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A refined analysis of the Poisson channel in the
high-photon-efficiency regime

Ligong Wang,Member, IEEEand Gregory W. Wornell,Fellow, IEEE

Abstract—We study the discrete-time Poisson channel under
the constraint that its average input power (in photons per
channel use) must not exceed some constantE . We consider the
wideband, high-photon-efficiency extreme whereE approaches
zero, and where the channel’s “dark current” approaches zero
proportionally with E . Improving over a previously obtained first-
order capacity approximation, we derive a refined approximation,
which includes the exact characterization of the second-order
term, as well as an asymptotic characterization of the third-
order term with respect to the dark current. We also show that
pulse-position modulation is nearly optimal in this regime.

Index Terms—Optical communication, Poisson channel, chan-
nel capacity, wideband, low SNR.

I. I NTRODUCTION

W E consider the discrete-time memoryless Poisson chan-
nel whose inputx is in the setR+

0 of nonnegative reals
and whose outputy is in the setZ+

0 of nonnegative integers.
Conditional on the inputX = x, the outputY has a Poisson
distribution of mean(λ+ x), whereλ ≥ 0 is called the “dark
current” and is a constant that does not depend on the inputX .
We denote the Poisson distribution of meanξ by Poisξ(·) so

Poisξ(y) = e−ξ ξ
y

y!
, y ∈ Z

+
0 . (1)

With this notation the channel lawW (·|·) is

W (y|x) = Poisλ+x(y), x ∈ R
+
0 , y ∈ Z

+
0 . (2)

This channel models pulse-amplitude modulated optical
communication where the transmitter sends light signals in
coherent states(which are usually produced using laser de-
vices), and where the receiver employsdirect detection(i.e.,
photon counting) [1]. The channel inputx describes the
expected number ofsignal photons(i.e., photons that come
from the input light signal rather than noise) to be detectedin
the pulse duration, and is proportional to the light signal’s
intensity,1 the pulse duration, the channel’s transmissivity,
and the detector’s efficiency; see [1] for details. The channel
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1We assume that the pulses are square, which is usually the case in practice.
If they are not square, the light signal’s intensity should be averaged over the
pulse duration.

outputy is the actual number of photons that are detected in
the pulse duration. The dark currentλ is the average number
of extraneous counts that appear iny. We note that, although
the name “dark current” is traditionally used in the Poisson-
channel literature, these extraneous counts usually include both
the detector’s “dark clicks” (which are where the name “dark
current” comes from) and photons in background radiation.

We impose anaverage-power constraint2 on the input

E[X ] ≤ E (3)

for someE > 0.
In applications like free-space optical communications, the

cost of producing and successfully transmitting photons is
high, hence highphoton-information efficiency—amount of
information transmitted per photon, which we henceforth call
simply “photon efficiency”—is desirable. As we later demon-
strate, this can be achieved in thewidebandregime, where
the pulse duration of the input approaches zero and, assuming
that thecontinuous-timeaverage input power is fixed, whereE
approaches zero proportionally with the pulse duration. Note
that in this regime the average number of detected background
photons or dark clicks also tends to zero proportionally with
the pulse duration. Hence we have the linear relation

λ = cE , (4)

where c is some nonnegative constant that does not change
with E . In practice, asymptotic results in this regime are useful
in scenarios whereE is small and whereλ is comparable to
or much smaller thanE . Scenarios whereE is small butλ
is much larger is better captured by the model whereλ stays
constant whileE tends to zero; see [2, Proposition 2].

We denote the capacity (in nats per channel use) of the
channel (2) under power constraint (3) with dark current (4)
by C(E , c), then

C(E , c) = sup
E[X]≤E

I(X ;Y ), (5)

where the mutual information is computed from the channel
law (2) and is maximized over input distributions satisfy-
ing (3), with dark currentλ given by (4). As we shall
see, our results on the asymptotic behavior ofC(E , c) hold
irrespectively of whether apeak-power constraint

X ≤ A with probability 1 (6)

2Here “power” is in discrete time, means expected number of detected
signal photons per channel use, and is proportional to the continuous-time
physical power times the pulse duration.
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is imposed or not, as long asA is positive and does not
approach zero together withE .

We now formally define the maximum achievable photon
efficiency CPE(E , c), where the subscript notation services
a reminder that this quantity is photon efficiency and not
capacity:

CPE(E , c) ,
C(E , c)

E
. (7)

Various capacity results for the discrete-time Poisson chan-
nel have been obtained [2]–[6]. Among them, [2, Proposition
1] considers the same scenario as the present paper and asserts
that

lim
E↓0

C(E , c)

E log 1
E

= 1, c ∈ [0,∞). (8)

In other words, the maximum photon efficiency satisfies

CPE(E , c) = log
1

E
+ o

(

log
1

E

)

, c ∈ [0,∞). (9)

Furthermore, the proof of [2, Proposition 1] shows that the
limit (8) is achievable using on-off keying. In the Appendix
we provide a proof for the converse part of (8) that is much
simpler than the original proof in [2].3

The approximation in (9) can be compared to the maximum
photon efficiency achievable on thepure-loss bosonic channel
[7]. This is a quantum optical communication channel that
attenuates the input optical signal, but that doesnot add any
noise to it. The transmitter and the receiver of this channel
may employ any structure permitted by quantum physics.
When the transmitter is restricted to sending coherent optical
states, and when the receiver is restricted to ideal direct
detection (with no dark counts), the pure-loss bosonic channel
becomes the Poisson channel (2) withλ = 0. We denote
by CPE-bosonic(E) the maximum photon efficiency of the pure-
loss bosonic channel under an average-power constraint that
is equivalent to (3). The value ofCPE-bosonic(E) can be easily
computed using the explicit capacity formula [7, Eq. (4)],
which yields

CPE-bosonic(E) = log
1

E
+ 1 + o(1). (10)

Comparing (9) and (10) shows the following:

• For the pure-loss bosonic channel in the wideband
regime, coherent-state inputs and direct detection are
optimal up to the first-order term in photon efficiency
(or, equivalently, in capacity). For example, they achieve
infinite capacity per unit cost[8], [9].

• The dark current does not affect this first-order term.

In the present paper, we refine the analysis in [2] in two
aspects. First, we provide a more accurate approximation for
CPE(E , c) that contains higher-order terms, and that reflects the
influence of the dark current, i.e., of the constantc. Second, we
identify near-optimal modulation schemes that facilitatecode
design for this channel.

3For the achievability part of (8), we note that its proof can be simplified
by letting the decoder ignore multiple photons, rather thanconsidering all
possible values ofY as in [2]. This can be seen via the achievability proofs
in the current paper, which do ignore multiple photons at thereceiver, and
which yield stronger results than those in [2].

Some progress has been made in improving the approx-
imation (9). It is noticed in [10] that the photon efficiency
achievable on the Poisson channel (2) withλ = 0 may be of
the form

log
1

E
− log log

1

E
+O(1), (11)

which means that restriction to coherent-state inputs and direct
detection may induce a loss in thesecond-order termin
the photon efficiency on the pure-loss bosonic channel. For
practical values ofE , this second-order term can be significant.
For example, forE = 10−5, the difference between the first-
order term in (9) and the first- and second-order terms in (11)
is about20%.

The analysis in [10] (whose main focus is not on the
Poisson channel itself) is based on certain assumptions on the
input distribution.4 It is therefore unclear from [10] if (11)
is the maximum photon efficiency achievable on the Poisson
channel (2) withλ = 0 subject to constraint (3) alone, i.e.,
if (11) is the correct expression forCPE(E , 0). In the present
paper, we prove that this is indeed the case.

Recent works such as [10], [11] often ignore the dark current
in the Poisson channel. It has been unknown to us whether
the dark current, i.e., whether the constantc influences the
second term in (11) and, if not, whether it influences the next
term in photon efficiency. We show that the constantc does
not influence the second-order term inCPE(E , c), but does
influence the third-order, constant term.

It has long been known that that infinite photon efficiency
on the Poisson channel with zero dark current can be achieved
using pulse-position modulation (PPM)combined with an
outer code [3], [4]. Further, [11] observes that PPM can
achieve (11) on such a channel. PPM greatly simplifies the
coding task for this channel, since one can easily apply existing
codes, such as a Reed-Solomon code, to the PPM “super
symbols”; while the on-off keying scheme that achieves (11)
has a highly skewed input distribution and is hence difficult
to code. The question then arises: how useful is PPM when
there is a positive dark current? This question has two parts.
First, is PPM still near optimal in terms of capacity (or photon
efficiency) when there is a positive dark current? Second, does
PPM still simplify coding when there is a dark current? We
answer the first part of the question in the affirmative in our
main results. We cannot fully answer the second question in
this paper, but we shall discuss it in the concluding remarks
in Section VII.

The rest of this paper is arranged as follows. We introduce
some notation and formally define PPM in Section II. We state
and discuss our main results in Section III. We then prove the
achievability parts of these results in Sections IV and V, and
prove the converse parts in Section VI. We conclude the paper
with numerical comparison of the bounds and some remarks
in Section VII.

II. N OTATION AND PPM

We usually use a lower-case letter likex to denote a
constant, and an upper-case letter likeX to denote a random
variable.

4According to conversation with the authors.
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We use natural logarithms, and measure information in nats.
We use the usualo(·) andO(·) notation to describe behav-

iors of functions ofE in the limit whereE approaches zero
with other parameters, if any, held fixed. Specifically, given
a reference functionf(·) (which might be the constant1), a
function described aso(f(E)) satisfies

lim
E↓0

o(f(E))

f(E)
= 0, (12)

and a function described asO(f(E)) satisfies

lim
E↓0

∣
∣
∣
∣

O(f(E))

f(E)

∣
∣
∣
∣
< ∞. (13)

We emphasize that, in particular, we donot useo(·) andO(·)
to describe how functions behave with respect toc.

We adopt the convention

0 log 0 = 0. (14)

We next formally describe what we mean by PPM. On the
transmitter side:

• The channel uses are divided into frames of equal lengths;
• In each frame, there is only one channel input that is

positive, which we call the “pulse”, while all the other
inputs are zeros;

• The pulses in all frames have the same amplitude.

On the receiver side, we distinguish between two cases, which
we call simple PPMand soft-decision PPM, respectively. In
simple PPM, the receiver recordsat most one pulsein each
frame; if more than one pulse is detected in a frame, then that
frame is recorded as an “erasure”, as if no pulse is detected
at all. In soft-decision PPM, the receiver recordsup to two
pulsesin each frame; frames containing no or more than two
detected pulses are treated as erasures.

III. M AIN RESULTS AND DISCUSSIONS

The following theorem provides an approximation for
the photon efficiencyCPE(E , c) in the high-photon-efficiency
regime.

Theorem 1. The maximum photon efficiencyCPE(E , c) achiev-
able on the Poisson channel(2) subject to constraint(3) and
with dark current(4), which we define in(7), satisfies

CPE(E , c) = log
1

E
− log log

1

E
+O(1), c ∈ [0,∞). (15)

Furthermore, denote

K(E , c) , CPE(E , c)− log
1

E
+ log log

1

E
, (16)

then

lim
c→∞

lim
E↓0

K(E , c)

log c
= lim

c→∞
lim
E↓0

K(E , c)

log c
= −1. (17)

Our second theorem shows that PPM is nearly optimal in
the regime of interest.

Theorem 2. The asymptotic expression on the right-hand side
of (15) is achievable with simple PPM. The limits in(17) are
achievable with soft-decision PPM.

The achievability part of Theorem 1 follows from Theo-
rem 2. To prove the latter, we need to show two things: first,
that the largest photon efficiency that is achievable with simple
PPM, which we henceforth denote byCPE-PPM(E , c), satisfies

CPE-PPM(E , c) ≥ log
1

E
−log log

1

E
+O(1), c ∈ [0,∞); (18)

and second, that the maximum photon efficiency that is achiev-
able with soft-decision PPM, which we henceforth denote by
CPE-PPM(SD)(E , c), satisfies

lim
c→∞

lim
E↓0

CPE-PPM(SD)(E , c)− log
1

E
+ log log

1

E
log c

≥ −1. (19)

To prove the converse part of Theorem 1, we note that the
capacity of the channel is monotonically decreasing inc [2],
and hence so is the photon efficiency. It thus suffices to show
two things: first, that, in the absence of dark current, the largest
photon efficiency achievable with any scheme satisfies

CPE(E , 0) ≤ log
1

E
− log log

1

E
+O(1); (20)

and second, that

lim
c→∞

lim
E↓0

CPE(E , c)− log
1

E
+ log log

1

E
log c

≤ −1. (21)

We prove (18) in Section IV, (19) in Section V, and (20)
and (21) in Section VI.

To better understand the capacity results in Theorem 1, we
make the following remarks.

• Choosingc = 0 in (15) confirms that (11) is the correct
asymptotic expression up to the second-order term for
CPE(E , 0). Compared to (10) this means that, on the
pure-loss bosonic channel, for smallE , restricting the
receiver to using direct detection induces a loss in photon
efficiency of aboutlog log 1

E nats per photon. Note that
the capacity of the pure-loss bosonic channel can be
achieved using coherent input states only [7], so this loss
is indeed due to direct detection, and not due to coherent
input states.
Attempts to overcome this loss by employing other fea-
sible detection techniques have so far been unsuccessful
[10], [12].

• The expression on the right-hand side of (15) does not
depend onc, so the value ofc affects neither the first-
order term nor the second-order term inCPE(E , c). In
particular, these two terms do not depend on whetherc
is zero or positive.

• The first term inCPE(E , c) that c does affect is the third,
constant term. Indeed, though we have not given an exact
expression for the constant term, the asymptotic property
(17) shows thatc affects the constant term in such a
way that, for largec, the constant term is approximately
− log c.

• Theorem 1 suggests the approximation

CPE(E , c) ≈ log
1

E
− log log

1

E
− log c. (22)
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The terms constituting the approximation error, roughly
speaking, are either vanishing for smallE , or small
compared tolog c for largec. Note that if we fix the dark
current, i.e., if we fix the productcE , then the first and
third terms on the right-hand side of (22) cancel. This is
intuitively in agreement with [2, Proposition 2], which
asserts that, for fixed dark current, photon efficiency
scales like some constant timeslog log(1/E) and hence
not like log(1/E). We note, however, that (17) cannot be
derived directly using (15) together with [2, Proposition
2], because we cannot change the order of the limits. In
(17) we do not letE tend to zero andc tend to infinity
simultaneously. Instead, we first letE tend to zero to close
down onto the constant term inCPE(E , c) with respect to
E , and then letc tend to infinity to study the asymptotic
behavior of this constant term with respect toc.

• The approximation (22) is good for largec, but diverges
asc tends to zero. We hence need a better approximation
for the constant term, which behaves like− log c for
largec, but which does not diverge for smallc. As both
the nonasymptotic bounds and the numerical simulations
we show later will suggest,− log(1 + c) is a good
approximation:

CPE(E , c) ≈ log
1

E
− log log

1

E
− log(1 + c). (23)

For modulation and coding considerations, we make some
remarks following Theorem 2.

• Theorem 2 shows that PPM is optimal up to the second-
order term in photon efficiency whenc = 0. Hence,
compared to the restriction to the receiver using direct
detection, the further restriction to PPM induces only a
small additional loss in photon efficiency.

• Furthermore, for the third-order, constant term, (soft-
decision) PPM is also not far from optimal, in the sense
that it achieves the optimal asymptotic behavior of this
term for largec.

• In Section IV we show that

CPE-PPM(E , c)

≥ log
1

E
− log log

1

E
− c− log(1 + c)−

3

2
+ o(1). (24)

A careful analysis will confirm that the bound (24) is
tight in the regime of interest, in the sense that simple
PPM cannot achieve a constant term that is better than
linear in c (while being second-order optimal). This is
in contrast to soft-decision PPM, which can achieve a
constant term that is logarithmic inc. In particular, simple
PPM is clearlynot third-order optimal.5

• In the PPM schemes that achieve (18) and (19), which we
describe in Sections IV and V, the pulse has amplitude
1/
(
log(1/E)

)
, which depends onE , and which tends to

zero asE tends to zero. An on-off keying scheme having
the same amplitude for its “on” signals can also achieve

5A scheme between simple and soft-decision PPM is the following. When
detecting multiple pulses in a frame, the receiver randomlyselects and records
one of the positions (possibly together with a “quality” flag). This scheme
outperforms simple PPM in photon efficiency, but its third-order term is still
linear in c: it scales like−c/2 instead of−c.

these lower bounds, because the dependence between
the channel inputs introduced by PPM can only reduce
the total mutual information between channel inputs and
outputs. These (PPM and on-off keying schemes) are
different from the on-off keying scheme used in [2] where
the “on” signal has a fixed amplitude that does not depend
on E . The latter on-off keying scheme, as well as any
PPM scheme with a fixed pulse amplitude (with respect
to E), is not second-order optimal on the Poisson channel.

• Because in the PPM schemes to achieve (18) and (19) the
pulse tends to zero asE tends to zero, we know that, as
claimed in Section I, both our theorems hold if a constant
(i.e., not approaching zero together withE) peak-power
constraint as in (6) is imposed onX in addition to (3).

We next proceed to prove our main results, and leave further
discussions to Section VII.

IV. PROOF OF THESIMPLE-PPM LOWER BOUND (18)

Assume thatE is small enough so that

E log
1

E
< 1 (25a)

E < e−c. (25b)

Consider the following simple PPM scheme:

Scheme 1.

• The channel uses are divided into frames of lengthb, so
each frame containsb input symbolsx1, . . . , xb and b
corresponding output symbolsy1, . . . , yb. We set

b =

⌊
1

E log 1
E

⌋

. (26)

• Within each length-b frame, there is always one input that
equalsη, and all the other(b− 1) inputs are zeros. Each
frame is then fully specified by the position of its unique
nonzero symbol, i.e., its pulse position. We consider each
frame as a “super input symbol”̃x that takes value in
{1, . . . , b}. Here x̃ = i, i ∈ {1, . . . , b}, means

xi = η (27a)

xj = 0, j ∈ {1, . . . , b}, j 6= i. (27b)

To meet the average-power constraint(3) with equality,
we require

η = bE . (28)

• The b output symbolsy1, . . . , yb are mapped to one
“super output symbol”ỹ that takes value in{1, . . . , b, ?}
in the following way:ỹ = i, i ∈ {1, . . . , b}, if yi is the
uniquenonzero term in{y1, . . . , yb}; and ỹ = ? if there
is more than one or no nonzero term in{y1, . . . , yb}.

We have the following lower bound on the photon efficiency
achieved by the above scheme.
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Proposition 1. Under the conditions(25), Scheme 1 achieves
photon efficiency

CPE-PPM(E , c)

≥
(

1−
η

2

)

log b− cη log b−

(

1 +
cE

η

)

log(1 + c)

+

(

1 +
cE

η

){

log(1− cη) + log
(

1−
η

2

)}

− 1−
cE

η
(29)

whereb and η are given in(26) and (28), respectively.

Proof of (18) using Proposition 1: We plug (26) and
(28) into (29), note that

⌊
1

E log 1
E

⌋

=
1

E log 1
E

+O(1) (30)

and simplify (29) to obtain

CPE-PPM(E , c)

≥ log
1

E
− log log

1

E
− c− log(1 + c)−

3

2
+ o(1) (31)

= log
1

E
− log log

1

E
+O(1). (32)

When proving Proposition 1, as well as Propositions 2
and 3, we frequently use the inequalities summarized in the
following lemma.

Lemma 1. For all a ≥ 0,

log(1 + a) ≤ a, (33)

1− e−a ≤ a, (34)

1− e−a ≥ a−
1

2
a2. (35)

Proof of Proposition 1:We compute the transition matrix
of the PPM “super channel” as follows:

W̃ (i|i) = Pr[Ỹ = i|X̃ = i] (36)

= Pr [Yi ≥ 1|Xi = η]

b∏

k=1
k 6=i

Pr [Yk = 0 |Xk = 0] (37)

=
(
1−W (0|η)

)(
W (0|0)

)b−1
(38)

= (1− e−η−cE) e−(b−1)cE (39)

= e−(b−1)cE − e−η−bcE (40)

, p0, i ∈ {1, . . . , b}; (41)

W̃ (j|i) = Pr[Ỹ = j|X̃ = i] (42)

= Pr [Yi = 0|Xi = η] Pr [Yj ≥ 1|Xj = 0]

·

b∏

k=1
k/∈{i,j}

Pr [Yk = 0|Xk = 0] (43)

= W (0|η)
(
1−W (0|0)

)(
W (0|0)

)b−2
(44)

= e−η−cE(1 − e−cE) e−(b−2)cE (45)

= e−η−(b−1)cE − e−η−bcE (46)

, p1, i, j ∈ {1, . . . , b}, i 6= j; (47)

W̃ (?|i) = 1− p0 − (b − 1)p1, i ∈ {1, . . . , b}. (48)

We now have, irrespective of the distribution ofX̃ ,

H(Ỹ |X̃) = p0 log
1

p0
+ (b− 1)p1 log

1

p1

+
(
1− p0 − (b − 1)p1

)
log

1

1− p0 − (b− 1)p1
.

(49)

Denote the capacity of this super channel byC̃(E , c, b, η), then

C̃(E , c, b, η) = max
PX̃

I(X̃ ; Ỹ ). (50)

Note that the total input power (i.e., expected number of
detected signal photons) in each frame equalsη. Therefore
we have the following lower bound onCPE-PPM(E , c):

CPE-PPM(E , c) ≥
C̃(E , c, b, η)

η
. (51)

It can be easily verified that the optimal input distribution
for (50) is the uniform distribution

PX̃(i) =
1

b
, i ∈ {1, . . . , b}, (52)

which induces the following marginal distribution oñY :

PỸ (i) =
p0 + (b− 1)p1

b
, i ∈ {1, . . . , b}, (53a)

PỸ (?) = 1− p0 − (b− 1)p1. (53b)

We can now use the above joint distribution on(X̃, Ỹ ) to
lower-boundC̃(E , c, b, η) as follows:

C̃(E , c, b, η)

= I(X̃ ; Ỹ ) (54)

= H(Ỹ )−H(Ỹ |X̃) (55)

= (1 − p0 − (b − 1)p1) log
1

1− p0 − (b− 1)p1

+ (p0 + (b− 1)p1) log
b

p0 + (b− 1)p1

− (1− p0 − (b− 1)p1) log
1

1− p0 − (b− 1)p1

− p0 log
1

p0
− (b − 1)p1 log

1

p1
(56)

= p0 log
bp0

p0 + (b− 1)p1
+ (b − 1)p1 log

bp1
p0 + (b− 1)p1

(57)

= p0 log b− p0 log
p0 + (b− 1)p1

p0
︸ ︷︷ ︸

≤log
(

1+
bp1
p0

)

− (b− 1)p1 log
p0 + (b − 1)p1

bp1
︸ ︷︷ ︸

=log
(

1+
p0−p1
bp1

)

≤
p0−p1
bp1

(58)

≥ p0 log b− p0 log

(

1 +
bp1
p0

)

−
b− 1

b
︸ ︷︷ ︸

≤1

(p0 − p1)
︸ ︷︷ ︸

≤p0

(59)

≥ p0 log b− p0 log

(

1 +
bp1
p0

)

− p0. (60)
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Next note thatp0 can be upper-bounded as

p0 = e−(b−1)cE − e−η−bcE (61)

= e−(b−1)cE
(
1− e−η−cE

)
(62)

≤ 1− e−η−cE (63)

≤ η + cE , (64)

where the last step follows from (34). It can also be lower-
bounded as

p0 = e−(b−1)cE − e−η−bcE (65)

≥ e−bcE − e−η−bcE (66)

= e−bcE
︸ ︷︷ ︸

≥1−bcE

(1 − e−η)
︸ ︷︷ ︸

≥η− 1
2η

2

(67)

≥ (1− bcE)

(

η −
1

2
η2
)

, (68)

where the last inequality follows from (34) and (35), and from
the fact that the first multiplicand on its right-hand side is(in
fact, both multiplicands are) nonnegative forE satisfying (25)
and other parameters chosen accordingly. Also note thatp1
can be upper-bounded as

p1 = e−η−(b−1)cE − e−η−bcE (69)

= e−η−(b−1)cE
︸ ︷︷ ︸

≤1

(
1− e−cE

)

︸ ︷︷ ︸

≤cE

(70)

≤ cE . (71)

Using (64), (68) and (71) we can continue the chain of
inequalities (60) to further lower-bound̃C(E , c, b, η) as

C̃(E , c, b, η)

≥ (1 − bcE)

(

η −
1

2
η2
)

log b

− (η + cE) log

(

1 +
bcE

(1− bcE)
(
η − 1

2η
2
)

)

− η − cE (72)

≥ (1 − bcE)

(

η −
1

2
η2
)

log b− (η + cE) log

(

1 +
bcE

η

)

+ (η + cE)
{

log(1− bcE) + log
(

1−
η

2

)}

− η − cE (73)

≥

(

η −
1

2
η2
)

log b− bcEη log b− (η + cE) log

(

1 +
bcE

η

)

+ (η + cE)
{

log(1− bcE) + log
(

1−
η

2

)}

− η − cE . (74)

Here, (73) follows from the fact that, for allα ≥ 0 andβ ≥ 1,

log(1 + αβ) ≤ log(β + αβ) = log β + log(1 + α), (75)

with the choices

α =
bcE

η
, (76)

β =
1

(1 − bcE)
(
1− 1

2η
) , (77)

which indeed satisfyα ≥ 0 andβ ≥ 1; and (74) follows by
dropping the term1

2bcEη
2 log b, which is positive.

Combining (28), (51), and (74) yields (29).

V. PROOF OF THESOFT-DECISION-PPM LOWER

BOUND (19)

Consider the following soft-decision PPM scheme:

Scheme 2.The transmitter performs the same PPM as in
Scheme 1. The receiver maps theb output symbols to a
“super symbol” ŷ that takes value in{1, . . . , b, ?}∪

{
{i, j} ⊂

{1, . . . , b}
}

. The mapping rule is as follows. Takêy = i if yi
is theuniquenonzero term in{y1, . . . , yb}; take ŷ = {i, j} if
yi and yj are theonly two nonzero terms in{y1, . . . , yb}; if
there are more than two or no nonzero term in{y1, . . . , yb},
take ŷ = ?.

Proposition 2. Under the conditions(25), Scheme 2 achieves
photon efficiency

CPE-PPM(SD)(E , c)

≥
(

1−
η

2

)

log b− cη log b−

(

1 +
cE

η

)

log(1 + c)

+

(

1 +
cE

η

){

log(1− cη) + log
(

1−
η

2

)}

− 1−
cE

η

+
(

1−
η

2

)

(b− 1)

(

cE −
c2E2

2

)

(1 − cη) log
b

2

−
c2

2
η − c(η + cE) (78)

whereb and η are given in(26) and (28), respectively.

Proof of (19) using Proposition 2: Simplifying (78) we
obtain

lim
E↓0

{

CPE-PPM(SD)(E , c)− log
1

E
+ log log

1

E

}

≥ − log(1 + c)−
3

2
. (79)

This immediately yields (19).
Proof of Proposition 2:We compute the transition matrix

of the super channel that results from Scheme 2. We first note

Ŵ (i|i) = p0, (80)

Ŵ (j|i) = p1, i, j ∈ {1, . . . , b}, i 6= j, (81)

wherep0 andp1 are given in (41) and (47), respectively. For
the remaining elements of the transition matrix we have

Ŵ
(
{i, j}

∣
∣i
)
= Pr[Yi ≥ 1|Xi = η] Pr[Yj ≥ 1|Xj = 0]

·

b∏

ℓ=1
ℓ/∈{i,j}

Pr[Yℓ = 0|Xℓ = 0] (82)

= (1− e−η−cE)(1 − e−cE) e−(b−2)cE (83)

, p2, {i, j} ⊂ {1, . . . , b}; (84)
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Ŵ
(
{j, k}

∣
∣i
)
= Pr[Yi = 0|Xi = η] Pr[Yj ≥ 1|Xj = 0]

·Pr[Yk ≥ 1|Xk = 0]

·

b∏

ℓ=1
ℓ/∈{i,j,k}

Pr[Yℓ = 0|Xℓ = 0] (85)

= e−η−cE(1 − e−cE)2 e−(b−3)cE (86)

, p3, {i, j, k} ⊂ {1, . . . , b}; (87)

Ŵ (?|i) = 1− p0 − (b− 1)p1 − (b − 1)p2

−
(b− 1)(b− 2)

2
p3 (88)

, p4, i ∈ {1, . . . , b}. (89)

We now have, irrespective of the distribution ofX̃,

H(Ŷ |X̃) = p0 log
1

p0
+ (b − 1)p1 log

1

p1

+ (b − 1)p2 log
1

p2
+

(b− 1)(b − 2)

2
p3 log

1

p3

+ p4 log
1

p4
. (90)

Choosing a uniformX̃ (which is optimal as in Section IV),
we have the following distribution on̂Y

PŶ (i) =
p0 + (b − 1)p1

b
, i ∈ {1, . . . , b}; (91)

PŶ

(
{i, j}

)
=

2p2 + (b− 2)p3
b

, {i, j} ⊂ {1, . . . , b}; (92)

PŶ (?) = p4. (93)

Therefore

H(Ŷ )

=
(
p0 + (b− 1)p1

)
log

b

p0 + (b − 1)p1

+

(

(b− 1)p2 +
(b − 1)(b− 2)

2
p3

)

log
b

2p2 + (b− 2)p3

+ p4 log
1

p4
. (94)

Using (90) and (94) we have

I(X̃ ; Ŷ ) = H(Ŷ )−H(Ŷ |X̃) (95)

= p0 log
bp0

p0 + (b− 1)p1

+ (b− 1)p1 log
bp1

p0 + (b − 1)p1

+ (b− 1)p2 log
bp2

2p2 + (b− 2)p3

+
(b− 1)(b− 2)

2
p3 log

bp3
2p2 + (b− 2)p3

. (96)

At this point, note that the first two summands on the right-
hand side of (96) constituteI(X̃ ; Ỹ ), which we analyzed in
Section IV. It remains to find lower bounds on the last two
summands. We lower-bound the third term on the right-hand

side of (96) as

(b− 1)p2 log
bp2

2p2 + (b− 2)p3

= (b− 1)p2 log
b

2
− (b− 1)p2 log

p2 +
b−2
2 p3

p2
︸ ︷︷ ︸

=log
(

1+
(b−2)p3

2p2

)

≤
(b−2)p3

2p2

(97)

≥ (b− 1)p2 log
b

2
−

(b− 1)(b− 2)

2
p3 (98)

≥ (b− 1)p2 log
b

2
−

b2

2
p3. (99)

We lower-bound the fourth term on the right-hand side of (96)
as

(b− 1)(b− 2)

2
p3 log

bp3
2p2 + (b− 2)p3

= −
(b− 1)(b− 2)

2
p3 log

2p2 + (b − 2)p3
bp3

︸ ︷︷ ︸

=log
(

1+
2(p2−p3)

bp3

)

≤
2(p2−p3)

bp3
≤

2p2
bp3

(100)

≥ −
(b− 1)(b− 2)

2
·
2p2
b

(101)

≥ −bp2. (102)

Using (34) and (35) we have the upper bound onp2

p2 = (1− e−η−cE)
︸ ︷︷ ︸

≤η+cE

(1− e−cE)
︸ ︷︷ ︸

≤cE

e−(b−2)cE
︸ ︷︷ ︸

≤1

(103)

≤ (η + cE)cE , (104)

the lower bound onp2

p2 = (1 − e−η−cE)

︸ ︷︷ ︸

≥1−e−η≥η− η2

2

(1− e−cE)

︸ ︷︷ ︸

≥cE− c2E2

2

e−(b−2)cE
︸ ︷︷ ︸

≥1−bcE

(105)

≥

(

η −
η2

2

)(

cE −
c2E2

2

)

(1− bcE), (106)

and the upper bound onp3

p3 = e−η−cE
︸ ︷︷ ︸

≤1

(1− e−cE)
︸ ︷︷ ︸

≤cE

2
e−(b−3)cE
︸ ︷︷ ︸

≤1

(107)

≤ c2E2. (108)

From (96), (99), (102), (104), (106), and (108) we obtain
a lower bound on the additional mutual information that
is gained by considering output frames with two detection
positions:

I(X̃; Ŷ )− I(X̃; Ỹ )

≥ (b− 1)p2 log
b

2
−

b2

2
p3 − bp2 (109)

≥ (b− 1)

(

η −
η2

2

)(

cE −
c2E2

2

)

(1− bcE) log
b

2

−
b2

2
c2E2 − b(η + cE)cE . (110)
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Dividing the above byη and plugging in (28) we obtain a
lower bound on the additional photon efficiency:

I(X̃; Ŷ )− I(X̃; Ỹ )

η

≥
(

1−
η

2

)

(b− 1)

(

cE −
c2E2

2

)

(1 − cη) log
b

2

−
c2

2
η − c(η + cE). (111)

Adding the right-hand side of (111) to the right-hand side of
(29) yields (78).

VI. PROOF OF THEUPPERBOUNDS (20) AND (21)

Proposition 3. Assume thatE is small enough so that

E < e−1 (112a)

E log
1

E
<

e
− 1

1−2 e−1

1 + c
(112b)

E

(

log
1

E

)4

<
144

(1 + c)2
, (112c)

then

CPE(E , c) ≤ log
1

E
− log log

1

E
− log(1 + c) + 2 + log 13

+
1

E

(

log
1

1− (1 + c)E
− (1 + c)E

)

+
c2

2
E log log

1

E
+ (1 + c) log

1

1−
1

log 1
E

. (113)

Proof of (20) using Proposition 3: The last three
summands on the right-hand side of (113) are all of the form
o(1). Settingc = 0 in (113) we have

CPE(E , 0) ≤ log
1

E
− log log

1

E
+ 2 + log 13 + o(1) (114)

= log
1

E
− log log

1

E
+O(1). (115)

Proof of (21) using Proposition 3: From (113) we have

lim
E↓0

{

CPE(E , c)− log
1

E
+ log log

1

E

}

≤ − log(1 + c) + 2 + log 13. (116)

Hence

lim
c→∞

lim
E↓0

CPE(E , c)− log
1

E
+ log log

1

E
log c

≤ lim
c→∞

− log(1 + c) + 2 + log 13

log c
(117)

= −1. (118)

Proof of Proposition 3: Like in [2], we use the duality
bound [13] which states that, for any distributionR(·) on the
output, the channel capacity satisfies

C ≤ supE
[
D
(
W (·|X)‖R(·)

)]
, (119)

where the supremum is taken over all allowed input distribu-
tions. We chooseR(·) to be the following distribution:

R(y) =







1− (1 + c)E , y = 0

(1 + c)E

(

1−
1

log 1
E

)(
1

log 1
E

)y−1

, y ≥ 1.

(120)

For anyx ≥ 0 we have

D
(
W (·|x)

∥
∥R(·)

)

=

∞∑

y=0

Poisx+cE(y) · log
1

R(y)
−H(Y |X = x) (121)

= e−(x+cE) log
1

1− (1 + c)E

−

∞∑

y=1

Poisx+cE(y)

· log

{

(1 + c)E

(

1−
1

log 1
E

)(
1

log 1
E

)y−1
}

−H(Y |X = x) (122)

= e−(x+cE) log
1

1− (1 + c)E
+

∞∑

y=1

Poisx+cE(y)y

︸ ︷︷ ︸

=E[Y |X=x]=x+cE

log log
1

E

+

(
∞∑

y=1

Poisx+cE(y)

)

︸ ︷︷ ︸

=1−e−(x+cE)

·






log

1

(1 + c)E log 1
E

+ log
1

1−
1

log 1
E







−H(Y |X = x) (123)

= e−(x+cE) log
1

1− (1 + c)E
+ (x + cE) log log

1

E

+ (1 − e−(x+cE))

·






log

1

(1 + c)E log 1
E

+ log
1

1−
1

log 1
E







−H(Y |X = x). (124)

We can lower-boundH(Y |X = x) as

H(Y |X = x) ≥ Hb(e
−(x+cE)) (125)

= e−(x+cE)(x + cE)

+ (1 − e−(x+cE)) log
1

1− e−(x+cE)
. (126)

Using this and (124), we upper-boundD
(
W (·|x)

∥
∥R(·)

)
as
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D
(
W (·|x)

∥
∥R(·)

)

≤ e−(x+cE) log
1

1− (1 + c)E
+ (x+ cE) log log

1

E

+ (1− e−(x+cE))

·






log

1

(1 + c)E log 1
E

+ log
1

1−
1

log 1
E







− e−(x+cE)(x+ cE)− (1− e−(x+cE)) log
1

1− e−(x+cE)

(127)

= e−(x+cE) log
1

1− (1 + c)E
+ (x+ cE) log log

1

E

+ (1− e−(x+cE))
︸ ︷︷ ︸

≤x+cE

log
1

1−
1

log 1
E

︸ ︷︷ ︸

≥0

− e−(x+cE) (x+ cE)
︸ ︷︷ ︸

≥cE

+ (1− e−(x+cE)) log
1− e−(x+cE)

(1 + c)E log 1
E

(128)

≤ e−(x+cE)
︸ ︷︷ ︸

≤1

(

log
1

1− (1 + c)E
− cE

)

︸ ︷︷ ︸

≥(1+c)E−cE≥0

+ (x+ cE) log log
1

E
+ (x + cE) log

1

1−
1

log 1
E

+ (1− e−(x+cE))
︸ ︷︷ ︸

=(1−e−cE )+(e−cE−e−(x+cE))

log
1− e−(x+cE)

(1 + c)E log 1
E

(129)

≤

(

log
1

1− (1 + c)E
− cE

)

+ (x+ cE) log log
1

E
+ (x + cE) log

1

1−
1

log 1
E

+ (e−cE − e−(x+cE)) log
1− e−(x+cE)

(1 + c)E log 1
E

+ (1− e−cE) log
1− e−(x+cE)

(1 + c)E log 1
E

(130)

= E +

(

log
1

1− (1 + c)E
− (1 + c)E

)

+ (x+ cE) log log
1

E
+ (x + cE) log

1

1−
1

log 1
E

+ e−cE(1− e−x) log
1− e−(x+cE)

(1 + c)E log 1
E

+ (1− e−cE)
︸ ︷︷ ︸

≥cE− c2

2 E2

log
c

(1 + c) log 1
E

︸ ︷︷ ︸

≤− log log 1
E

+ (1− e−cE)
︸ ︷︷ ︸

≤cE

log
1− e−(x+cE)

cE
︸ ︷︷ ︸

≤log x+cE
cE

≤ x
cE

(131)

≤ E +

(

log
1

1− (1 + c)E
− (1 + c)E

)

+ (x+ cE) log log
1

E
+ (x+ cE) log

1

1−
1

log 1
E

+ e−cE(1− e−x) log
1− e−(x+cE)

(1 + c)E log 1
E

−

(

cE −
c2

2
E2

)

log log
1

E
+ x. (132)

Using (119) and (132) together with constraint (3) we have

C(E , c)

≤ supE
[
D
(
W (·|X)‖R(·)

)]
(133)

≤ E +

(

log
1

1− (1 + c)E
− (1 + c)E

)

+ (1 + c)E log log
1

E
+ (1 + c)E log

1

1−
1

log 1
E

−

(

cE −
c2

2
E2

)

log log
1

E
+ E

+ e−cE supE
[

(1 − e−X) log
1− e−(X+cE)

(1 + c)E log 1
E

]

(134)

= E log log
1

E
+ 2E

+

(

log
1

1− (1 + c)E
− (1 + c)E

)

+
c2

2
E2 log log

1

E
+ (1 + c)E log

1

1−
1

log 1
E

+ e−cE supE
[

(1 − e−X) log
1− e−(X+cE)

(1 + c)E log 1
E

]

. (135)

Hence the maximum achievable photon efficiency satisfies

CPE(E , c)

=
C(E , c)

E
(136)

≤ log log
1

E
+ 2 +

1

E

(

log
1

1− (1 + c)E
− (1 + c)E

)

+
c2

2
E log log

1

E
+ (1 + c) log

1

1−
1

log 1
E

+
e−cE

E
supE

[

(1− e−X) log
1− e−(X+cE)

(1 + c)E log 1
E

]

. (137)

We next upper-bound the expectation on the right-hand side
of (137) as follows

E
[

(1− e−X) log
1− e−(X+cE)

(1 + c)E log 1
E

]

= E
[

X ·
1− e−X

X
log

1− e−(X+cE)

(1 + c)E log 1
E

]

(138)

≤ E
[

X ·
1− e−X

X
log

X + cE

(1 + c)E log 1
E

]

(139)

≤ E · supφ(x) (140)
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where

φ(x) ,
1− e−x

x
log

x+ cE

(1 + c)E log 1
E

, x ≥ 0. (141)

We claim that, ifE is small enough to satisfy all of the
conditions in (112), then

supφ(x) = φ(x∗) for somex∗ ≤
12

log 1
E

. (142)

To show this, we compute the derivative ofφ(x) (with
respect tox) as

dφ(x)
dx

=
(1 + x) e−x − 1

x2
log

x+ cE

(1 + c)E log 1
E

+
1− e−x

x(x + cE)
(143)

which exists and is continuous for allx > 0. Further note
that it is negative for large enoughx, and is positive for small
enoughx. Hencex∗ must be achieved at a point where

dφ(x)
dx

= 0. (144)

To prove (142), it thus suffices to show that, under the
assumptions (112),

dφ(x)
dx

< 0, x >
12

log 1
E

. (145)

We do this separately for two cases.

Case 1.Consider
12

log 1
E

< x < 1. (146)

Note that this case need not be considered ifE ≥ e−12.

In this case the logarithmic term in the derivative is positive:

log
x+ cE

(1 + c)E log 1
E

≥ log
x

(1 + c)E log 1
E

(147)

> log
12

(1 + c)E
(
log 1

E

)2 (148)

> 0, (149)

where the last step follows because (112a) and (112c) together
imply

E

(

log
1

E

)2

<
12 e−

1
2

1 + c
. (150)

Next, using Taylor’s theorem with Cauchy remainder, we have

(1 + x) e−x − 1

x2
= −

1

2
+

1

3
x−

(3− x′) e−x′

24
x2

︸ ︷︷ ︸

≥0

(151)

≤ −
1

2
+

1

3
x
︸︷︷︸

≤1

(152)

≤ −
1

6
, (153)

wherex′ ∈ [0, x]. The underbrace in (151) follows because
x′ ≤ x < 1. We also have

1− e−x

x(x + cE)
≤

x

x(x+ cE)
≤

1

x
. (154)

Plugging (149), (153) and (154) into (143) we have

dφ(x)
dx

≤ −
1

6
log

x+ cE

(1 + c)E log 1
E

+
1

x
(155)

≤ −
1

6
log x
︸︷︷︸

≥log 12−log log 1
E

+
1

6
log(1 + c)−

1

6
log

1

E

+
1

6
log log

1

E
+

1

x
︸︷︷︸

≤ 1
12 log 1

E

(156)

≤
1

6
log

1 + c

12
+

1

3
log log

1

E
−

1

12
log

1

E
(157)

=
1

12
log

(

(1 + c)2

144
E

(

log
1

E

)4
)

(158)

< 0, (159)

where the last step follows from (112c). We have now shown

dφ(x)
dx

< 0,
12

log 1
E

< x < 1. (160)

Case 2.Consider
x ≥ 1. (161)

In this case the logarithmic term in the derivative is still
positive:

log
x+ cE

(1 + c)E log 1
E

≥ log
1

(1 + c)E log 1
E

> 0, (162)

where the last step follows from (112b). We bound the other
terms as

(1 + x) e−x − 1

x2
≤ −

1− 2 e−1

x2
(163)

which is negative, and

1− e−x

x(x+ cE)
≤

1

x2
. (164)

Using (162), (163) and (164) together with (143) we have

dφ(x)
dx

≤ −
1− 2 e−1

x2




log(x + cE)
︸ ︷︷ ︸

≥0

+ log
1

(1 + c)E log 1
E






+
1

x2
(165)

≤ −
1− 2 e−1

x2
log

1

(1 + c)E log 1
E

+
1− 2 e−1

x2
·

1

1− 2 e−1
(166)

= −
1− 2 e−1

x2
log

e
− 1

1−2 e−1

(1 + c)E log 1
E

(167)

< 0, (168)

where the last step follows from (112b). Hence we have shown

dφ(x)
dx

< 0, x ≥ 1. (169)

Combining (160) and (169) proves (142) for allE satisfy-
ing (112).
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We now proceed to upper-boundsupφ(x):

supφ(x) = φ(x∗) (170)

=
1− e−x∗

x∗
︸ ︷︷ ︸

≤1

log
x∗ + cE

(1 + c)E log 1
E

(171)

≤ max

{

0, log
x∗ + cE

(1 + c)E log 1
E

}

(172)

≤ max







0, log

12

log 1
E

+ cE

(1 + c)E log 1
E







. (173)

Now note that, due to (112b), we have

cE ≤
1

log 1
E

. (174)

We can now continue the chain of inequalities (173) as

supφ(x) ≤ max

{

0, log
13

(1 + c)E
(
log 1

E

)2

}

(175)

= log
13

(1 + c)E
(
log 1

E

)2 (176)

= log
1

E
− 2 log log

1

E
− log(1 + c) + log 13. (177)

Here (176) follows because conditions (112a) and (112c)
imply (150).

Combining (137), (140) and (177), and notinge−cE ≤ 1
(together with the fact that the right-hand side of (177) is
positive), we obtain

CPE(E , c)

≤ log log
1

E
+ 2 +

1

E

(

log
1

1− (1 + c)E
− (1 + c)E

)

+
c2

2
E log log

1

E
+ (1 + c) log

1

1−
1

log 1
E

+ log
1

E
− 2 log log

1

E
− log(1 + c) + log 13 (178)

= log
1

E
− log log

1

E
− log(1 + c) + 2 + log 13

+
1

E

(

log
1

1− (1 + c)E
− (1 + c)E

)

+
c2

2
E log log

1

E
+ (1 + c) log

1

1−
1

log 1
E

. (179)

VII. N UMERICAL COMPARISON AND CONCLUDING

REMARKS

We numerically compare the approximation (23) with
nonasymptotic upper and lower bounds on photon efficiency.
Specifically, the plotted upper bound is based on (137) and

(140), and is given by

CPE(E , c)

≤ log log
1

E
+ 2 +

1

E

(

log
1

1− (1 + c)E
− (1 + c)E

)

+
c2

2
E log log

1

E
+ (1 + c) log

1

1−
1

log 1
E

+ e−cE supφ(x), (180)

where φ(·) is given in (141) andsupφ(x) is computed
numerically. The on-off-keying lower bound is obtained by
computing the mutual information of the channel with “on”
signal equalingη, and with the receiver ignoring multiple
detected photons. This is given by

CPE-OOK(E , c)

≥
1

E

(

Hb(q)−
E

η
·Hb(e

−η−cE)−

(

1−
E

η

)

Hb(e
−cE)

)

,

(181)

whereHb(·) denotes the binary entropy function

Hb(a) = a log
1

a
+ (1− a) log

1

1− a
, a ∈ [0, 1], (182)

and where

q ,
E

η
e−η−cE +

(

1−
E

η

)

e−cE . (183)

The simple-PPM lower bound is computed using (51) and
(57):

CPE-PPM(E , c) ≥
1

η

(

p0 log
bp0

p0 + (b − 1)p1

+ (b − 1)p1 log
bp1

p0 + (b− 1)p1

)

. (184)

The soft-decision-PPM lower bound is computed using (96)
and is given by

CPE-PPM(SD)(E , c)

≥
1

η

(

p0 log
bp0

p0 + (b − 1)p1

+ (b − 1)p1 log
bp1

p0 + (b− 1)p1

+ (b − 1)p2 log
bp2

2p2 + (b − 2)p3

+
(b − 1)(b− 2)

2
p3 log

bp3
2p2 + (b− 2)p3

)

. (185)

In all these lower bounds, the parametersb andη are chosen as
in (26) and (28), andp0, p1, p2, p3, andp4 are given in (41),
(47), (84), (87), and (89), respectively. We plot these bounds
for c = 0.1, c = 1, andc = 10 in Figure 1.

The figure shows the following.

• The approximation (23) is reasonably accurate for small
enoughE .

• The on-off-keying and the soft-decision-PPM bounds are
consistently close to the approximation (23).
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Fig. 1. Comparing the approximation (23) to nonasymptotic upper bound,
and to lower bounds for simple PPM, soft-decision PPM, and on-off keying
for three cases:c = 0.1, c = 1, andc = 10.

• As c increases, the simple-PPM bound deviates signifi-
cantly from the other lower bounds, and hence also from
the actual value ofCPE(E , c).

The capacity bounds as well as the asymptotic results in
this paper provide insights to how technical restrictions and
device or channel imperfections influence the communication
rates in optical channels in the wideband regime. Our results
and techniques can also be applied to secret communication
and key distribution over optical channels [14]. It would be
interesting to see if these are further extendable, e.g., to
multiple-mode optical channels and optical networks.

As we have demonstrated, PPM is nearly optimal on the
Poisson channel in the high-photon-efficiency regime. When
c is small, the simple-PPM super channel has high erasure
probability but low “error” (by which we mean the receiver
detects a single pulse at a position that is different from the
transmitted signal) probability. In this case, Reed-Solomon
codes can perform rather close to the theoretical limit. How-
ever, whenc > 1, Reed-Solomon codes can no longer achieve
any positive rates on this channel. Nevertheless, we believe
that, for c > 1, PPM still has its advantages over on-off
keying in terms of code design. This is because the optimal
input distribution for (both simple and soft-decision) PPM
is uniform, whereas the optimal input distribution for on-off
keying for this channel is highly skewed. The uniformity of
PPM inputs allows the usage of more structured codes, in
particular linear codes. One possible direction, for instance,
is to employ the idea ofmultilevel codes[15], [16] on this
channel.

APPENDIX

In this appendix we provide a proof for the converse
part of (8) that is much simpler than the one given in [2].
Using the same arguments as in [2], we know thatC(E , c) is
monotonically increasing inc. Hence it suffices to show

lim
E↓0

C(E , 0)

E log 1
E

≤ 1. (186)

This can be verified as follows:

C(E , 0) = max
E[X]≤E

I(X ;Y ) (187)

≤ max
E[X]≤E

H(Y ) (188)

= max
E[Y ]≤E

H(Y ) (189)

= (1 + E) log(1 + E)− E log E , (190)

which yields the desired asymptotic bound. Here, (190) fol-
lows from the well-known fact that, for a nonnegative discrete
random variable under a first-moment constraint, maximum
entropy is achieved by the geometric distribution, and is given
by the right-hand side of (190). Note that the right-hand
side of (190) is exactly the capacity of the pure-loss bosonic
channel [7].
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