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Abstract

We analyze random coding error exponents associated with erasure/list Slepian–Wolf de-
coding using two different methods and then compare the resulting bounds. The first method
follows the well known techniques of Gallager and Forney and the second method is based on a
technique of distance enumeration, or more generally, type class enumeration, which is rooted
in the statistical mechanics of a disordered system that is related to the random energy model
(REM). The second method is guaranteed to yield exponent functions which are at least as
tight as those of the first method, and it is demonstrated that for certain combinations of cod-
ing rates and thresholds, the bounds of the second method are strictly tighter than those of
the first method, by an arbitrarily large factor. In fact, the second method may even yield an
infinite exponent at regions where the first method gives finite values. We also discuss the option
of variable–rate Slepian–Wolf encoding and demonstrate how it can improve on the resulting
exponents.
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1 Introduction

The celebrated paper by Slepian and Wolf [14] has ignited a long–lasting, intensive research activity

on separate source coding and joint decoding of correlated sources, during the last four decades.

Besides its extensions in many directions, some of the more recent studies have been devoted

to further refinements of performance analysis, such as exponential bounds on the decoding error

probability. In particular, Gallager [9] derived a lower bound on the achievable random coding error

exponent pertaining to random binning (henceforth, random binning exponent), using a technique

that is very similar to that of his derivation of the ordinary random coding error exponent [8,

Sections 5.5–5.6]. This random binning exponent was later shown by Csiszár, Körner and Marton

[2], [4] to be universally achievable. The work of Csiszár and Körner [3] is about a universally

achievable error exponent using linear codes as well as a non–universal, expurgated exponent which

is improved at high rates. More recently, Csiszár [1] and Oohama and Han [13] have derived

error exponents for the more general setting of coded side information. For large rates at one of

the encoders, Kelly and Wagner [10] improved upon these results, but they did not consider the

general case.

Since Slepian–Wolf decoding is essentially an instance of channel decoding, we find it natural to

examine its performance also in the framework of generalized channel decoders, that is, decoders

with an erasure/list option. Accordingly, this paper is about the analysis of random binning

exponents associated with generalized decoders. It should be pointed out that error exponents for

list decoders of the Slepian–Wolf encoders were already analyzed in [5], but in that work, it was

assumed that the list size is fixed (independent of the block length) and deterministic. In this

paper, on the hand, we analyze achievable trade-offs between random binning exponents associated

with erasure/list decoders in the framework similar to that of Forney [7]. This means, among other

things, that the erasure and list options are treated jointly, on the same footing, using an optimum

decision rule of a common form, and that in the list option, the list size is a random variable

whose typical value might be exponentially large in the block length. The erasure option allows

the decoder not to decode when the confidence level is not satisfactory. It can be motivated, for

example, by the possibility of generating a rate-less Slepian–Wolf code (see also [6]), provided that

there is at least some minimum amount of feedback.
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We analyze random binning error exponents associated with erasure/list Slepian–Wolf decoding

using two different methods and then compare the resulting bounds. The first method follows the

well known techniques of Gallager [8] and Forney [7], whereas the second method is based on a

technique of distance enumeration, or more generally, on type class enumeration. This method has

already been used in previous work (see [11, Chapters 6–7] and references therein) and proved useful

in obtaining bounds on error exponents which are always at least as tight1 (and in many cases,

strictly tighter) than those obtained in the traditional methods of the information theory literature.

This technique is rooted in the statistical mechanics of certain models of disordered magnetic

materials. While in the case of ordinary random coding, the parallel statistical–mechanical model

is the random energy model (REM) [12, Chapters 5–6], [11, Chapters 6–7], here, since random

binning is considered, the parallel statistical–mechanical model is slightly different, but related. We

will refer to this model as the random dilution model (RDM) for reasons that will become apparent

in the sequel.

As mentioned in the previous paragraph, the type class enumeration method is guaranteed to

yield an exponent function which is at least as tight as that of the classical method. But it is

also demonstrated that for certain combinations of coding rates and thresholds of the erasure/list

decoder, the exponent of the type class enumeration method is strictly tighter than that of the

ordinary method. In fact, the gap between them (i.e., their ratio) can be arbitrarily large, and

even strictly infinite. In other words, for a small enough threshold (pertaining to list decoding),

the former exponent can be infinite while the latter is finite.

While the above described study is carried out for fixed–rate Slepian–Wolf encoding, we also

demonstrate how variable–rate encoding (with a certain structure) can strictly improve on the

random binning exponents. This is shown in the context of the exponents derived using the For-

ney/Gallager method, but a similar generalization can be carried out using the other method.

The outline of the paper is as follows. In Section 2, we provide notation conventions and define

the objectives of the paper more formally. In Section 3, we derive the random binning exponents

using the Forney/Gallager method, and in Section 4, we extend this analysis to allow variable

1It should be pointed out that in [15], another version of the type class enumeration method, which is guaranteed
to yield the exact random coding exponents, was developed. This method, however, is much more difficult to
implement and it gives very complicated expressions.
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rate coding. Finally, in Section 5, after a short background on the relevant statistical–mechanical

model (Subsection 5.1), we use the type class enumeration technique, first in the binary case

(Subsection 5.2), then compare the resulting exponents to those of Section 3 (Subsection 5.3), and

finally, generalize the analysis to a general pair of correlated finite alphabet memoryless sources

(Subsection 5.4).

2 Notation Conventions, Problem Formulation and Background

2.1 Notation Conventions

Throughout the paper, random variables will be denoted by capital letters, specific values they may

take will be denoted by the corresponding lower case letters, and their alphabets will be denoted by

calligraphic letters. Random vectors and their realizations will be denoted, respectively, by capital

letters and the corresponding lower case letters, both in the bold face font. Their alphabets will

be superscripted by their dimensions. For example, the random vector X = (X1, . . . ,Xn), (n –

positive integer) may take a specific vector value x = (x1, . . . , xn) in X n, the n–th order Cartesian

power of X , which is the alphabet of each component of this vector.

For a given vector x, let P̂x denote the empirical distribution, that is, the vector {P̂x(x), x ∈

X}, where P̂x(x) is the relative frequency of the letter x in the vector x. Let T (x) denote its type

class of x, namely, the set {x′ : P̂x′ = P̂x}. The empirical entropy associated with x, denoted

Ĥx(X), is the entropy associated with the empirical distribution P̂x. Similarly, for a pair of vectors

(x,y), the empirical joint distribution P̂xy is the matrix {P̂xy(x, y), x ∈ X , y ∈ Y} of relative

frequencies of symbol pairs {(x, y)}. The conditional type class T (x|y) is the set {x′ : P̂x′y =

P̂xy}. The empirical conditional entropy of x given y, denoted Ĥxy(X|Y ), is the conditional

entropy of X given Y , associated with the joint empirical distribution {P̂xy(x, y)}.

The expectation operator will be denoted by E{·}. Logarithms and exponents will be under-

stood to be taken to the natural base unless specified otherwise. The indicator function will be

denoted by I(·). The notation function [t]+ will be defined as max{t, 0}. For two positive sequences,

{an} and {bn}, the notation an
·
= bn will mean asymptotic equivalence in the exponential scale,

that is, limn→∞
1
n log(anbn ) = 0. Similarly, an

·
≤ bn will mean lim supn→∞

1
n log(anbn ) ≤ 0, and so on.
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2.2 Problem Formulation and Background

Let {(Xi, Yi)}
n
i=1 be n independent copies of a random vector (X,Y ), distributed according to a

given probability mass function P (x, y), where x and y take on values in finite alphabets, X and Y,

respectively. The source vector x = (x1, . . . , xn), which is a generic realization ofX = (X1, . . . ,Xn),

is compressed at the encoder by random binning, that is, each n–tuple x ∈ X n is randomly and

independently assigned to one out of M = enR bins, where R is the coding rate in nats per symbol.

Given a realization of the random partitioning into bins (revealed to both the encoder and the

decoder), let f : X n → {0, 1, . . . ,M −1} denote the encoding function, i.e., z = f(x) is the encoder

output. Accordingly, the inverse image of z, defined as f−1(z) = {x : f(x) = z}, is the bin of all

source vectors mapped by the encoder into z. The decoder has access to z and to y = (y1, . . . , yn),

which is a realization of Y = (Y1, . . . , Yn), namely, the side information at the decoder.

Following [7], we consider a decoder with an erasure/list option, defined as follows. Let

P (x,y) =
∏n

i=1 P (xi, yi) denote the probability of the event {X = x, Y = y} and let T be a

given real valued parameter. The decoding rule is as follows. For every x̂ ∈ f−1(z), if

P (x̂,y)
∑

x′∈f−1(z)\{x̂} P (x′,y)
≥ enT , (1)

then x̂ is referred to as a candidate. If there are no candidates, an erasure is declared, namely, the

decoder acts in its erasure mode. If there is exactly one candidate, x̂, then this is the estimate that

the decoder produces, just like in ordinary decoding. Finally, if there is more than one candidate,

then the decoder operates in the list mode and it outputs the list of all candidates. Obviously, for

T ≥ 0, the list can contain at most one candidate. The list may contain two candidates or more

only for sufficiently small negative values of T .

Forney [7] used the Neymann–Pearson lemma, in an analogous channel coding setting, to show

that the above rule simultaneously gives rise to: (i) an optimum trade-off between the probability

of erasure and the probability of decoding error, in the erasure mode, and (ii) an optimum trade-off

between the probability of list error and the expected number of incorrect candidates on the list,

in the list mode. Our goal, in this paper, is to assess the exponential rates associated with these

trade-offs.
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3 Error Exponent Analysis Based on the Gallager/Forney Method

Similarly as in [7], we define the event E1 as the event that the correct source vector x is not a

candidate, that is,
P (x,y)

∑

x′∈f−1(z)\{x} P (x′,y)
< enT . (2)

We next derive a lower bound on the exponential rate E1(R,T ) of the average probability of E1,

where the averaging is with respect to (w.r.t.) the ensemble of random binnings. The other

exponent, E2(R,T ) (of decoding error in the erasure option, or the expected list size in list option)

will then be given by E2(R,T ) = E1(R,T )+T , similarly as in [7]. We now have the following chain

of inequalities for any s ≥ 0:

Pr{E1} =
∑

x,y

P (x,y)I

{

enT
∑

x′ 6=x P (x′,y)I[f(x′) = f(x)]

P (x,y)
> 1

}

≤
∑

x,y

P (x,y)

[

enT
∑

x′ 6=x P (x′,y)I[f(x′) = f(x)]

P (x,y)

]s

= ensT
∑

x,y

P 1−s(x,y)





∑

x′ 6=x

P (x′,y)I[f(x′) = f(x)]





s

. (3)

Now, let ρ ≥ s be another parameter. Then,

Pr{E1} ≤ ensT
∑

x,y

P 1−s(x,y)











∑

x′ 6=x

P (x′,y)I[f(x′) = f(x)]





s/ρ






ρ

(4)

≤ ensT
∑

x,y

P 1−s(x,y)





∑

x′ 6=x

P s/ρ(x′,y)I[f(x′) = f(x)]





ρ

. (5)
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where we have used the inequality (
∑

i ai)
t ≤

∑

i a
t
i for t ∈ [0, 1]. Taking now the expectation w.r.t.

the randomness of the binning, and assuming that ρ ≤ 1, we get

Pr{E1} ≤ ensT
∑

x,y

P 1−s(x,y)E











∑

x′ 6=x

P s/ρ(x′,y)I[f(x′) = f(x)]





ρ




(6)

≤ ensT
∑

x,y

P 1−s(x,y)





∑

x′ 6=x

P s/ρ(x′,y)E{I[f(x′) = f(x)]}





ρ

(7)

= ensT
∑

x,y

P 1−s(x,y)





∑

x′ 6=x

P s/ρ(x′,y)e−nR





ρ

(8)

= e−n(ρR−sT )
∑

x,y

P 1−s(x,y)





∑

x′ 6=x

P s/ρ(x′,y)





ρ

(9)

= e−n(ρR−sT )
∑

y

P (y)
∑

x

P 1−s(x|y)





∑

x′ 6=x

P s/ρ(x′|y)





ρ

(10)

≤ e−n(ρR−sT )





∑

y∈Y

P (y)
∑

x∈X

P 1−s(x|y)

(

∑

x′∈X

P s/ρ(x′|y)

)ρ




n

. (11)

Thus, after optimization over ρ and s, subject to the constraints 0 ≤ s ≤ ρ ≤ 1, we obtain

Pr{E} ≤ e−nE1(R,T ) (12)

where

E1(R,T ) = sup
0≤s≤ρ≤1

[E0(ρ, s) + ρR− sT ] (13)

with

E0(ρ, s) = − ln





∑

y∈Y

P (y)
∑

x∈X

P 1−s(x|y)

(

∑

x′∈X

P s/ρ(x′|y)

)ρ


 . (14)

A few elementary properties of the function E1(R,T ) are the following.

1. E1(R,T ) is jointly convex in both arguments. This follows directly from the fact that it

is given by the supremum over a family of affine functions in (R,T ). Clearly, E1(R,T ) is

increasing in R and decreasing in T .

2. At T = 0, the optimum s is ρ/(1 + ρ), similarly as in [7] and [9]. Thus, as observed in [7],

here too, the case T = 0 is essentially equivalent (in terms of error exponents) to ordinary

decoding, although operationally, there still might be erasures in this case.
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3. For a given T , the infimum of R such that E1(R,T ) > 0 is

Rmin(T ) = inf
0≤s≤ρ≤1

sT − E0(ρ, s)

ρ
, (15)

which is a concave increasing function. At T = 0,

Rmin(0) = − sup
0≤ρ≤1

E0

(

ρ, ρ
1+ρ

)

ρ
= − lim

ρ→0

E0

(

ρ, ρ
1+ρ

)

ρ
= −

∂

∂ρ
E0

(

ρ,
ρ

1 + ρ

) ∣

∣

∣

∣

ρ=0

= H(X|Y ).

4. For a given R, the supremum of T such that E1(R,T ) > 0 is

Tmax(R) = sup
0≤s≤ρ≤1

ρR+ E0(ρ, s)

s
, (16)

which is a convex increasing function, the inverse of Rmin(T ).

Additional properties can be found similarly as in [7], but we will not delve into them here.

4 Extension to Variable–Rate Slepian–Wolf Coding

A possible extension of the above error exponent analysis allows variable rate coding. In this section,

we demonstrate how the flexibility of variable–rate coding can improve the error exponents.

Consider an encoder that first sends a relatively short header that encodes the type class of

x (using a logarithmic number of bits), and then a description of x within its type class, using

a random bin z = f(x) in the range {0, 1, . . . , exp[nR(x)] − 1}, where R(x) > 0 depends on x

only via the type class of x. The bin z for every x in its type class is selected independently at

random with a uniform probability distribution P (z) = e−nR(x). The average coding rate would

be, of course, R = E{R(X)} (neglecting the rate of the header). For example, consider an additive

rate function2 R(x) = 1
n

∑n
i=1 r(xi). Thus, R = E{r(X)} =

∑

x∈X P (x)r(x). Extending the above

error exponent analysis, one readily obtains3

Ẽ1(R,T ) = sup
0≤s≤ρ≤1

sup
{r: E{r(X)}≤R, r(x)>0 ∀ x∈X}

[Ẽ0(ρ, s)− sT ], (17)

2The reason for choosing a rate function with this simple structure is that it allows to easily generalize the
analysis in the Gallager/Forney style and obtain single–letter expressions without recourse to the method of types.
More general rate functions, that depend on the type class of x in an arbitrary manner, are still manageable, but
require the method of types.

3Observe that here Pr{f(x′) = f(x)} = e−nR(x′) whenever enR(x′) < f(x) and Pr{f(x′) = f(x)} = 0 elsewhere,

thus Pr{f(x′) = f(x)} ≤ e−nR(x′) everywhere.
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where r
∆
= {r(x), x ∈ X} and where Ẽ0(ρ, s) is defined as

Ẽ0(ρ, s) = − ln





∑

y∈Y

P (y)
∑

x∈X

P 1−s(x|y)

(

∑

x′∈X

P s/ρ(x′|y)e−r(x′)

)ρ


 . (18)

It is interesting to find the optimum rate assignment r = {r(x) x ∈ X} that maximizes the

exponent. Consider, for example, the case where R and T are such that E1(R,T ) is achieved by

ρ = 1. Then,

e−E0(1,s) =
∑

y∈Y

P (y)
∑

x∈X

P 1−s(x|y)
∑

x′∈X

P s(x′|y)e−r(x′) (19)

=
∑

x∈X

F (x)e−r(x) (20)

where

F (x)
∆
=
∑

y∈Y

P (y)P s(x|y)
∑

x′∈X

P 1−s(x′|y). (21)

Our task now is to minimize
∑

x∈X F (x)e−r(x) subject to the constraints
∑

x∈X P (x)r(x) ≤ R and

r(x) > 0 for all x ∈ X , which is a standard convex program. For simplicity, let us first ignore the

constraints r(x) > 0, x ∈ X , and assume that the parameters of the problem are such that the

resulting solution will satisfy these positivity constraints anyway. Then,

r∗(x) = λ+ ln
F (x)

P (x)
, (22)

where λ is determined by the average rate constraint, that is

λ = R+
∑

x∈X

P (x) ln
P (x)

F (x)
(23)

= R+D(P‖Q)− ln

[

∑

x∈X

F (x)

]

, (24)

where

Q(x) =
F (x)

∑

x′∈X F (x′)
. (25)

Thus,

r∗(x) = R+D(P‖Q) + ln
Q(x)

P (x)
. (26)

We see that fixed–rate coding is optimum only if P (x) happens to be proportional to F (x), namely,

P = Q (which is the case, for example, when s = 1). Upon substituting r∗ = {r∗(x), x ∈ X} back

9



into the objective function, we obtain

e−Ẽ0(1,s) =
∑

x∈X

F (x) exp{−λ− ln[F (x)/P (x)]} (27)

=
∑

x∈X

P (x)e−λ = e−λ, (28)

and so,

Ẽ0(1, s) = λ (29)

= R+D(P‖Q)− ln

[

∑

x∈X

F (x)

]

(30)

= R+D(P‖Q)− ln





∑

y∈Y

P (y)
∑

x∈X

P 1−s(x|y)
∑

x′∈X

P s(x′|y)



 (31)

= E0(1, s) +D(P‖Q). (32)

The term D(P‖Q) then represents the improvement we have obtained upon passing from fixed—

rate coding to variable–rate coding with an additive rate function. This is true for a given s.

However, after re–optimizing the bound over s, the improvement can be even larger. When R +

D(P‖Q) + ln[Q(x)/P (x)] are not all positive, the optimum solution is given by

r∗(x) =

[

ln
Q(x)

P (x)
+ µ

]

+

(33)

where µ is the (unique) solution to the equation

∑

x∈X

P (x)

[

ln
Q(x)

P (x)
+ µ

]

+

= R. (34)

For ρ < 1, the optimization over r is less trivial, but it can still be carried out at least numerically.

5 Error Exponent Analysis Using Type Class Enumeration

5.1 A Brief Background in Statistical Mechanics

This subsection can be skipped without essential loss of continuity, however, we believe that before

getting into the detailed technical derivation, it would be instructive to give a brief review of the

statistical–mechanical models that are at the basis of the type class enumeration method.

In ordinary random coding (as opposed to random binning), the derivations of bounds on the

error probability (especially in the methods of Gallager and Forney) are frequently associated with
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expressions of the form
∑

x∈C P
β(y|x), where C is (randomly selected) codebook and β > 0 is

some parameter. As explained in [11, Chap. 6], this can be viewed, from the statistical–mechanical

perspective, as a partition function

Z(β) =
∑

x∈C

e−βE(x,y), (35)

where β plays the role of inverse temperature and where the energy function (Hamiltonian) is

E(x,y) = − lnP (y|x). Since the codewords are selected independently at random, then for a given

y, the energies {E(x,y), x ∈ C} are i.i.d. random variables. This is, in principle, nothing but the

random energy model (REM), a well known model in statistical mechanics of disordered magnetic

materials (spin glasses), which exhibits a phase transition: below a certain critical temperature

(β > βc), the system freezes in the sense that the partition function is exponentially dominated

by a subexponential number of configurations at the ground–state energy (zero thermodynamical

entropy). This phase is called the frozen phase or the glassy phase. The other phase, β < βc,

is called the paramagnetic phase (see more details in [12, Chap. 5]). Accordingly, the resulting

exponential error bounds associated with random coding ‘inherit’ this phase transition (see [11]

and references therein).

In random binning the situation is somewhat different. As we have seen in Section 3, here the

bound involves an expression like
∑

x′ P β(x′,y)I[f(x′) = f(x)]. The source vectors {x′} that

participate in the summation are now deterministic, but the random ingredient is the function f .

The analogous statistical–mechanical model is then encoded into the partition function

Z(β) =
∑

x

I(x) · e−βE(x,y), (36)

where {I(x), x ∈ X n} are i.i.d. binary random variables, taking on values in {0, 1}, where

Pr{I(x) = 1} = e−nR. In other words, Z(β) is a randomly diluted version of the full partition

function
∑

x e−βE(x,y), where each configuration x ‘survives’ with probability e−nR or is discarded

with probability 1−e−nR. Accordingly, we refer to this model as the random dilution model (RDM).

To the best of our knowledge, such a model has not been used in statistical mechanics thus far,

but it can be analyzed in the very same fashion, and it is easy to see that it also exhibits a glassy

phase transition (depending on R). In fact, the RDM can be considered as a variant of the REM,

where the configurational energies are E(x,y) + φ(x), where φ(x) = 0 with probability e−nR and
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φ(x) = ∞ with probability 1−e−nR. Thus, φ(x) can be thought of as disordered potential function,

associated with long–range interactions, with infinite spikes that forbid access to certain points in

the configuration space.

5.2 The Binary Case

Let us return to the fixed–rate regime. It is instructive to begin from the relatively simple special

case where X and Y are correlated binary symmetric sources (BSS’s), that is,

P (x, y) =

{

(1− p)/2 x = y
p/2 x 6= y

x, y ∈ {0, 1} (37)

We begin similarly as in Section 3: Our starting point is the same bound as in the last line of eq.

(3), specialized to the binary case considered here, where we also take the ensemble average:

Pr{E1} ≤ ensT
∑

x,y

P 1−s(x,y) ·E











∑

x′ 6=x

P (x′,y)I[f(x′) = f(x)]





s




(38)

= ensT
∑

y

P (y)

[

∑

x

P 1−s(x|y)

]

·E











∑

x′ 6=x

P (x′|y)I[f(x′) = f(x)]





s




(39)

= ensT
∑

y

2−n
[

p1−s + (1− p)1−s
]n

·E











∑

x′ 6=x

P (x′|y)I[f(x′) = f(x)]





s




(40)

= ensT
[

p1−s + (1− p)1−s
]n

·E











∑

x′ 6=x

P (x′|y)I[f(x′) = f(x)]





s




(41)

where the last step is justified by the fact that the expectation term is independent of y, as will be

seen shortly. Now,

E











∑

x′ 6=x

P (x′|y)I[f(x′) = f(x)]





s




·
=

∑

T (x′|y)

P s(x′|y)E{N s(x′|x,y)} (42)

= (1− p)ns
∑

δ

(

p

1− p

)nsδ

E{N s(x′|x,y)} (43)

where δ is the normalized Hamming distance, the summation is over the set {0, 1/n, 2/n, . . . , 1 −

1/n, 1}, and N(x′|x,y) =
∑

x′∈T (x|y) I[f(x
′) = f(x)]. Now, N(x′|x,y) is the sum of |T (x|y)|

·
=

exp{nĤxy(X|Y )} i.i.d. binary random variables {I[f(x′) = f(x)]} with Pr{f(x′) = f(x)} = e−nR.
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Thus, similarly as in [11, Sect. 6.3]

E{N s(x′|x,y)}
·
=

{

exp{ns[h(δ) −R]} h(δ) ≥ R
exp{n[h(δ) −R]} h(δ) < R

(44)

= exp{n(s[h(δ) −R]− (1− s)[R− h(δ)]+)} (45)

and so

Pr{E1} ≤ ensT
[

p1−s + (1− p)1−s
]n

(1− p)ns
∑

δ

(

p

1− p

)nsδ

×

exp{n(s[h(δ) −R]− (1− s)[R− h(δ)]+)} (46)

·
= ensT

[

p1−s + (1− p)1−s
]n

(1− p)nse−nL(R,s) (47)

where L(R, s)
∆
= min0≤δ≤1 L(R, s, δ) with

L(R, s, δ)
∆
= sδ ln

1− p

p
+ s[R− h(δ)] + (1− s)[R− h(δ)]+. (48)

Standard optimization of L(R, s, δ) gives the following result (see Appendix A for the details).

Define the sets (see also Fig. 1)

A = {(s,R) : 0 ≤ s ≤ 1, R > h(ps)} (49)

B = {(s,R) : 0 ≤ s ≤ 1, h(p) < R ≤ h(ps)} (50)

C = {(s,R) : 0 ≤ s ≤ 1, R ≤ h(p)} (51)

D = {(s,R) : s > 1, R > h(p)} (52)

E = {(s,R) : s > 1, R(s) < R ≤ h(p)} (53)

F = {(s,R) : s > 1, h(ps) < R ≤ R(s)} (54)

G = {(s,R) : s > 1, R ≤ h(ps)}. (55)

Then,

L(R, s) =











s[p ln 1−p
p +R− h(p)] (s,R) ∈ C ∪ F ∪G

sh−1(R) ln 1−p
p (s,R) ∈ B

sps ln
1−p
p +R− h(ps) (s,R) ∈ A ∪D ∪E

(56)

Finally, the exponent of Pr{E1} is lower bounded by

E′
1(R,T ) = sup

s≥0

{

L(R, s) + s ln
1

1− p
− ln[p1−s + (1− p)1−s]− sT

}

. (57)
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Equivalently, E′
1(R,T ) can be presented as follows:

E′
1(R,T ) = sup

s≥0
E′

1(R,T, s) (58)

where

E′
1(R,T, s) =







s(R− T )− ln[p1−s + (1− p)1−s] (s,R) ∈ C ∪ F ∪G
s[R− T +D(h−1(R)‖p)]− ln[p1−s + (1− p)1−s] (s,R) ∈ B
R− sT − ln[ps + (1− p)s]− ln[p1−s + (1− p)1−s] (s,R) ∈ A ∪D ∪ E

(59)

Fig. 1 depicts a phase diagram of the function L(R, s). This function inherits phase transitions

associated with the analogous statistical–mechanical model – the RDM. The strip defined by s ≥ 0

and 0 ≤ R ≤ ln 2 is divided into seven regions, labeled by the letters A–G as defined above. There

are three main phases that are separated by solid lines, which differ in terms of the expression of

L(R, s). The phase C∪F ∪G is the phase where typical realiztions of the random binning ensemble

dominate the partition function (that is, conditional type classes of size less than enR contain no

matching bin, whereas conditional type classes of larger size have an exponentially typical number

of bin matches), phase B is the glassy phase, and phase A∪D∪E is the phase where the conditional

small type classes dominate the partition function (unlike in phase C∪F∪G). A secondary partition

into sub–phases (dashed lines) correspond to different shapes of the objective function L(R, s, δ). In

regions A, B, C (s ≤ 1), the derivative of the objective function has a positive jump at δ = h−1(R),

and the minimizer is smaller than h−1(R), equal to h−1(R), and larger than h−1(R), respectively.

In regions D, E, F and G (s > 1), the derivative of L(R, s, δ) w.r.t. δ has a negative jump at

δ = h−1(R), In regions E and F , this jump is from a positive derivative to a negative derivative,

meaning that δ = h−1(R) is a (non–smooth) local maximum and there are two local minima, one

at δ = p < h−1(p) and one at δ = ps > h−1(R). In region E, the local minimum at δ = ps is

smaller than the local minimum at δ = p and in region F it is vice versa. In region G there is only

one local minimum at δ = p and in region D there is only one local minimum at δ = ps.

5.3 Comparison of the Exponents

The expression of E′
1(R,T ) should be compared with E1(R,T ) specialized to the double BSS

considered in Subsection 5.2, i.e.,

E1(R,T ) = sup
0≤s≤ρ≤1

{

ρR− ln[p1−s + (1− p)1−s]− ρ ln[ps/ρ + (1− p)s/ρ]− sT
}

. (60)
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s

R = h(ps)

R

s = 1

R = R(s)

B

A

C

D

E

F

G

R = ln 2

R = h(p)

R = h(ps)

Figure 1: Phase diagram of the function L(R, s).

Obviously, E′
1(R,T ) ≥ E1(R,T ) since derivation of E′

1(R,T ) is guaranteed to be exponentially

tight starting from (3), in contrast to the derivation of E1(R,T ), which is associated with Jensen’s

inequality, as well as the inequality (
∑

i ai)
t ≤

∑

i a
t
i, 0 ≤ t ≤ 1, following [7].

To show an extreme situation of a strict inequality, E′
1(R,T ) > E1(R,T ), consider the case

where R > h(p) and T < ln[p/(1 − p)] < 0 (a list option). Then,

E′
1(R,T ) ≥ lim

s→∞

{

R− sT − ln

[

(1− p)s
(

1 +

[

p

1− p

]s)]

−

ln

[

p1−s

(

1 +

[

1− p

p

]1−s
)]}

(61)

= lim
s→∞

{

R− sT − s ln(1− p)− ln

(

1 +

[

p

1− p

]s)

− (1− s) ln p−

ln

(

1 +

[

p

1− p

]s−1
)}

(62)

= lim
s→∞

{R− sT − s ln(1− p)− (1− s) ln p} (63)

= ln
1

p
+R+ lim

s→∞
s

[

ln
p

1− p
− T

]

(64)

= ∞. (65)
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On the other hand, in this case,

E1(R,T ) ≤ R+ |T |+ 2 max
0≤α≤1

{− ln[pα + (1− p)α]} (66)

= R+ |T | < ∞. (67)

Another situation, where it is relatively easy to calculate the exponents is the limit of very weak

correlation between the BSS’s X and Y (in analogy to the notion of a very noisy channel [8, p. 147,

Example 3]). Let p = 1/2 − ǫ for |ǫ| ≪ 1. In this case, a second order Taylor series expansion of

the relevant functions (see Appendix B for the details) yields, for h(p) ≤ R ≤ ln 2 and T = −τǫ2,

with τ > 4 being fixed:

E1(R,T ) ≤ (τ + 2)ǫ2, (68)

whereas

E′
1(R,T ) ≥

[

τ(τ + 8)

16
− 1

]

ǫ2. (69)

Now, observe that the upper bound on E1(R,T ) is affine in τ , whereas the lower bound on E′
1(R,T )

is quadratic in τ , thus the ratio E′
1(R,T )/E1(R,T ) can be made arbitrarily large for any sufficiently

large τ > 4.

In both examples, we took advantage of the fact that the range of optimization of s for E′
1(R,T )

includes all the positive reals, whereas for E1(R,T ), it is limited to the interval [0, 1] due to the

combination of using of Jensen’s inequality (which requires ρ ≤ 1) and the inequality (
∑

i ai)
t ≤

∑

i a
t
i (which requires s ≤ ρ). Note that the second example is not a special case the first one,

because in the first example, for p = 1/2 − ǫ, |T | > ln[(1 − p)/p] = O(ǫ), whereas in the second

example, T = O(ǫ2).

5.4 Extension to General Finite Alphabet Memoryless Sources

In this subsection, we use the type class enumeration method for general finite alphabet sources S

and Y . Consider the expression

E











∑

x′ 6=x

P (x′,y)I[f(x′) = f(x)]





s
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that appears upon taking the expectation over the last line of (3). Then, we have

E











∑

x′ 6=x

P (x′,y)I[f(x′) = f(x)]





s




(70)

= P s(y)E











∑

x′ 6=x

P (x′|y)I[f(x′) = f(x)]





s




(71)

≤ P s(y)
∑

T (x′|y)

P s(x′|y)E











∑

x̃∈T (x′|y)

I[f(x̃) = f(x)]





s




(72)

∆
= P s(y)

∑

T (x′|y)

P s(x′|y)E
{

N s(x′|x,y)
}

(73)

where N(x′|x,y) is the (random) number of {x̃} in T (x′|y) which belong to the same bin as x.

Now,

E
{

N s(x′|x,y)
} ·

=

{

exp{ns[Ĥx′y(X|Y )−R]} Ĥx′y(X|Y ) > R

exp{n[Ĥx′y(X|Y )−R]} Ĥx′y(X|Y ) ≤ R
(74)

= exp{n(s[Ĥx′y(X|Y )−R]− (1− s)[R− Ĥx′y(X|Y )]+)}, (75)

Thus,

E











∑

x′ 6=x

P (x′,y)I[f(x′) = f(x)]





s




(76)

·
= P s(y)

∑

T (x′|y)

P s(x′|y) exp{n(s[Ĥx′y(X|Y )−R]− (1− s)[R− Ĥx′y(X|Y )]+)} (77)

= P s(y)
∑

T (x′|y)

P s(x′|y) exp{n(s[Ĥx′y(X|Y )−R]− (1− s)[R− Ĥx′y(X|Y )]+)} (78)

= P s(y)
∑

T (x′|y)

exp{−n(s[D(P̂x′|y‖PX|Y |P̂y) +R] + (1− s)[R− Ĥx′y(X|Y )]+)} (79)

·
= P s(y) exp

{

−n min
P
X′|Y

(s[D(PX′|Y ‖PX|Y |P̂y) +R] + (1− s)[R−H(X ′|Y )]+)

}

(80)

∆
= P s(y)e−nL(P̂y ,R,s), (81)

where P̂x′|y is the empirical conditional distribution of a random variable X ′ given Y induced by

(x′,y), and D(PX′|Y ‖PX|Y |PY ) is defined as

D(PX′|Y ‖PX|Y |PY ) =
∑

y

PY (y)
∑

x

PX′|Y (x|y) log
PX′|Y (x|y)

PX|Y (x|y)
. (82)
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Consequently,

Pr{E1} ≤ ensT
∑

x,y

P 1−s(x,y)P s(y)e−nL(P̂y ,R,s) (83)

= ensT
∑

y

P (y)e−nL(P̂y ,R,s)
∑

x

P 1−s(x|y) (84)

= ensT
∑

y

P (y)e−nL(P̂y ,R,s)
n
∏

i=1

∑

x∈X

P 1−s(x|yi) (85)

·
= e−nE′

1(R,T,s) (86)

where

E′
1(R,T, s) = min

P ′
Y



D(P ′
Y ‖PY ) + L(P ′

Y , R, s)−
∑

y∈Y

P ′
Y (y) ln

∑

x∈X

P 1−s(x|y)



 − sT. (87)

Finally,

E′
1(R,T ) = sup

s≥0
E′

1(R,T, s). (88)

Appendix A

Calculation of L(R, s). Let ps = ps/[ps+(1−p)s]. Consider first the case s ∈ [0, 1], where ps ≥ p.

In this case, the minimizer δ∗ that achieves L(R, s) is given by

δ∗ =







p R < h(p)
h−1(R) h(p) ≤ R < h(ps)
ps R ≥ h(ps)

(A.1)

Here, for R < h(p), the derivative of the objective function vanishes only at δ = p > h−1(R),

where the term [R − h(δ)]+ vanishes. On the other hand, for R ≥ h(ps), the derivative vanishes

only at δ = ps < h−1(R), where the term [R − h(δ)]+ is active. In the intermediate range, the

derivative jumps from a negative value to a positive value at δ = h−1(R) discontinuously, hence it

is a minimum. Thus, for 0 ≤ s ≤ 1, we have:

L(R, s) =











s[p ln 1−p
p +R− h(p)] R < h(p)

sh−1(R) ln 1−p
p h(p) ≤ R < h(ps)

sps ln
1−p
p +R− h(ps) R ≥ h(ps)

(A.2)

For s > 1, ps < p. and so h(ps) < h(p). Here, for R < h(ps), which means also R < h(p),

the derivative vanishes only at δ = p > h−1(R). On the other hand, for R > h(p) > h(ps), the
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derivative vanishes only at δ = ps < h−1(R). In the intermediate range, h(ps) ≤ R < h(p), the

derivative vanishes both at δ = p and δ = ps, so the minimum is the smaller between the two.

Namely, it is δ∗ = ps if

sps ln
1− p

p
+ s[R− h(ps)] + (1− s)[R− h(ps)]+ ≤ sp ln

1− p

p
+ s[R− h(p)] + (1− s)[R− h(p)]+

or equivalently,

sps ln
1− p

p
+R− h(ps) ≤ sp ln

1− p

p
+ s[R− h(p)],

and it is δ = p∗ otherwise. The choice between the two depends on R. Let

R(s) =
s(ps − p) ln[(1− p)/p] + sh(ps)− h(p)

s− 1
= −

ln[ps + (1− p)s]

s− 1
(A.3)

Then, for s > 1,

L(R, s) =

{

s[p ln 1−p
p +R− h(p)] R < R(s)

sps ln
1−p
p +R− h(ps) R ≥ R(s)

(A.4)

Appendix B

Calculations of Error Exponents for Very Weakly Correlated BSS’s. For p = 1/2− ǫ, we

have, to the second order in ǫ, H(X|Y ) = h(p) = h(1/2−ǫ) = ln 2−2ǫ2. Consider the range of rates

ln 2− 2ǫ2 < R ≤ ln 2. A second order Taylor series expansion of γ(t)
∆
= − ln[(1/2− ǫ)t + (1/2 + ǫ)t]

around ǫ = 0 (for fixed t) gives

γ(t) = (t− 1)(ln 2− 2tǫ2), (B.1)

and so,

E0(ρ, s) = γ(1− s) + ργ

(

s

ρ

)

(B.2)

= −s[ln 2− 2(1 − s)ǫ2] + (s − ρ)

(

ln 2−
2sǫ2

ρ

)

(B.3)

= 4sǫ2 − 2s2
(

1 +
1

ρ

)

ǫ2 − ρ ln 2. (B.4)

Now,

E1(R,T ) = max
0≤s≤ρ≤1

[

s(4ǫ2 − T )− ρ(ln 2−R)− 2s2ǫ2
(

1 +
1

ρ

)]

. (B.5)
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We will find it convenient to present R = ln 2 − 2θ2ǫ2, where θ ∈ [0, 1], and so, from here on, the

rate is parametrized by θ. The maximization over ρ ≥ s, for a given s, is readily found to give

ρ∗s = s|ǫ|

√

2

ln 2−R
=

s

θ
≥ s, (B.6)

On substituting ρ = ρ∗s, we get

E1(R,T ) ≤ max
0≤s≤1

[E0(ρ
∗
s, s) + ρ∗sR− sT ] (B.7)

= max
0≤s≤1

[

s(4ǫ2 − T )− s|ǫ|
√

2(ln 2−R)− 2s2ǫ2 − 2s|ǫ|

√

ln 2−R

2

]

(B.8)

= max
0≤s≤1

{s[4ǫ2 − T − 2|ǫ|
√

2(ln 2−R)]− 2s2ǫ2} (B.9)

= max
0≤s≤1

{s[4ǫ2(1− θ)− T ]− 2s2ǫ2} (B.10)

where the inequality is because when we maximized over ρ, we have ignored the constraint ρ ≤ 1.

Next, let T = −τǫ2 for τ > 4, then s∗ = 1 and so,

E1(R,T ) ≤ 4ǫ2(1− θ) + τǫ2 − 2ǫ2 = 2ǫ2(1− 2θ) + τǫ2 ≤ (τ + 2)ǫ2. (B.11)

On the other hand,

E′
1(R,T ) ≥ sup

s≥1
[R− sT + γ(s) + γ(1− s)] (B.12)

= sup
s≥1

[s(4ǫ2 − T )− 4s2ǫ2] +R− ln 2 (B.13)

= sup
s≥1

[s(4ǫ2 − T )− 4s2ǫ2]− 2θ2ǫ2 (B.14)

=
(4ǫ2 − T )2

16ǫ2
− 2θ2ǫ2 (B.15)

≥
[(τ + 4)ǫ2]2

16ǫ2
− 2ǫ2 (B.16)

=

[

τ(τ + 8)

16
− 1

]

ǫ2. (B.17)
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