement with [2, Proposition 2], which
asserts that, for fixed dark current, photon efficiency
scales like some constant timéslog(1/€) and hence
not like log(1/&). We note, however, that (17) cannot be
derived directly using (15) together with [2, Proposition «
2], because we cannot change the order of the limits. In
(17) we do not let€ tend to zero and tend to infinity
simultaneously. Instead, we first l&tend to zero to close
down onto the constant term @pe(E, ¢) with respect to

these lower bounds, because the dependence between
the channel inputs introduced by PPM can only reduce
the total mutual information between channel inputs and
outputs. These (PPM and on-off keying schemes) are
different from the on-off keying scheme used in [2] where
the “on” signal has a fixed amplitude that does not depend
on &. The latter on-off keying scheme, as well as any
PPM scheme with a fixed pulse amplitude (with respect
to £), is not second-order optimal on the Poisson channel.
Because in the PPM schemes to achieve (18) and (19) the
pulse tends to zero & tends to zero, we know that, as
claimed in Section I, both our theorems hold if a constant
(i.e., not approaching zero together wifh peak-power
constraint as in (6) is imposed oXi in addition to (3).

€, and then let tend to infinity to study the asymptotic  \ye next proceed to prove our main results, and leave further

behavior of this constant term with respectcto

« The approximation (22) is good for large but diverges
asc tends to zero. We hence need a better approximation
for the constant term, which behaves likelogc for
large ¢, but which does not diverge for smail As both

discussions to Section VII.

IV. PROOF OF THESIMPLE-PPM LOWER BOUND (18)

the nonasymptotic bounds and the numerical simulationsAssume that is small enough so that

we show later will suggest—log(l + ¢) is a good
approximation:

1 1

Cpe(€, ) =~ log = — loglog z

z —log(1 + ¢).

(23)

(25a)
(25b)

1
Elog- <1
0g5<

E<e “.

For modulation and coding considerations, we make sor@®nsider the following simple PPM scheme:

remarks following Theorem 2.

o Theorem 2 shows that PPM is optimal up to the secon
order term in photon efficiency whea = 0. Hence, .
compared to the restriction to the receiver using direct
detection, the further restriction to PPM induces only a
small additional loss in photon efficiency.

o Furthermore, for the third-order, constant term, (soft-
decision) PPM is also not far from optimal, in the sense
that it achieves the optimal asymptotic behavior of this
term for largec. *

« In Section IV we show that

Cre-pPME, €)
> 1og% —loglog é —c—log(l+¢)— g +0(1).(24)

A careful analysis will confirm that the bound (24) is
tight in the regime of interest, in the sense that simple
PPM cannot achieve a constant term that is better than
linear in ¢ (while being second-order optimal). This is
in contrast to soft-decision PPM, which can achieve a
constant term that is logarithmic in In particular, simple
PPM is clearlynot third-order optimaP

« Inthe PPM schemes that achieve (18) and (19), which we
describe in Sections IV and V, the pulse has amplitude |
1/(log(1/€)), which depends o&, and which tends to
zero asf tends to zero. An on-off keying scheme having
the same amplitude for its “on” signals can also achieve

5A scheme between simple and soft-decision PPM is the fallgwiVhen
detecting multiple pulses in a frame, the receiver randaselgcts and records
one of the positions (possibly together with a “quality” flaghis scheme
outperforms simple PPM in photon efficiency, but its thirder term is still
linear inc: it scales like—c/2 instead of—c.

gcheme 1.

The channel uses are divided into frames of lergtko

each frame contain$ input symbolszy,...,x;, and b
corresponding output symbolg, . .., y,. We set
1
b= ) 26
L‘) log %J (26)

Within each length-frame, there is always one input that
equalsn, and all the otherb— 1) inputs are zeros. Each
frame is then fully specified by the position of its unique
nonzero symbol, i.e., its pulse position. We consider each
frame as a “super input symbol% that takes value in
{1,...,b}. Herez =4, i € {1,...,b}, means

(27a)
(27b)

x; =0, je{l,...,b},j#1.
To meet the average-power constra{8) with equality,
we require

n=bE. (28)
The b output symbolsy,...,y, are mapped to one
“super output symbol” that takes value iq1,...,b, 7}
in the following way:jy = i, i € {1,...,b}, if y; is the
uniquenonzero term in{y1,...,ys}; and g = 7 if there
is more than one or no nonzero term {@1,...,ys}.

We have the following lower bound on the photon efficiency
achieved by the above scheme.



Proposition 1. Under the condition§25), Scheme 1 achieves W (?]i) = 1 — py — (b — 1)p1, ie{l,...,b}. (48)

photon efficiency We now have, irrespective of the distribution &f

Cpe-ppM €&, C -
rermee) " H(V|X) = polog —— + (b~ 1)ps log -
2(1—§)logb—cnlogb—<1+—>log(1+c) po p1
n
+ (1 —po — (b—l)pl)log )
& n 1—=po—(b—1)ps
+ (1 + 7) {log(l —cn) + log (1 - 5)} (49)
. 23 (29) Denote the capacity of this super channeﬁﬁ@é, ¢, b,m), then
n

C(&,¢,b,m) = max I(X;Y). 50
whereb andn are given in(26) and (28), respectively. (€;¢,b,m) HIIDE;X (X5Y) (50)

Proof of (18) using Proposition 1: We plug (26) and Note that the total input power (i.e., expected number of

(28) into (29), note that detected signal ph.otons) in each frame equal§herefore
we have the following lower bound ofipe-ppM &, ¢):
{ ! J _ 1 +0(1) (30) ~
510g% 510g% CreppME,¢) > M (51)
and simplify (29) to obtain . . K . . L
It can be easily verified that the optimal input distribution
Cpe-ppME, €) for (50) is the uniform distribution
1 1 3 1
Zlogg—loglogg—c—log(1+c)—§+o(1) (31) PX(i):gv ie{1,...,b), (52)
1 1 o . . o -
=log = —loglog = + o(1). (32)  which induces the following marginal distribution &ft
n oy _Po+(—1p
When proving Proposition 1, as well as Propositions 2 Py () = b re{lbh (5%
and 3, we frequently use the inequalities summarized in the Py(?)=1-po—(b—1)p1. (53b)
following lemma. We can now use the above joint distribution 6N,Y) to
Lemma 1. For all a > 0, lower-boundC' (&, ¢, b, n) as follows:
10g(1 —+ CL) S a, (33) é(ga c, ba 77)
1—e*<a, (34) =I1(X;Y) (54)
e a>q_ %azl (35) =H(Y) - H{Y|X) (55)

Proof of Proposition 1:We compute the transition matrix (1=po— (b= 1p1)log 1—po—(b—1)p

of the PPM “super channel” as follows: b
i A + (po+ (b= L)1) log ————
W (i|i) = Pr[Y = i|X =] (36) po+(b— )pll
b —(L—=po—(b—1)p1)log
:Pr[YiZ1|Xi=n]HPr[Yk:0|Xk:0] (37) ( 0= 1) 1=po—(b—1)ps
_ 1 1
= — po log v (b—1)p1log o (56)
b—1
= (1 —=w(0[n)) (W (00)) (38) o bpo b Dpilo bp:
— (1 e 1) e~ (b-1eE (39) o8 o + (b— Dpy PLo8 e+ (b— )y
— ef(bfl)cf _ efnfbcf (40) (57)
2po, i€ {l....b} (41) =pologb—pologf%_”pl
0
W(jli) = Pr[Y" = j|X =] (42) <tog (14421
= Pr[Yi = 0| X; = g Pr[Y; > 1| X; = 0 + -1
b —(b—=1)p1 log w (58)
I Privi=0/Xc=0] (43) il
k) =log (147,71 ) <7
b—2 bp1 b—1
= W(0ln)(1 — W(0[0)) (W(0[0)) (44) > pologb —polog 1+ YRS (po —p1) (59)
— efnfcg(l _ €7c£) 87(b72)c£ (45) \2,1-/ S;D' )

efnf(bfl)cf _ efnfbcf (46) bp1
.. ., > pologb —pgl 14+ — | —po- 60
pro G E (L b} i A (47)  —PolosbTR Og( +p0> P ©0

1>l



Next note thatp, can be upper-bounded as which indeed satisfyx > 0 and 8 > 1; and (74) follows by
dropping the term}—bc&y2 log b, which is positive.

_ ,—(b=1)cE _ _—m—bcE
po=¢ e’ (61)  Combining (28), (51), and (74) yields (29). m
_ e—(b—l)cE (1 _ 6—77—05) (62)
<l—e 7 (63)
<+ cE, 64) V. PROOF OF THESOFT-DECISION-PPM LOWER

BouND (19)

where the last step follows from (34). It can also be lower-
P (34) Consider the following soft-decision PPM scheme:

bounded as
Do = e—(b=DeE _ g=n—bet (65) Scheme 2.The transmitter performs the same PPM as in
CbeE rbee Scheme 1. The receiver maps theoutput symbols to a

ze —e" (66)  “super symbol”;j that takes value i{1,...,b,2YU{{i,j} C

= e (1—e (67) {1,...,b}}. The mapping rule is as follows. Take= i if y;

Zl,bcg?_’;’ is theuniquenonzero term in{ys, ...,y }; takey = {i, 5} if

-2 y; andy; are theonly two nonzero terms if{yi,...,y}; if

> (1 —bc) (77 — l,f) , (68) there are more than two or no nonzero term{igh, ..., yp},

2 take ) = ?.

where the last inequality follows from (34) and (35), andiiro pyqsition 2. Under the condition€25), Scheme 2 achieves
the fact that the first multiplicand on its right-hand sid€irs photon efficiency

fact, both multiplicands are) nonnegative satisfying (25)
and other parameters chosen accordingly. Also note gthat

Cpe- £,
can be upper-bounded as Pe-pPm(sDIE, )

n c€
pp = 1= (0=DeE _ omn—bef (69) 2 (1 B 5) logb — enlogh — (1 + ?) log(1 +¢)
— o= (b=1)cE (1 _ =€ (70) & B AN
T( ~— ) + 1—%—77 {1og(1 cn)—t—log(l 2)} 1 ;
< cE. ) (71) n (1 - ﬁ) 1) (- ) (1= en)log 2
2 2 2
Using (64), (68) and (71) we can continue the chain of 2
inequalities (60) to further lower-bourd(&, ¢, b,n) as —5= c(n +c€) (78)
0(5, ¢,b,m) whereb and n are given in(26) and (28), respectively.
1
> (1—bc) (77 — 5172) log b Proof of (19) using Proposition 2: Simplifying (78) we
obtain
bc&E
—(n+c&)log |1+ 1 1
(1—bc€) (n— 37?) lim {CPE-PPM(SDifa c) —log ¢t loglog E}
—n—c& (72) £lo 5
> (1 —bc) (77 — %172) logbh — (n+ c€) log (1 + @) > —log(l+¢) - 2 (79)
n
+ (4 cE) {log(l — be€) + log (1 _ Q)} This immediately y|§l_ds (29). N ] .
2 Proof of Proposition 2:We compute the transition matrix
-n _105 . (873) of the super channel that results from Scheme 2. We first note
> (15— 20 ) logb — beEnlogh — (1 + ¢€) lo <1+i) )
(n 57" | log nlogb — (1 + c&)log ; W ili) = po. (80)

—n—cE. (74) wherep, andp; are given in (41) and (47), respectively. For

Here, (73) follows from the fact that, for all > 0 and3 > 1, the remaining elements of the transition matrix we have

log(1 + aB) <log(B + aB) =log B +log(l + ), (75) W({z,]}’z) = PrlY; > 1|X; = n] Pr[Y; > 1|X; = 0]
. . b
with the choices . i H Pr[Y; = 0| X, = 0] (82)
o= (76) #Gis)
B B 1 (77) _ (1 _ efnfcg)(l _ efc£) ef(b72)c£ (83)
b (1-Ly) 2pa, {ird} C {1, (84)



W ({j,k}|i) = Pr[Y; = 0|X; = 5] Pr[Y; > 1]X; = 0]

-Pr[Yk > 1|X'1C = 0]
b

- J[ Prlve=0/X,=0] (85)
e (k)
— efn7c£(1 _ €7C5)2 ef(b73)c£ (86)
23, {i,5,k} C{1,...,b}; (87)
W(?i) =1—po— (b—1)p1 — (b—1)ps
_ ng (88)
Ly, ie{l,..., b} (89)

We now have, irrespective of the distribution &F

. 1 1
H(Y|X) = polog— + (b —1)p; log —
Do P1

1 b—1)(b—-2 1
o g L 02002
D2 2

1
+ pglog —.
yZ

Choosing a uniformX (which is optimal as in Section I1V),

we have the following distribution ol

Py(i)zw, ie{l,...,b) (91)
. 2pa + (b — 2 .
Po(igy) = 22020 gy ey 92)
Py(?) = pa. (93)
Therefore
H(Y)
b
= (po + (b—1)p1) log ——————
(o + (b= 1)p1) 8 T
(b—1)(b—2) > b
b—1 ~ pi)log—m———
i <( 2t 2 P8 ) 8 opy + (b~ 2)ps
1
+ pylog —. (94)
D4
Using (90) and (94) we have
I(X;Y)=H(Y)— H(Y|X) (95)
= po log S -
po+ (b—1)pm
bp
+(b—1)p; log ———————
(b=Dp1log po+(b—1)pm
bp2
+(b—-1pylog—=
(b= 1)p2log 2p2 + (b — 2)ps
(b—1)(b—2) bps
1 . (96
" 2 P 2ps + (b — 2)ps (56)

side of (96) as

bp2
b—1pylog — 2
( Jpzlog 2p2 + (b —2)p3

b b—2
b2
SN———
:10g(1+“’;ﬂ)<<b;ﬂ
P2 — Do

b (b—1)(b—2
> (b—Dpalog 3 - %()m 8)

b 2
> (b= 1)p2log 5 — . (99)

We lower-bound the fourth term on the right-hand side of (96)
as

(b-1)(b—2) bps
lo
P58 o + (b—2)ps
b—1)(b—2 2 b—2
_ ( )( )p3 log P2 + ( )3 (100)
2 bps
:log(lJr 2(?3};3?3) ) < 2(p§p;p3) Si%
(b—1)(b—2) 2p,
A\ ? W . 101
5 A (101)
> —bps. (102)

Using (34) and (35) we have the upper boundpgn

pr=(1—e 1) (1—e ) 72 (103)
<ntc€ <c€ <1
< (n+c&)cE, (104)
the lower bound om,
p2= (11— e 1cE) (1- e~ C8) = (b=2)cE (105)
"’ beE
>1—bc

>l-en>n-1 >cE-<2£2

> <n - %2) <05 - 02252> (1-bcE),  (106)

and the upper bound agny

__—n—cE —cEN2  —(b—3)cE
ps=¢e T (1—-e“) e (107)
—\ ,
<1 <c& <1
< &% (108)

From (96), (99), (102), (104), (106), and (108) we obtain
a lower bound on the additional mutual information that
is gained by considering output frames with two detection
positions:

At this point, note that the first two summands on the right-
hand side of (96) constituté(X;Y), which we analyzed in
Section IV. It remains to find lower bounds on the last two b2,

summands. We lower-bound the third term on the right-hand = 5 €T = b(n +c€)ck.




Dividing the above bynp and plugging in (28) we obtain awhere the supremum is taken over all allowed input distribu-
lower bound on the additional photon efficiency: tions. We choosé(-) to be the following distribution:

I(X;Y)—I(X;Y)

N 1- (1 + C)ga y=0
2¢2 —
n c& b R — y—1
S O [ (N (RN
) log ¢ log ¢ (120)
c 120
— —n—c(n+cf). 111
2! r ) (111) For anyz > 0 we have
Adding the right-hand side of (111) to the right-hand side of
(29) yields (78).
D(W(-[z)||R())
VI. PROOF O U BOUNDS (20 21 o 1
3 ROOF OF THE PPE.R UNDS (20) AND (21) _ Z POiS, e (y) - log o H(Y|X =) (121)
Proposition 3. Assume tha€ is small enough so that = (y)
E<et 112a) =e @O log— —
1 e_é ( ) e Ogl—(l—i—c)é‘
e 1-2e1 o
Elog= < — 112b .
8 l+c ( ) - Z Pois; tce(y)
1\* 144 =1
& (log E) < 0102 (112c) ) Lo\t
dogd (148 (1- — ) [ —
then log ¢ log ¢
Cre(€,¢) <log % —loglog % —log(1+¢)+2+1logl3 - HYX =) . - (1212)
1 L 1 = e*(ercg) 1og m + Z P0i§g+cg (y)y log 10g E
Z E—| — c —
+5<0g1—(1+0)5 ( “)5) v=1
2 1 1 =EY | X=z]=z+c&
+ 5510glogg + (1+¢)log — (113) o
logk + <Z Poisc+cg(y)>
y=1

Proof of (20) using Proposition 3: The last three

summands on the right-hand side of (113) are all of the form Slentrre®
o(1). Settingc = 0 in (113) we have
1 1 log + log
Cre(€,0) < log z —loglog = +2+log 13+ 0(1)  (114) (14 c)€log ¢ 1oL :
log =
1 1 €
=log - log log z +0(1). (115) —HY|X =) (123)
B = @tD]og o (x + &) loglog %
Proof of (21) using Proposition 3: From (113) we have ~(+¢)
) . + (1 _ 87(m+c£))
%{CPE(ﬁ,C)—logE—HOglogE} :
< —log(1+c) +2+log13. (116) - | log (e + log T
3 1— ——
Hence 10g%
1 1 —HY|X =ux). 124
Cre(€,¢) —log & +loglog . : (124
el v g g
lim lim
e el 1o (1105_00) +9 410013 We can lower-boundi (Y |X = z) as
< lim —2% & (117)
c—00 lOgC
= 1. (118)  H(Y|X = z) > Hy(e @19 (125)
[ | = e @FE) (g 4 cE)
Proof of Proposition 3: Like in [2], we use the duality (a+cE)
bound [13] which states that, for any distributié{-) on the (- )log 1 — e (@+eE)” (126)

output, the channel capacity satisfies

C < supE[D(W(|X)|R(")],

(119) Using this and (124), we upper-boud{ W (-|z)|| R()) as



D(W(|x)|[R())

1
< e @ted) g Ttz + (z + &) loglog z

+ (1 _ ef(x+c€))

1
log T +log
1 1
(1+c)€log ¢ 1_ !
log ¢
—(ZTTC —(\ZTC 1
— e (z+ 5)($+C(€)_(1_€ (=+ 5))10gm
(127
= e~ (@) Jog _ + (z + &) loglog 1
1-(1+¢c)é &

+ (1 — e~ @) Jog T e~ (@+eE) (4 c€)
~—_——— o - ——
<z+c >c
<z+cf log % >c€

>0
1— e—(w-l—cé')
1—e @+ lopg —— 128
Tl=e )Og(l—i-c)é'log% (128)
1
< —(z+c€) log — — £
= — - Bl (toe ©
>(14¢)E—cE>0
1 1
+ (z + c€)loglog z + (z + ¢€)log —
1—
log%
1— ef(ercS)
+ 1— e (oted) log ————— (129
(_e,_l ©8 (14 c)€log £ (129)
=(1—e—<E) (e~ —e—(w+cE))
1
<(log——— —¢&
< (s =t =)
1 1
+ (z + c€) loglog z + (z + c€) log —T
1 —
1og%
1— e—(m-l—cé')
—c€ _ —(z+c€) 1
e ¢ ) log (14 c)€log £
1— e—(m-l—cé')
1—e)]og —— 130
Tl=e )Og(l—l—c)é'log% (130)
1
=& log——— — (1 &
+<Og1—(1+0)5 (1+¢) )
1 1
+ (z + c€) loglog z + (z + c€) log —
1 —
log%
1— ef(ercS)
—c& —x
1- log ——————
Tetl-e )Og(l—i-c)é'log%
+(1-e%)log ———
(_V_l & (1+4c)log £
>ef-Lg2 T——~—"
<—loglog £+
1— —(z+c€)
+(1-e)log—C (131)
N——— c€
<€ T
- <log *155 <%

<&+ (mﬁ-(u@s)

1 1
+ (x—i—cé')loglogg + (:C—l—cé’)logil

log &
1— e—(m-l—cé')

(14 c)€log £
£ 0252 loglo 1+
— & - = =+
2 &8 ¢

+e (1 —e®)log

(132)

Using (119) and (132) together with constraint (3) we have

C(E,c)
< supE[D(W(-|X)||R("))]
1
e 00
+(1+4 c)Eloglog% +(1+ c)é‘log%

(133)

<&+ (log

a log%

£- S ) loglog L 1 &

e & 1

2 808 ¢

1_67(X+c5)

+e “supE [(1 —e ) log ————
(1+c)élog ¢

] (134)

= Eloglog% +2&

+ (log ﬁ 4 c)g>

2
1
+ %52 loglog z + (1 +¢)€log T

B log %
1 — e—(X+cE)
Hence the maximum achievable photon efficiency satisfies
Cpe(€,¢)
C(&,c)

&
1 1 1
< — — e —
_loglogg—i—?—i-g <log1_(1+c)g (1+c)5>

1

+e “supE [(1 —e ) log ] . (135)

(136)

c? 1 1
+ —C&loglog =+ (1+¢)log ———
2 £ 1 1

log%
e—c€ 1— ef(XJrcS)
+ E[(1—eX)log——|. (137
& Sub [( e )log (1+c)510g%] (137)

We next upper-bound the expectation on the right-hand side
of (137) as follows

1— —(X+c€)
E {(1 —e ) log ¢ }

(14 c)flog ¢

_ X _ o= (X+cE)
- E[X- LIRS PV Sl 1} (138)
X (1+c)€log ¢
1—e X X +c&
<E|X- 139
= [ X Og(l-l—c)é’log%} (139)
< & -sup¢(x) (140)
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where Plugging (149), (153) and (154) into (143) we have

b(z) & 1—e" o x+c€ 2> 0. (141) dq;(:v) < —llog x4+ c€

g ) — —_—
x (1+c)&log £ r — 6 (14 c)€log £

41 (155)
xr

We claim that, if€ is small enough to satisfy all of the < 1 loo 2 +}10 14e) — 1oet
conditions in (112), then -6 \g,-/ 6 &l ) 6 %%

>log 12—loglog %

= * < . 1 1 1
sup ¢(z) = ¢(a*) for somez™ < log 1 (142) n Eloglogg n . (156)
To show this, we compute the derivative ofz) (with <L log L
respect tar) as 1. 14e¢ 1 1 1 1
< —log———+ - loglog = — — log < 157
doe) _ (bm)e =1y wkeE A Sgloeg tyloslosg — gl (157)
dr x? (1+c)&log s x(z+cf) 1 (1+c¢)? 1\*
=—1 E | log = 158
(143) 12°°%\ 1 B (158)
which exists and is continuous for all > 0. Further note <0 (159)
that it is negative for large enough and is positive for small ’

enoughz. Hencez™ must be achieved at a point where  where the last step follows from (112c). We have now shown

d
o) _ . (144) W@ o 12 o (160)
dzx dz log &
Z;)Sl?rr:vt?orgél(i)l,z;t thus suffices to show that, under th@ase > Consider
P ’ x> 1. (161)
do(x 12
(=) 0, =>—v. (145)  In this case the logarithmic term in the derivative is still
dx log =
&% positive:
We do this separately for two cases.
. og— "t s L oo 62
Case 1.Consider 1 (1+c)€log: = ~(1+c)flogs ~
1Og% <z<l (146) where the last step follows from (112b). We bound the other
terms as
Note that this case need not be considereél i e~'2. (1+z)e -1 e 2e¢7! (163)
In this case the logarithmic term in the derivative is pwositi a? a a?
which is negative, and
T+ cE x
log T > log T (247) 1 — @ 1
(14 c)€log z (14 c)€log z <. (164)
12 x(x+c&) ~ x?
> log 3 (148) . .
(14 )€ (log %) Using (162), (163) and (164) together with (143) we have
> 0, (149)
do(z) 1—2e!
where the last step follows because (112a) and (112c) tegeth <- 5 log(z + &) +1og —————+
imply dz x T (14+c)€log
1\* 12e2 1 h
£ (log E) < T (150) + p (165)
Next, using Taylor’s theorem with Cauchy remainder, we have < -2 e! log 1
_ o - x? (14 c)€log £
(14+z)e -1 1+1$ (3—x’)em$2 (151) | _9e-1 )
22 2737 4 —cc .
* —_— * x2 1—2e! (166)
=0 1 2e1 1 21 -1
11 —2¢ e '
= 167
<53l (152) 2 Bltoflogl (167)
<1 <0, (168)
< L 153
=6’ (153) where the last step follows from (112b). Hence we have shown
wherez’ € [0,z]. The underbrace in (151) follows because do(x)
' <z < 1. We also have . <0 r=l (169)
1—e™® x < 1 (154) Combining (160) and (169) proves (142) for &llsatisfy-
xlx+c€) " z(x+c) ing (112).
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We now proceed to upper-bourdp ¢(x): (140), and is given by

sup () = p(z*) (170)  Cre(€,¢)
1—e® x* 4 c€ < logl 1 1 I
_ 1 171 <loglog = +2+ log (14 )€
50T oflgr Y 5 E\®T-(+0f
c? 1
<1 + —&loglog = + (1 +¢)log
x* +c€ 2 & 1
< max {0, log 71} (172) log £
(1+c¢)€log £ ge
12 +eF sup ¢(x), (180)

log ¢ . (173) Where ¢(-) is given in (141) andsup¢(z) is computed

(1+¢)€log ¢ numerically. The on-off-keying lower bound is obtained by
computing the mutual information of the channel with “on”
signal equalingn, and with the receiver ignoring multiple

detected photons. This is given by

< max < 0,log

Now note that, due to (112b), we have

c€ S log 1- (174) CPE—OOK(57 C)
g
1 & &
- _ = —n—cE\ _ _ < —c&
We can now continue the chain of inequalities (173) as = g (Hb(q) n Hy(e ) (1 77) Hy(e )> ’
3 (181)
sup ¢(z) < max < 0, log (175) ) ; ;
{ (1+ )€ (1Og %)2 where Hy(-) denotes the binary entropy function
1 1 1
= lOg 3 5 (176) Hb(a) = alog -+ (1 - CL) 1Og 1 S [Oa 1]3 (182)
(14 ¢)€ (log £) a -
1 1 and where
=log = — 2loglog = — log(1 + ¢) +log 13. (177)
& & -y é —n—c& _ é —c&
- qg= —e + (1 e . (183)
Here (176) follows because conditions (112a) and (112c) Ui Ui
imply (150). The simple-PPM lower bound is computed using (51) and
Combining (137), (140) and (177), and noting*® < 1 (57):
(together with the fact that the right-hand side of (177) is ) b
positive), we obtain CoeoofE.¢) > = ( log — 2P0
Pe-PPME, €) > o \Polos o T,
Cre(€,c
) ) -+ 0)1 The soft-decision-PPM lower bound is computed using (96)
+ %Eloglog z + (1+c¢)log — and is given by
1= log % Cpe-pPMm(sDYE, €)
log = — 2log log = — log(1 log13 (178 >l<polog$
Tlosg —2loglogz —logl(l+c) +logl3  (178) =5 (P08, Gy
1 1 bp
=log = —loglog = —log(1+¢) + 2+ log13 +(b—-1)plog————
15 51 ( (b—1)ps Iy
b
+=-|log—F——=— 1+c)5) _ 2
5( —(tof + (b= Dpzlog 5=
c? 1 b-1)b-2) b
+ —&loglog = + (1 +¢)log . (179) + 1 Ps3 ) (185
2 3 ! 2 Ploeg T oy, ) (180)
log%

In all these lower bounds, the parameteesdn are chosen as
B in (26) and (28), anghy, p1, p2, p3s, andp, are given in (41),
(47), (84), (87), and (89), respectively. We plot these latsun
for c=0.1, ¢ =1, andc = 10 in Figure 1.
The figure shows the following.
« The approximation (23) is reasonably accurate for small
We numerically compare the approximation (23) with  enoughf.
nonasymptotic upper and lower bounds on photon efficiency.e The on-off-keying and the soft-decision-PPM bounds are
Specifically, the plotted upper bound is based on (137) and consistently close to the approximation (23).

VII. NUMERICAL COMPARISON AND CONCLUDING
REMARKS
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o As c increases, the simple-PPM bound deviates signifi-
cantly from the other lower bounds, and hence also from

"gm’ —— Upper bound | the actual value o€pg(€, ¢).
2 —=— Approximation (2 The capacity bounds as well as the asymptotic results in
2% - —e— Onoffkeying | this paper provide insights to how technical restrictions a
g\\ S +::ij<:£(:; PP device or channel imperfections influence the communinatio
Sl N — rates in optical channels in the wideband regime. Our result
‘ﬁ%m \s\ \\\ | and techniques can also be applied to secret communication
c e ™~ and key distribution over optical channels [14]. It would be
gs’ ‘\@\ interesting to see if these are further extendable, e.g., to
o S| multiple-mode optical channels and optical networks.
o : As we have demonstrated, PPM is nearly optimal on the
L Poisson channel in the high-photon-efficiency regime. When
¢ is small, the simple-PPM super channel has high erasure

20° 5 0 p w0 0° 10 probability but low “error” (by which we mean the receiver
detects a single pulse at a position that is different from th
transmitted signal) probability. In this case, Reed-Saom
codes can perform rather close to the theoretical limit. How
ever, whernc > 1, Reed-Solomon codes can no longer achieve
any positive rates on this channel. Nevertheless, we leeliev
that, forc > 1, PPM still has its advantages over on-off

(a) Casec = 0.1. Note that the lowest three curves almost
overlap.

— Upper bound keying in terms of code design. This is because the optimal
® o Approximation (28) input distribution for (both simple and soft-decision) PPM
op —— On-off keying is uniform, whereas the optimal input distribution for offi-o
™~ —+— Soft-decision PP keying for this channel is highly skewed. The uniformity of

Simple PPM PPM inputs allows the usage of more structured codes, in

particularlinear codes One possible direction, for instance,
is to employ the idea ofultilevel codeq15], [16] on this

Photon Efficiency (nats/photon)

o channel.
i APPENDIX
il In this appendix we provide a proof for the converse
2 1 part of (8) that is much simpler than the one given in [2].
ol o . e o~ J, Using the same arguments as in [2], we know théf, ¢) is
3 monotonically increasing im. Hence it suffices to show
— C(&,0)
(b) Casec = 1. The on-off keying and soft-decision PPM 151?01 m <1 (186)
curves overlap. &¢
This can be verified as follows:
C(&,0) = I1(X;Y 187
) | | (,)E&‘gg(,) (187)
—+— Upper bound < max H(Y) (188)
o —o— Approximation (28) E[X]<¢&
e —+— On-off keying = max H(Y) (189)
N — Soft-decision PPN ElY]<e
T Simple PPM =(1+&)log(1+ &) —Elogé, (190)

which yields the desired asymptotic bound. Here, (190) fol-
lows from the well-known fact that, for a nonnegative disere
random variable under a first-moment constraint, maximum
entropy is achieved by the geometric distribution, and vei

by the right-hand side of (190). Note that the right-hand
side of (190) is exactly the capacity of the pure-loss basoni
channel [7].

Photon Efficiency (nats/photon)
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(c) Casec = 10.

Fig. 1. Comparing the approximation (23) to nonasymptofipar bound,
and to lower bounds for simple PPM, soft-decision PPM, anafbikeying
for three casese = 0.1, ¢ = 1, andc = 10.
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