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Abstract—The sparse representation problem of recovering an
N dimensional sparse vector x from M < N linear observations
y = Dx given dictionary D is considered. The standard ap-
proach is to let the elements of the dictionary be independent and
identically distributed (IID) zero-mean Gaussian and minimize
the l1-norm of x under the constraint y = Dx. In this paper, the
performance of l1-reconstruction is analyzed, when the dictionary
is bi-orthogonal D = [O1 O2], where O1,O2 are independent
and drawn uniformly according to the Haar measure on the
group of orthogonal M ×M matrices. By an application of the
replica method, we obtain the critical conditions under which
perfect l1-recovery is possible with bi-orthogonal dictionaries.

I. INTRODUCTION

The sparse representation (SR) problem has wide applica-
bility, for example, in communications [1], [2], multimedia
[3], and compressive sampling (CS) [4], [5]. The standard SR
problem is to find the sparsest x ∈ RN that is the solution to
the set of M < N linear equations

y = Dx, (1)

for a given dictionary or sensing matrix D ∈ RM×N and
observation y. Finding such x is, however, non-polynomial
(NP) hard. Thus, a variety of practical algorithms have been
developed that solve the SR problem sub-optimally. The topic
of the current paper is the convex relaxation approach where,
instead of searching for the x having the minimum l0-norm,
the goal is to find the minimum l1-norm solution of (1).

Let K be the number of non-zero elements in x and assume
that the convex relaxation method is used for recovery. The
trade-off between two parameters ρ = K/N and α = M/N is
then of special interest since it tells how much the sparse signal
can be compressed under l1-reconstruction. An interesting
question then arises: How does the sparsity-undersampling
(ρ vs. α) trade-off depend on the choice of dictionary D?

The empirical study in [6, Sec. 15 in SI] gave evidence
that the worst case ρ vs. α trade-off is quite universal w.r.t
different random matrix ensembles. Analysis in [7] further
revealed that the typical conditions for perfect l1-recovery
are the same for all sensing matrices that are sampled from
the rotationally invariant matrix ensembles. Dictionaries with
independent identically distributed (IID) zero-mean Gaussian
elements is one example of this. But correlations in D can
degrade the performance of l1-recovery [8], so it is not fully
clear how the choice of D affects the ρ vs. α trade-off.

Besides the random / unstructured dictionaries mentioned
above, the information theoretic approach in [9] encompasses
more general matrix ensembles but does not consider the l1-
reconstruction limit. Several studies in the literature have also
considered the specific construction where D is formed by
concatenating two orthogonal matrices [10]–[14]. Such bi-
orthogonal dictionaries are easy to implement and can give
elegant theoretical insights. Unfortunately, the “mutual coher-
ence” based methods used in these papers provide pessimistic,
or worst case, thresholds. Furthermore, the result are not easy
to compare between the unstructured and bi-orthogonal cases.

We consider the analysis of the bi-orthogonal SR setup

y = Dx =
[
O1 O2

] [x1

x2

]
= O1x1 + O2x2, (2)

where the dictionary is constructed by concatenating two
independent matrices O1 and O2, that are drawn uniformly
according to the Haar measure on the group of all orthogonal
M × M matrices. We use the non-rigorous replica method
(see, e.g., [7], [15]–[17] for related works) to assess ρ for a
given α, up to which the l1-recovery is successful. This allows
a direct comparison between the random and bi-orthogonal
dictionaries in average or typical sense. The main result of
the paper is the sparsity-undersampling trade-off for the bi-
orthogonal SR setup (2). We find that this matches the unstruc-
tured IID Gaussian dictionary when the non-zero components
are uniformly distributed between the two blocks. Surprisingly,
when the non-zero components are concentrated more on
one block than the other, the bi-orthogonal dictionaries can
cope with higher overall densities than the unstructured case.
This extends to the case of general T -concatenated orthogonal
dictionaries as reported elsewhere [18].

II. PROBLEM SETTING

Consider the SR problem of finding the sparsest vector x =
[xT

1 xT
2 ]T ∈ RN , given the dense vector y ∈ RM and the

dictionary D = [O1 O2] ∈ RM×N . By definition M/N =
1/2 and OT

i Oi = IM for this setup. Let K1 and K2 be the
number of non-zero elements in x1 and x2, respectively, so
that K = K1 +K2 is the total number of non-zero elements
in x. Denote ρ = K/(2M) for the overall sparsity of the
source while ρ1 = K1/M and ρ2 = K2/M represent the
signal densities of the two blocks.
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It is important to note that D in (2) does not belong
to the rotationally invariant matrix ensembles [7], and there
are complex dependencies between the elements due to the
orthogonality constraints. The fact that OT

1O2 6= 0 makes
the analysis of the setup highly non-trivial (for a sketch, see
Appendices A and B). Thus, only the bi-orthogonal case is
considered here and the analysis of general T -concatenated
orthogonal dictionaries is reported elsewhere [18].

The system is assumed to approach the large system limit
M,K1,K2 → ∞ where the signal densities ρ1, ρ2 are finite
and fixed. We let {xi}2i=1 be independent sparse random
vectors whose components are IID according to

pi(x) = (1− ρi)δ(x) + ρie
−x2/2/

√
2π, i = 1, 2. (3)

The convex relaxation of the original problem is considered
and the goal is to find x = [xT

1 xT
2 ]T that is the solution to

min
x1,x2

‖x1‖1 + ‖x2‖1 s.t. y = O1x1 + O2x2. (4)

Note that we do not consider the weighted l1-reconstruction
analyzed for the rotationally invariant D in [15]. This corre-
sponds to the scenario where the user has no prior knowledge
about the relative statistics of the data blocks. In the next
section we find the typical density ρ = (ρ1 + ρ2)/2 for which
perfect l1-reconstruction is possible under the constraint (2).

III. ANALYSIS

Let the postulated prior of the sparse vector xi be

qβ(x̃i) = e−β‖x̃i‖1 , i = 1, 2, (5)

where the components of x̃i ∈ RM are IID. The inverse
temperature β is a non-negative parameter. Let qβ(x̃) =
qβ(x̃1)qβ(x̃2) be the postulated prior of x in (2), and define
a mismatched posterior mean estimator

〈x̃〉β = Zβ(y,D)−1

∫
x̃δ(y −Dx̃)qβ(x̃)dx̃. (6)

Here Zβ(y,D) =
∫
δ(y−Dx̃)qβ(x̃)dx̃, acts as the partition

function of the system. Then, the zero-temperature estimate
〈x̃〉β→∞ is a solution (if at least one exists) to the original
l1-minimization problem (4).

Utilizing of one of the standard tools from statistical
physics, namely the non-rigorous replica method, we study
next the behavior of the estimator (6). We accomplish this by
examining the so-called free energy density f of the system in
the thermodynamic limit N → ∞. As a corollary, we obtain
the critical compression threshold for the original optimization
problem (4) when β →∞.

A. Free Energy

As sketched in Appendix A, the free energy density related
to (6) reads under the replica symmetric (RS) ansatz

frs = −1

2
lim
β→∞

1

β
lim
M→∞

1

M
lim
u→0

∂

∂u
log Ey,D{Zuβ (y,D)}

=
1

2
cextr
{Θ1,Θ2}

2∑
i=1

T (Θi), (7)

where

T (Θi) =
ρi − 2mi +Qi

4χi
− QiQ̂i

2
+
χiχ̂i

2
+mim̂i

+

∫
(1− ρi)φ(z

√
χ̂i; Q̂i) + ρiφ(z

√
m̂2
i + χ̂i; Q̂i)Dz, (8)

Θi = {Qi, χi,mi, Q̂i, χ̂i, m̂i} is a set of parameters that take
values on the extended real line, Dz = (2π)−1/2e−z

2/2dz is
the Gaussian measure and

φ(h; Q̂) = min
x∈R

{
Q̂x/2− hx+ |x|

}
. (9)

In contrast to, e.g., [7], [15], here cextrΘ g(Θ) is constrained
extremization over the function g(Θ) when χ1 = χ2, needs to
be satisfied.
Remark 1. If the dictionary is sampled from the rotationally
invariant matrix ensembles, the RS free energy density reads

frs =
1

2
extr
{Θ1,Θ2}

2∑
i=1

(
ρi − 2mi +Qi

2
∑2
i=1 χi

− QiQ̂i
2

+
χiχ̂i

2
+mim̂i

+

∫
(1− ρi)φ(z

√
χ̂i; Q̂i) + ρiφ(z

√
m̂2
i + χ̂i; Q̂i)Dz

)
, (10)

where extr is an unconstrained extremization w.r.t {Θ1,Θ2}.

B. Constrained Extremization

Let us denote Q(x) =
∫∞
x

Dz for the Q-function and define

r(h) =

√
h

2π
e−

1
2h − (1 + h)Q

(
1√
h

)
. (11)

After solving the integrals and the optimization problem in
(9), the function (8) becomes

T (Θi) =
ρi − 2mi +Qi

4χi
− QiQ̂i

2
+
χiχ̂i

2
+mim̂i

+
1− ρi
Q̂i

r(χ̂i) +
ρi

Q̂i
r(m̂2

i + χ̂i). (12)

Introducing the Lagrange multiplier η for the constraint χ1 =
χ2, an alternative formulation for the free energy density reads

frs =
1

2
extr

{Θ1,Θ2,η}

{
η(χ1 − χ2) + T (Θ1) + T (Θ2)

}
, (13)

where the extremization is now an unconstrained problem.
Taking partial derivatives w.r.t all optimization variables and
setting the results to zero yields the identities

Q̂i = m̂i and χi =
1

2m̂i
, i = 1, 2. (14)

We also find that the expressions

1

m̂i
=

2

m̂i

[
2(1− ρi)Q

(
1√
χ̂i

)
+ 2ρiQ

(
1√

m̂2
i + χ̂i

)]
, (15)

χ̂i =
ρi − 2mi +Qi

2χ2
i

− η ∂

∂χi
(χ1 − χ2), (16)

are satisfied by the extremum of (13). Under perfect recon-
struction in mean square error (MSE) sense (see, e.g., [7],



[15] for details), we have ρi = Qi = mi and m̂i → ∞ =⇒
χi → 0. Hence, (15) simplifies to the condition

2(1− ρi)Q
(

1√
χ̂i

)
+ ρi =

1

2
. (17)

On the other hand, omitting the terms of the order O(1/m̂3),
we have from the partial derivatives of Q̂i and m̂i

Qi = ρi −
2ρi

m̂i

√
2π
− 2(1− ρi)

m̂2
i

r(χ̂i) +
ρi
m̂2
i

(1 + χ̂i), (18)

mi = ρi −
ρi

m̂i

√
2π
, (19)

respectively, where we used (14) to simplify the expressions.
Plugging the above to (16) and using again (14) yields

χ̂i = (−1)iη + 2ρi(1 + χ̂i)− 4(1− ρi)r(χ̂i). (20)

Before stating the final result, let us introduce a real
parameter µ ∈ [0, 1] and assume without loss of generality
that ρ1 = µρ2. Then the per-block densities can be written as

ρ1 =
2µ

1 + µ
ρ and ρ2 =

2

1 + µ
ρ, (21)

where ρ = ρ(µ) is the overall density of the source. The
parameter µ determines thus how uniformly the non-zero
components are distributed between the two blocks: µ = 1
means fully uniformly, µ = 0 implies that all non-zero
components are in the second block.

Main Result. Let x ∈ R2M , D ∈ RM×2M and y = Dx
as in (2). Given the parameter µ ∈ [0, 1], the typical density
ρ(µ) of the solution to the optimization problem

arg min
x=[x1 x2]T∈R2M

‖x1‖1 + ‖x2‖1 s.t. y = Dx,

is determined in the large system limit by the solutions of the
following set of coupled equations

χ̂1 =

[
Q−1

(
1

4
− 2µρ

1 + µ

[
1

2
−Q

(
1√
χ̂1

)])]−2

, (22)

η =
4µρ

1 + µ

[
1 + χ̂1 + 2r(χ̂1)

]
− 4r(χ̂1)− χ̂1, (23)

χ̂2 =
4ρ

1 + µ

[
1 + χ̂2 + 2r(χ̂2)

]
− 4r(χ̂2) + η, (24)

ρ = (1 + µ)

[
1

2
− 2Q

(
1√
χ̂2

)]/[
2− 4Q

(
1√
χ̂2

)]
, (25)

where Q−1 is the functional inverse of the Q-function. For
uniform sparsity, that is, µ = 1 and ρ1 = ρ2, we have η = 0,
χ̂1 = χ̂2 and χ1 = χ2 always. The critical density is thus the
same as for the dictionary that is drawn from the ensemble of
rotationally invariant matrices.

C. Numerical Examples

Given the dictionary D is drawn from the ensemble of
rotationally invariant matrices, the critical density for l1-
recovery is known to be independent of the block densities
{ρ1, ρ2} and given by ρ = 0.19284483309074016. . . for all
µ ∈ [0, 1]. For the bi-orthogonal D, the threshold is the same
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Fig. 1. Critical density for bi-orthogonal and rotationally invariant D. The
parameter µ ∈ [0, 1] determines how uniformly the non-zero components are
distributed between the two blocks (µ = 1 fully uniform, µ = 0 all non-zero
components are in the second block). The user has no knowledge about µ.
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Fig. 2. Critical density given µ = 0, that is, ρ1 = 0, ρ2 = 2ρ for finite sized
systems. Here ’R’ means rotationally invariant D and ’O’ the bi-orthogonal
case. Each point is averaged over 106 realizations of the optimization problem.
The filled markers at x = 0 are the predictions given by the replica analysis.

only for the case of uniform sparsity µ = 1. For general µ
we obtain different thresholds, as plotted in Fig. 1. Note that
ρ(µ) is a decreasing function of µ, implying that the more
concentrated the non-zero components are in one block, the
bigger the benefit of using the bi-orthogonal dictionary. We
also carried out numerical simulations for the IID Gaussian
and bi-orthogonal D using ’linprog’ from Matlab Optimiza-
tion Toolbox. The results are plotted in Fig. 2, where for each
value of N = 16, 18, . . . , 50, there are 106 realizations of
the SR problem. Cubic curves are fitted to the data using
nonlinear least-squares regression. The critical density for the
bi-orthogonal case is predicted by the replica method to be
ρ(0) = 0.22666551758496698. . . and we observe that the
simulations match the analysis up to the third decimal place.

IV. CONCLUSIONS AND DISCUSSION

The sparsity-undersampling trade-off for the bi-orthogonal
SR setup (2) was studied. For uniformly distributed non-zero
components, there is no difference in compression ratio if we
replace the rotationally invariant dictionary D ∈ RM×2M by
a concatenated matrix D = [O1 O2] ∈ RM×2M , where
O1,O2 are independent and drawn uniformly according to
the Haar measure on the group of all orthogonal M × M



matrices. For non-uniform block sparsities, however, the bi-
orthogonal dictionaries were found to be beneficial compared
to the unstructured random dictionaries.

APPENDIX A
FREE ENERGY

Following [7], [15], we use the replica trick and write the
free energy density as

f = −1

2
lim
β→∞

1

β
lim
u→0

∂

∂u
lim
M→∞

1

M
log Ξ

(u)
β,M , (26)

where denoting ∆x
[a]
i = x

[0]
i − x

[a]
i , a = 0, 1, . . . , u,

Ξ
(u)
β,M = E lim

τ→0+

1

τ
uM
2

E

{
e−

1
2τ

∑u
a=1 ‖O1∆x

[a]
1 +O2∆x

[a]
2 ‖

2

∣∣∣∣∣X
}
.

(27)
For i = 1, 2, the vectors {x[a]

i }ua=1 are IID conditioned on D
and have the same density (5) as x̃i. Furthermore, the elements
of the vectors x[0]

1 and x
[0]
2 are independently drawn according

to p1 and p2 as given in (3), and X = {x[a]
1 ,x

[a]
2 }ua=0.

Let us concentrate on Ξ
(u)
β,M and the inner expectation in

(27), which is over the orthogonal matrices O1 and O2 given
X . Since Oi are orthogonal, the average affects only the cross-
terms of the form (u

[a]
1 )Tu

[a]
2 where u

[a]
i = Oi∆x

[a]
i . Define

matrices Si ∈ Ru×u for i = 1, 2, whose (a, b)th element

S
[a,b]
i = Q

[0,0]
i −Q[0,b]

i −Q[a,0]
i +Q

[a,b]
i , i = 1, 2 (28)

is the empirical covariance between the elements of ∆x
[a]
i and

∆x
[b]
i , written in terms of the empirical covariances

Q
[a,b]
i = M−1(x

[a]
i )Tx

[b]
i , a, b = 0, 1, . . . , u. (29)

between the components of the ath and bth replicas of xi. For
analytical tractability, we make the standard replica symmetry
(RS) assumption on the correlations (29), i.e., ri = Q

[0,0]
i ,

mi = Q
[0,b]
i = Q

[a,0]
i ∀a, b ≥ 1, Qi = Q

[a,a]
i ∀a ≥ 1 and

qi = Q
[a,b]
i ∀a 6= b ≥ 1. The RS free energy density is denoted

frs and we remark that it does not match f if the system is
replica symmetry breaking. Under the RS assumption,

Si = S
[1,2]
i 1u1

T
u + (S

[1,1]
i − S[1,2]

i )Iu, i = 1, 2, (30)

where 1u ∈ Ru is the vector of all-ones, and we may write
the inner expectation in (27) as

e−
uM
2τ (S

[1,1]
1 +S

[1,1]
2 )E

{
e−

1
τ

∑u
a=1(u

[a]
1 )Tu

[a]
2

∣∣∣X}. (31)

Using Lemma 2 and taking the limit τ → 0+ leads to

Ξ
(u)
β,M =

∫
e−MG(u)

u∏
u=1

e−β(‖x[a]
1 ‖1+‖x[a]

2 ‖1)dx
[a]
1 dx

[a]
2 , (32)

where G(u) = limτ→0+ G
(u)
τ . The function G(u)

τ given in (33)
at the top of the next page is implicitly a function of both S1

and S2. To obtain (33) we first used (45), then applied (39).
Finally, some algebraic manipulations give the reported result.

The problem with the limit G(u) = limτ→0+ G
(u)
τ is that

it diverges and the free energy density grows without bound

which is an undesired result. To keep G(u) and the free energy
density finite as τ → 0+, we pose the constraints

S
[1,1]
1 − S[1,2]

1 + uS
[1,2]
1 = S

[1,1]
2 − S[1,2]

2 + uS
[1,2]
2 , (34)

S
[1,1]
1 − S[1,2]

1 = S
[1,1]
2 − S[1,2]

2 , (35)

on the elements of the replica symmetric matrices S1,S2.
Given (34) and (35) are satisfied, we get in the limit τ → 0+

the expression for G(u) = G
(u)
1 +G

(u)
2 in terms of

G
(u)
i =

1

4
log
(
Qi − qi + u(ri − 2mi + qi)

)
+
u− 1

4
log(Qi − qi), i = 1, 2. (36)

Comparing (36) to [7, eq. (A.4)] reveals that the corresponding
terms for rotationally invariant and bi-orthogonal D match
up to vanishing constants. Furthermore, in the limit u → 0
the equalities (34) and (35) are equivalent to the condition
χ1 = χ2, where we denoted χi = β(Qi − qi) for notational
convenience. This provides the relevant constraint for the
evaluation of the RS free energy, as stated in Section III-A.

The next task would be to average (32) over the correlations
(29) using the theory of large deviations and saddle-point
integration. But since the effect of the bi-orthogonal sensing
matrix D has been reduced to the above constraint, we omit
the calculations here due to space constraints. For details, see
[7, Appendix A] and [18].

APPENDIX B
MATRIX INTEGRATION

Lemma 1. Let O1 and O2 be independent and drawn
uniformly according to the Haar measure on the group of
all orthogonal M × M matrices as in (2). Given vectors
x1,x2 ∈ RM , denote ‖xi‖2 = Mri, for i = 1, 2. Then

IM (r1, r2; c) = EO1,O2
ecx

T
1O

T
1x2O2 = Eu1,u2

ecu
T
1u2 , (37)

where c ∈ R and vectors u1,u2 ∈ RM are independent and
uniformly distributed on the hyper-spheres at the boundaries
of M dimensional balls with radiuses R1 =

√
Mr1 and R2 =√

Mr2, respectively. Furthermore,

F (r1, r2; c) = lim
M→∞

M−1 log IM (r1, r2; c)

=

√
1 + 4c2r1r2

2
− 1

2
log

(
1 +
√

1 + 4c2r1r2

2

)
− 1

2
(38)

≈
√
c2r1r2 − log(c2r1r2)/4, for c2r1r2 � 1. (39)

Proof: Let ui = Oixi where {xi}2i=1 are fixed and
{Oi}2i=1 independent and drawn uniformly according to the
Haar measure on the group of all orthogonal M×M matrices.
Since ‖ui‖2 = Mri and Oi rotate the vectors ui uniformly in
all directions, ui is uniformly distributed on the hyper-sphere
at the boundaries of an M dimensional ball having radius
Ri =

√
Mri, providing the second equality in (37).

To assess the second part of the lemma, the joint measure
of (u1,u2) reads p(u1; r1)p(u2; r2)du1du2, where

p(u; r) = Z(r)−1δ(‖u‖2 −M). (40)



G(u)
τ =

1

2τ

(√
S

[1,1]
1 − S[1,2]

1 + uS
[1,2]
1 −

√
S

[1,1]
2 − S[1,2]

2 + uS
[1,2]
2

)2

+
u− 1

2τ

(√
S

[1,1]
1 − S[1,2]

1 −
√
S

[1,1]
2 − S[1,2]

2

)2

+
1

4
log
[(
S

[1,1]
1 − S[1,2]

1 + uS
[1,2]
1

)(
S

[1,1]
2 − S[1,2]

2 + uS
[1,2]
2

)]
+
u− 1

4
log
[(
S

[1,1]
1 − S[1,2]

1

)(
S

[1,1]
2 − S[1,2]

2

)]
, (33)

The normalization constant Z(r) in (40) is the volume of the
hypersphere in which u is constrained to. Using Stirling’s
formula for large M , we get up to a vanishing term O(1/M)

Z(r) = (2πer)M/2/
√
πr. (41)

With the help of Laplace transform, we write

δ(x− a) =
1

4πi

∫ γ+i∞

γ−i∞
e−

1
2 s(x−a)ds, γ ∈ R, (42)

so that using (40) – (42), the latter expectation in (37) becomes

(4πi)−2

Z(r1, r2)

∫
ecu

T
1u2−

∑2
i=1(‖ui‖2−Mri)si/2

2∏
i=1

duidsi

=
(4i)−2√r1r2

πeM (r1r2)M/2

∫
eM

s1r1+s2r2
2

(s1s2 − c2)M/2
ds1ds2, (43)

where we used Gaussian integration to obtain (43). Since
M →∞, we next apply saddle-point integration to solve the
integrals w.r.t s1 and s2. After canceling the vanishing terms,

lim
M→∞

M−1 log IM (r1, r2; c)

= −1− 1

2

2∑
i=1

log ri +
1

2
extr
s1,s2

{ 2∑
i=1

siri − log(s1s2 − c2)

}
,

(44)
and (38) follows by solving the extremization, and (39) by
neglecting the terms that are of the order unity.

Lemma 2. Let {Oi}2i=1 be as in Lemma 1, and ∆x
[a]
i for

i = 1, 2 and a = 1, . . . , u as in (27). Then, under RS ansatz

lim
M→∞

M−1 log EO1,O2

{
ec

∑u
a=1(O1∆x

[a]
1 )T(O2∆x

[a]
2 )
∣∣X}

= F
(
S

[1,1]
1 − S[1,2]

1 + uS
[1,2]
1 , S

[1,1]
2 − S[1,2]

2 + uS
[1,2]
2 ; c

)
+(u− 1)F

(
S

[1,1]
1 − S[1,2]

1 , S
[1,1]
2 − S[1,2]

2 ; c
)
, (45)

where c ∈ R and F (r1, r2; c) is given in (38).

Proof: Denote u
[a]
i = Oi∆x

[a]
i for all i = 1, 2 and

a = 1, . . . , u. Given X , u
[a]
i lie on the surfaces of hyper-

spheres as in the proof of Lemma 1. The RS ansatz guar-
antees that u

[a]
i can be expressed as [u

[1]
i u

[2]
i · · · u

[u]
i ] =

[ũ
[1]
i ũ

[2]
i · · · ũ[u]

i ]ET, where {ũ[a]
i } is a set of vectors that

satisfies M−1ũ
[a]
i · ũ

[b]
i = 0 if a 6= b and

1

M
ũ

[a]
i · ũ

[b]
i =

{
uS

[1,2]
i + (S

[1,1]
i − S[1,2]

i ) if a = b = 1;

S
[1,1]
i − S[1,2]

i if a = b ≥ 2.
(46)

The matrix E = [u−1/21u e2 · · · eu] provides an orthonor-
mal basis that is independent of index i. This indicates that the
expectation in (45) can be assessed w.r.t. {ũ[a]

i } instead of the

original non-orthogonal set {u[a]
i }. The orthogonality allows

us to independently evaluate the expectation for each replica
index a when u � M . Using Lemma 1 and (46) completes
the proof.

ACKNOWLEDGMENT

This work was supported in part by the Swedish Research
Council under VR Grant 621-2011-1024 and by grants from
the JSPS (KAKENHI Nos. 22300003 and 22300098).

REFERENCES

[1] A. Fletcher, V. Goyal, and S. Rangan, “A sparsity detection framework
for on-off random access channels,” in Proc. IEEE Int. Symp. Inform.
Theory, Jun. 28 – Jul. 3 2009.

[2] A. Y. Yang, M. Gastpar, R. Bajcsy, and S. S. Sastry, “Distributed sensor
perception via sparse representation,” Proc. IEEE, vol. 98, no. 6, pp.
1077–1088, Jun. 2010.

[3] M. Elad, Sparse and redundant representations: From theory to appli-
cations in signal and image processing. Springer, 2010.

[4] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory,
vol. 52, no. 4, pp. 1289–1306, Apr. 2006.

[5] E. J. Candes and M. B. Wakin, “An introduction to compressive
sampling,” IEEE Signal Proc. Magazine, vol. 25, pp. 21–30, Mar. 2008.

[6] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing algo-
rithms for compressed sensing,” Proc. Nat. Acad. Sci., vol. 106, pp.
18 914–18 919, 2009.

[7] Y. Kabashima, T. Wadayama, and T. Tanaka, “A typical reconstruction
limit for compressed sensing based on lp -norm minimization,” J. Stat.
Mech., vol. 2009, no. 9, pp. L09 003–1 – L09 003–12, 2009.

[8] K. Takeda and Y. Kabashima, “Statistical mechanical analysis of com-
pressed sensing utilizing correlated compression matrix,” in Proc. IEEE
Int. Symp. Inform. Theory, Jun. 13–18 2010, pp. 1538–1542.

[9] A. Tulino, G. Caire, S. Shamai, and S. Verdú, “Support recovery with
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