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Abstract

We consider the problem of allocating radio channels to links in a wireless network. Links interact
through interference, modelled as a conflict graph (i.e., two interfering links cannot be simultaneously
active on the same channel). We aim at identifying the channel allocation maximizing the total network
throughput over a finite time horizon. Should we know the average radio conditions on each channel and
on each link, an optimal allocation would be obtained by solving an Integer Linear Program (ILP). When
radio conditions are unknown a priori, we look for a sequential channel allocation policy that converges
to the optimal allocation while minimizing on the way the throughput loss or regret due to the need
for exploring sub-optimal allocations. We formulate this problem as a generic linear bandit problem,
and analyze it first in a stochastic setting where radio conditions are driven by a stationary stochastic
process, and then in an adversarial setting where radio conditions can evolve arbitrarily. We provide new
algorithms in both settings and derive upper bounds on their regrets.

1 Introduction

Spectrum is a key and scarce resource in wireless communication systems, and it remains tightly controlled
by regulation authorities. Most of the frequency bands are exclusively allocated to a single system licensed to
use it everywhere and for periods of time that usually cover one or two decades. The consensus on this rigid
spectrum management model is that it leads to significant inefficiencies in spectrum use. The explosion of
demand for broadband wireless services also calls for more flexible models where much larger spectrum parts
could be dynamically shared among users in a fluid manner. In such models, Dynamic Spectrum Access
(DSA) techniques will play a major role. These techniques make it possible for radio devices to become
frequency-agile, i.e. able to rapidly and dynamically access bands of a wide spectrum part.

In this paper, we consider wireless networks where transmitters can share a potentially large number
of frequency bands or channels for transmission. In such networks, transmitters should be able to select a
channel (i) that is not selected by neighbouring transmitters to avoid interference, and (ii) that offers good
radio conditions. A spectrum allocation is defined by the channels assigned to the various transmitters or
links, and our fundamental objective is to devise an optimal allocation, i.e., maximizing the network-wide
throughput. If the radio conditions on each link and on each channel were known, the problem would reduce
to a combinatorial optimization problem, and more precisely to an Integer Linear Program. For example,
if all links interfere each other (no two links can be active on the same channel), a case referred to as full

∗A preliminary version of this work has been presented in ITW 2013 and appears in [15].
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interference, the optimal spectrum allocation problem is an instance of a Maximum Weighted Matching in
a bipartite graph (vertices on one side correspond to links and vertices on the other side to channels; the
weight of an edge, i.e., a (link, channel) pair, represents the radio conditions for the corresponding link
and channel). In practice, the radio conditions on the various channels are not known a priori, and they
evolve over time in an unpredictable manner. Hence, we need to dynamically learn and track the optimal
spectrum allocation. This task is further complicated by the fact that we can gather information about
the radio conditions for a particular (link, channel) pair only by actually including this pair in the selected
spectrum allocation. We face a classical exploration vs. exploitation trade-off problem: we need to exploit
the spectrum allocation with highest throughput observed so far whilst constantly exploring whether this
allocation changes over time. We model our sequential spectrum allocation problem as a linear multi-armed
bandit problem. The challenge in this problem resides in the very high dimension of the decision action
space, i.e., in its combinatorial structure: the size of the set of possible allocations exponentially grows with
the number of links and channels.

We study generic linear bandit problems in two different settings, and apply our results to sequential
spectrum allocation problems. In the stochastic setting, we assume that the radio conditions for each
(link,channel) pair evolve over time according to a stationary (actually i.i.d.) process whose mean is unknown.
This first model is instrumental to represent scenarios where the average radio conditions evolve relatively
slowly, in the sense that the spectrum allocation can be updated many times before this average exhibits
significant changes. In the adversarial setting, the radio conditions evolve arbitrarily, as if they were generated
by an adversary. This model is relevant when the channel allocation cannot be updated at the same pace
as radio conditions change. In both settings, as usual for bandit optimization problems, we measure the
performance of a given sequential decision policy through the notion of regret, defined as the difference of
the performance obtained over some finite time horizon under the best static policy (i.e., assuming here that
average radio conditions are known) and under the given policy. We make the following contributions:

• For stochastic linear bandit problems:
(a) we derive an asymptotic lower bound for the regret of any sequential decision policy, and show how
this bound scales with number of links and channels.

(b) We propose a sequential decision policy for linear bandit problems, that is simple extension of the
classical ǫ-greedy algorithm, and provide upper bound on its regret.

• For adversarial linear bandit problems: We propose ColorBand, a new sequential decision policy,
and derive an upper bound on its regret.

Related work. Spectrum allocation has attracted considerable attention recently, mainly due to the
increasing popularity of cognitive radio systems. In such systems, transmitters have to explore spectrum to
find frequency bands free from primary users. This problem can also be formulated as a bandit problem,
see e.g. [1, 13], but is simpler than our problem (in cognitive radio systems, there are basically c unknown
variables, each representing the probability that a channel is free). Spectrum sharing problems similar to
ours have been very recently investigated in [8, 17]. Both aforementioned papers restrict their analysis to
the case of full interference, and even in this scenario, we obtain better regret bounds. As far as we know,
adversarial bandit problems have not been considered to model spectrum allocation issues.
There is a vast literature on bandit problems, both in the stochastic and adversarial settings, see [5] for
a quick survey. Surprisingly, there are very little work on linear bandit with discrete action space in the
stochastic setting, and existing results are derived for very simple problems only, see e.g. [18] and references
therein. In contrast, the problem has received more attention in the adversarial setting [4, 6, 10–12].

2 Models and Objectives

2.1 Network and interference model

Consider a network consisting of n links indexed by i ∈ [n] = {1, . . . , n}. Each link can use one of the c
available radio channels indexed by j ∈ [c]. Interference is represented as a conflict graph G = (V,E) where
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vertices are links, and edges (i, i′) ∈ E if links i and i′ interfere, i.e., these links cannot be simultaneously
active. A spectrum allocation is represented as a matching M ∈ {0, 1}n×c, where Mij = 1 if and only if
link-i transmitter uses channel j. M is feasible if (i) for all i, the corresponding transmitter uses at most
one channel, i.e.,

∑

j∈[c] Mij ∈ {0, 1}; (ii) two interfering links cannot be active on the same channel, i.e.,

for all i, i′ ∈ [n], (i, i′) ∈ E implies for all j ∈ [c], MijMi′j = 0 1. Let M be the set of matchings. For
M ∈ M, if link i is active, we denote by M(i) the channel allocated to this link. We also write (i, j) ∈ M
for i ∈ [n] and j ∈ [c], if link i is active under matching M , and j = M(i). In the following we denote by
K = {Kℓ, l ∈ [k]} the set of maximal cliques of the interference graph G. We also introduce Kℓi ∈ {0, 1}
such that Kℓi = 1 if and only if link i belongs to the maximal clique Kℓ. We will pay a particular attention
to the full interference case, where the conflict graph G is complete.

2.2 Fading

To model the way radio conditions evolve over time on the various channels, we consider a time slotted
system, where the duration of a slot corresponds either to the transmission of a single packet or to that of a
fixed number m of packets. The channel allocation, i.e., the chosen matching, may change at the beginning
of each slot. We denote by rij(t) the number of packets successfully transmitted during slot t when link-i
transmitter selects channel j for transmission in this slot and in absence of interference. Depending on the
ability of transmitters to switch channels, we introduce two settings.

In the stochastic setting, the number of successful packet transmissions rij(t) on link i and channel j are
independent over i and j, and are i.i.d. across slots t. The average number of successful packet transmission
per slot is denoted by E[rij(t)] = θij , and is supposed to be unknown initially. If m packets are sent per
slot, rij(t) is a random variable whose distribution is that of Yij/m where Yij has a binomial distribution
Bin(m, θij). When m = 1, rij(t) is a Bernoulli random variable of mean θij . The stochastic setting models
scenarios where the radio channel conditions are stationary.

In the adversarial setting, rij(t) ∈ [0, 1] can be arbitrary (as if it was generated by an adversary), and
unknown in advance. This setting is useful to model scenarios where the duration of a slot is comparable to
or smaller than the channel coherence time. In such scenarios, we assume that the channel allocation cannot
change at the same pace as the radio conditions on the various links, which is of interest in practice, when
the radios cannot rapidly change channels.

In the following, we denote by rM (t) the total number of packets successfully transmitted during slot t
under matching M ∈ M, i.e.,

rM (t) =
∑

i∈[n]

∑

j∈[c]

Mijrij(t) = M • r(t).

2.3 Channel allocations and objectives

We analyze the performance of adaptive spectrum allocation policies that may select different matchings
at the beginning of each slot, depending on the observed received throughput under the various matchings
used in the past. More precisely, at the beginning of each slot t, under policy π, a matching Mπ(t) ∈ M
is selected. This selection is made based on some feedback on the previously selected matchings and their
observed throughput. We consider two types of feedback.

Under semi-bandit feedback, at the end of slot t, the number of packets successfully transmitted on the
various links are observed, i.e., the feedback f(t) is (rij(t), i, j : Mπ

ij(t) = 1). Under bandit feedback, at the
end of slot t, the total number of successfully sent packets is known, and so the feedback f(t) is simply
rMπ(t)(t). Bandit feedback is of interest when we are not able to maintain the achieved throughput per link.

At the beginning of slot t, the selected matching M(t) may depend on past decisions and the received
feedback, i.e., on Mπ(1), f(1), . . . ,Mπ(t− 1), f(t− 1). The chosen matching can also be randomized (at the
beginning of a slot, we sample a matching from a given distribution that depends on past observations). We
denote by Π the set of feasible policies. The objective is to identify a policy maximizing over a finite time
horizon T the expected number of packets successfully transmitted or simply what we call the reward. The

1This model assumes that the interference graph is the same over the various channels. Our analysis and results can be
extended to the case where one has different interference graphs depending on the channel.
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expectation is here taken with respect to the possible randomness in the stochastic rewards (in the stochastic
setting) and in the probabilistic successively selected channel allocations. Equivalently, we aim at designing
a sequential channel allocation policy that minimizes the regret. The regret of policy π ∈ Π is defined by
comparing the performance achieved under π to that of an idealised policy that assumes that the average
conditions on the various links and channels are known:

Rπ(T ) = max
M∈M

E[
T∑

t=1

rM (t)]− E[
T∑

t=1

rMπ(t)(t)], (1)

where Mπ(t) denotes the matching selected in step t. The notion of regret quantifies the performance loss
due to the need for learning radio channel conditions, and the above problem can be seen as a linear bandit
problem.

3 Optimal Static Allocation

When evaluating the regret of a sequential spectrum allocation policy, the performance of the latter is
compared to that of the best static allocation:

M⋆ ∈ arg max
M∈M

E[

T∑

t=1

rM (t)],

where in the above formula, the expectation is taken with respect to the possible randomness in the through-
put rM (t) (in the stochastic setting only). To simplify the presentation, we assume that the optimal static
allocation M⋆ is unique (the analysis can be readily extended to the case where several matchings are op-
timal, but at the expense of the use of more involved notations). To identify M⋆, we have to solve an
Integer Linear Program (ILP). Let us first introduce the following set of ILPs parameterized by vector
r = (rij , i ∈ [n], j ∈ [c]).

max
∑

i∈[n],j∈[c]

rijMij (2)

s.t.
∑

j∈[c]

Mij ≤ 1, ∀i ∈ [n],

∑

i∈[n]

KℓiMij ≤ 1, ∀ℓ ∈ [k], j ∈ [c],

Mij ∈ {0, 1}, ∀i ∈ [n], j ∈ [c],

and denote by V (r) its solution. In the stochastic setting, the performance of the best static policy is then
µ⋆ = V (θ), θ = (θij , i ∈ [n], j ∈ [c]), whereas in the adversarial setting, the best static policy yields a reward

equal to V (
∑T

t=1 r(t)).

Lemma 1 The ILP problem (2) is NP-complete for general interference graphs.

Indeed our ILP problem is a coloring problem of the interference graph G. If one considers all the links
allocated to a given channel, we obtain a stable set of G. To be more precise, already with only one channel,
our problem is NP-complete as when c = 1 and ri1 = 1 for all i ∈ [n], then the optimum value of (2) is
the stable set number of the interference graph G which is a NP-complete problem (Theorem 64.1 in [19]).
It should be noticed that in contrast, when the interference graph is complete, i.e., in the full interference
case, the ILP problem can be interpreted as a maximum weighted matching in a bipartite graph. As a
consequence, it can be solved in polynomial time [19].
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4 Stochastic Bandit Problem

This section is devoted to the analysis of our linear bandit problem in the stochastic setting. We first derive
an asymptotic lower bound on the regret achieved by any feasible sequential spectrum allocation policy. This
provides a fundamental performance limit that no policy can beat. We then present a policy that naturally
extends a classical multi-armed bandit problems to linear bandit problems, and provide upper bound on its
regret. Most of the results presented here concern scenarios where semi-bandit feedback is available.

4.1 Semi-bandit feedback

4.1.1 Asymptotic regret lower bound

In their seminal paper [14], Lai and Robbins consider the classical multi-armed bandit problem, where a
decision maker has to sequentially select an action from a finite set of K actions whose respective rewards
are independent and i.i.d. across time. For example, when the rewards are distributed according to Bernoulli
distributions of respective means θ1, . . . , θK , they show that the regret of any online action selection policy
π satisfies the following lower bound:

lim inf
T→∞

Rπ(T )

log(T )
≥

K∑

i=1

θ1 − θi
KL(θi, θ1)

,

where without loss of generality θ1 > θi for all i 6= 1, and KL(u, v) is the KL divergence number between
two Bernoulli distributions of respective means u and v, KL(u, v) = u log(u/v) + (1− u) log(1− u)/(1− v).
The simplicity of this lower bound is due to the stochastic independence of the rewards obtained selecting
different actions. In our linear bandit problem, the rewards obtained selecting different matchings are
inherently correlated (as in these matchings, a link may be allocated with the same channel). Correlations
significantly complicate the derivation and the expression of the lower bound on regret. To derive such a
bound, we use the techniques used in [9] to study the adaptive control of Markov chains.

We use the following notation: Θ = [0, 1]n×c; θ = (θij , i ∈ [n], j ∈ [c]); µM (λ) = M • λ, for any M ∈ M
and λ ∈ Θ. Recall that µ⋆ = maxM∈M M •θ, and the optimal matching is M⋆, i.e., µ⋆ = M⋆ •θ. We further
define: ∆M = µ⋆ − µM (θ), ∆min = minM 6=M⋆ ∆M , and ∆max = maxM ∆M .

We introduce B(θ) as the set of bad parameters, i.e., the set of λ ∈ Θ such that matching M⋆ provides
the same reward as under parameter θ, and yet M⋆ is not the optimal static matching:

B(θ) = {λ ∈ Θ : (∀i, j : M⋆
ij = 1, λij = θij), and µ⋆ < max

M∈M
µM (λ)}.

Then B(θ) =
⋃

M 6=M⋆ BM (θ) where

BM (θ) = {λ ∈ Θ : (∀i, j : M⋆
ij = 1, λij = θij), and µ⋆ < µM (λ)}.

The reward distribution for link i under matching M and parameter θ is denoted by pi(·;M, θ). This
distribution is over the set S = {0, 1} when one packet is sent per slot, or the set S = {0, 1/m, . . . , 1} if m
packets per slot are sent. Of course when

∑

j∈[c] Mij = 0, we have pi(0;M, θ) = 1. When
∑

j∈[c] Mij = 1 =

MiM(i), if a single packet is sent per slot, we have, for yi ∈ {0, 1},

pi(yi;M, θ) = θyi

iM(i)(1− θiM(i))
1−yi ,

and if m packet are sent, we have, for yi ∈ {0, 1/m, . . . , 1},

pi(yi;M, θ) =

(
m

myi

)

θmyi

iM(i)(1− θiM(i))
m−myi

We define the KL divergence number KLM (θ, λ) under static matching M as:

KLM (θ, λ) =
∑

i∈[n]

∑

yi∈S

log
pi(yi;M, θ)

pi(yi;M,λ)
pi(yi;M, θ).
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For instance, when a single packet is sent per slot, we get:

KLM (θ, λ) =
∑

i∈[n]

∑

j∈[c]

MijKL(θij , λij).

As we shall see later in this section, we can identify sequential spectrum allocations whose regret scales as
log(T ) when T grows large. Hence we restrict our attention to so-called uniformly good policies: π ∈ Π is
uniformly good if for all θ ∈ Θ, if the matching M is sub-optimal (M 6= M⋆), then the number of times
TM (t) it is selected up to time t satisfies: E[TM (t)] = o(tγ) for all γ > 0. We are now ready to state the
regret lower bound.

Theorem 2 For all θ ∈ Θ, for all uniformly good policy π ∈ Π,

lim inf
T→∞

Rπ(T )

log(T )
≥ C(θ), (3)

where C(θ) is the optimal value of the following optimization problem:

inf
xM≥0,M∈M

∑

M 6=M⋆

xM (µ⋆ − µM (θ)) (4)

s.t. inf
λ∈BM (θ)

∑

Q6=M⋆

xQKLQ(θ, λ) ≥ 1, ∀M 6= M⋆. (5)

The above lower bound is unfortunately not explicit, which motivates us to study how C(θ) scales as a
function of the problem dimensions n and c. To this end, we introduce the following definition: Given θ, we
say that a set H ⊂ M has property P (θ) iff, for all (M,M ′) ∈ H2, M 6= M ′ we have MijM

′
ij(1−M⋆

ij) = 0
for all (i, j) ∈ [n]× [c]. We may now state Theorem 3.

Theorem 3 Let H be a maximal (inclusion-wise) subset of M with property P (θ). Then:

C(θ) ≥
∑

M∈H

β(θ)

max(i,j)∈M\M⋆ KL
(

θij ,
1

|M\M⋆|

∑

(i′,j′)∈M⋆\M θi′j′
) ,

where β(θ) = minM 6=M⋆
∆M

|M\M⋆| .

4.1.2 Regret of ǫ-Greedy algorithms

We investigate here the performance of a variant of the ǫ-Greedy algorithm [2]. The idea of this variant is
to play the matching with the best empirical reward most of the time and to explore by selecting matchings
from a properly selected subset. We introduce the following notations: Denote by r̂ij,s = 1

s

∑s
t=1 rij(t)

the empirical average number of packets successfully sent over link i and channel j if channel j has been
allocated s times to link i. Moreover, let Tij(t) be the number of times channel j has been allocated to link
i up to time t. Define r̂(t) = (r̂ij,Tij(t), i ∈ [n], j ∈ [c]). Finally, let A ⊂ M be a set of matchings that covers
all possible (link,channel) pairs. The construction of such a set is easy, and for example, in the case of full
interference, we can simply use a set of max(n, c) matchings. Let A be the cardinality of A.

ǫ-Greedy algorithm consists in selecting the matching that has provided with the maximum reward
so far with probability 1 − ǫt, and a matching selected uniformly at random among the covering set A
of matchings. By reducing the exploration rate ǫt over time, a logarithmic regret can be achieved. More
precisely, we will choose ǫt = min(1, d/t) for some constant d > 0.

Theorem 4 There exists a choice of parameter d > 10An2/∆2
min such that we have:

Rǫ−Greedy(T ) ≤ 10A
∆max

∆2
min

n2 log(T ) +O(1) as T → ∞.
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Algorithm 1 ǫ-Greedy

for t ≥ 1 do

Let ǫt = min(1, d/t).

Select matching M(t) ∈ argmaxM∈M M • r̂(t) with probability 1−ǫt, and a matching uniformly selected
at random in A with probability ǫt.

Observe the rewards and update θ̂(t).

end for

For the case of full interference, the bound on the regret can be improved to

Rǫ−Greedy(T ) ≤ 10A
∆max

∆2
min

min(n, c)2 log(T ) +O(1).

Also notice that for this case, we can select A with A = max(n, c). As a result, for the full interference case
with this choice of A, the regret scales as ∆max

∆2
min

ncmin(n, c) log(T ) when T grows large.

For the general interference graph, we can select A with A = max(c, b) where b is the minimum number
of channels required to obtain a feasible channel assignment (with respect to constraints of (2)) in which
every node i ∈ [n] is assigned a channel. It is obvious that feasible channel assignment over conflict graph
G is equivalent to b-coloring problem of graph G, which is to label vertices of G with b colors such that no
two vertices sharing the same edge have the same color. As a result, we can select b = γ(G), where γ(G) is
the chromatic number of conflict graph G, and finally A = max(c, γ(G)). This also confirms the for the full
interference case, we can select A = max(c, n) since for complete graph G, γ(G) = n.

4.2 Bandit feedback

We now briefly discuss the case where bandit feedback only is available. We derive an asymptotic lower bound
for regret in this scenario, but let for future work the design of sequential spectrum allocation strategies.

Introduce for all k = 0, 1, . . . , n:

p(k;M, θ) =
∑

D⊂M,|D|=k

∏

(i,j)∈D

θij
∏

(i,j)∈M\D

(1− θij), (6)

and

KLM
2 (θ, λ) =

n∑

k=0

p(k;M, θ) log
p(k;M, θ)

p(k;M,λ)
.

In the following theorem, we derive an asymptotic regret lower bound. This bound is different than that
derived in Theorem 2, due to the different nature of the feedback considered. Comparing the two bounds
may indicate the price to pay by restricting the set of spectrum allocation policies to those based on bandit
feedback only.

Theorem 5 For all θ ∈ Θ, for all uniformly good policy π ∈ Π,

lim inf
T→∞

Rπ(T )

log(T )
≥ C2(θ), (7)

where C2(θ) is the optimal value of the following optimization problem:

inf
xM≥0,M∈M

∑

M 6=M⋆

xM (µ⋆ − µM (θ)), (8)

s.t. inf
λ∈BM (θ)

∑

Q6=M⋆

xQKLQ
2 (θ, λ) ≥ 1, ∀M 6= M⋆. (9)
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5 Adversarial Bandit Problem

In this section, we study the problem in the adversarial setting. In [3], a regret bound of O(
√
T ) is derived in

this setting, where the constant scales as the square root of the number of arms (up to logarithmic factors)
and linearly with the reward of a maximal allocation. In our case, the number of arms typically grows
exponentially with n even in simple cases. For example, in the full interference case, the number of possible
allocations is the number of matchings in the complete bipartite graph ([n], [c]), i.e. n!

(n−c)! if n ≥ c. Also,

in our case since rij(t) ∈ [0, 1], the maximal reward of an allocation is of the order min(n, c). In the sequel,
using the structure of our problem, we derive an algorithm with the same dependence in time as in [3] but
with much lower constants.

We start with some observations about the ILP problem (2):

max
M∈M

r •M = max
p(M)≥0,

∑

M∈M p(M)=1

∑

M∈M

p(M)r •M

= max
µ∈Co(M)

r • µ,

where Co(M) is the convex hull of the feasible allocation matrices M.
We identify matrices in R

n×c with vectors in R
nc. Without loss of generality, we can always assume

that c is sufficiently large (by possibly adding artificial channels with zero reward) such that for all i ∈ [n],
∑

j∈[c] Mij = 1 for all M ∈ M, i.e. all links are allocated to a (possibly artificial) channel. Indeed, this can

be done as soon as c ≥ γ(G) where γ(G) is the chromatic number of the interference graph G. In other
words, the bounds derived below are valid with c replaced by the maximum between the number of channels
and the chromatic number of the interference graph. With this simplifying assumption, we can embed M in
the simplex of distributions in R

nc by scaling all the entries by 1/n. Let P be this scaled version of Co(M).
We also define the matrix in R

n×c with coefficients µ0
ij = 1

n|M|

∑

M∈M Mij . Clearly µ0 ∈ P . We define

µmin = minnµ0
ij ≥ 1

|M| . Our algorithms are inspired from [11] where full information is revealed and uses

the projection onto convex sets using the KL divergence (see Chapter 3, I-projections in [7]). We denote the
KL divergence between distributions q and p in P (or more generally in the simplex of distribution in R

nc)
by:

KL(p, q) =
∑

e

p(e) log
p(e)

q(e)
,

where e ranges over the couples (i, j) ∈ [n]× [c] and with the usual convention where p log p
q is defined to be

0 if p = 0 and +∞ if p > q = 0. By definition, the projection of a distribution q onto a closed convex set Ξ
of distributions is the p⋆ ∈ Ξ such that

KL(p⋆, q) = min
p∈Ξ

KL(p, q). (10)

5.1 Semi-bandit feedback: ColorBand-1 Algorithm

For the case of semi-bandit feedback, we present ColorBand-1 algorithm, which is described next.

Theorem 6 We have

RColorBand-1(T ) ≤ n
√

2cT logµ−1
min.

Recalling that µmin ≥ 1/|M|, ColorBand-1 has a regret ofO(n
√

cT log |M|) for the general interference
graph. However, when µ−1

min = O(poly(c)), its regret is O(n
√

cT log(c)). Note that in the full interference
case, we have µ−1

min = min(n, c).
Proof. We first prove the following result:

8



Algorithm 2 ColorBand-1

Initialization: Start with the distribution q0 = µ0 and η =

√
2c logµ−1

min

T .

for all t ≥ 1 do

Select a distribution pt−1 over M such that
∑

M pt−1(M)M = nqt−1.

Select a random matching M(t) with distribution pt−1.

Observe the reward matrix: rij(t) for all (i, j) ∈ M(t).

Construct the matrix: r̃ij(t) =
1−rij(t)
nqt−1(ij)

for all (i, j) ∈ M(t) and all other entries are 0.

Update q̃t(ij) ∝ qt−1(ij) exp (−ηr̃ij(t)).

Set qt to be the projection of q̃t onto the set P using the KL divergence.

end for

Lemma 7 We have for any q ∈ P,

T∑

t=1

qt−1 • r̃(t) −
T∑

t=1

q • r̃(t) ≤ η

2

T∑

t=1

qt−1 • r̃2(t) +
KL(q, q0)

η
,

where r̃2(t) is the vector that is the coordinate-wise square of r̃(t).

Proof: We have

KL(q, q̃t)−KL(q, qt−1) =
∑

e

q(e) log
qt−1(e)

q̃t(e)
= η

∑

e

q(e)r̃e(t) + logZt,

with

logZt = log
∑

e

qt−1(e) exp (−ηr̃e(n))

≤ log
∑

e

qt−1(e)

(

1− ηr̃e(t) +
η2

2
r̃2e(t)

)

≤ −ηqt−1 • r̃(t) +
η2

2
qt−1 • r̃2(t),

where we used exp(−z) ≤ 1−z+z2/2 for z ≥ 0 in the first inequality and log(1+z) ≤ z for all z > −1 in the

second inequality. We note that the use of the latter inequality is allowed, i.e. qt−1 •
(

−ηr̃(t) + η2

2 r̃2(t)
)

> −1,

since we have

1 + qt−1 •
(

−ηr̃(t) +
η2

2
r̃2(t)

)

≥
∑

e

qt−1(e) exp (−ηr̃e(t)) > 0.

Hence, we have

KL(q, q̃t)−KL(q, qt−1) ≤ ηq • r̃(t)− ηqt−1 • r̃(t) +
η2

2
qt−1 • r̃2(t).

Generalized Pythagorean inequality (see Theorem 3.1 in [7]) gives

KL(q, qt) + KL(qn, q̃t) ≤ KL(q, q̃t).

Since KL(qt, q̃t) ≥ 0, we get

KL(q, qt)−KL(q, qt−1) ≤ ηq • r̃(t)− ηqt−1 • r̃(t) +
η2

2
qt−1 • r̃2(t).

9



Finally, summing over n gives

T∑

t=1

(qt−1 • r̃(t)− q • r̃(t)) ≤ η

2

T∑

t=1

qt−1 • r̃2(t) +
KL(q, q0)

η
.

�

Let Et be the expectation conditioned on all the randomness chosen by the algorithm up to time t. For
any q ∈ P , we have

Et [q • r̃(t)] =
∑

i∈[n]

∑

j∈[c]

q(ij)Et[r̃ij(t)] =
∑

i∈[n]

∑

j∈[c]

q(ij)(1− rij(t)) = 1− q • r(t),

and hence Et [qt−1 • r̃(t)− q • r̃(t)] = q • r(t)− qt−1 • r(t).
Moreover, we have

Et

[
qt−1 • r̃2(t)

]
=
∑

i∈[n]

∑

j∈[c]

qt−1(ij)Et

[
r̃2ij(t)

]
=
∑

i∈[d]

qt−1(ij)
(1 − rij(t))

2

n2q2t−1(ij)
nqt−1(ij)

=
∑

i∈[n]

∑

j∈[c]

(1− rij(t))
2

n
≤ c,

since rij(t) ∈ [0, 1].
Using Lemma 7 and the above bound, we get with nq⋆ the optimal allocation, i.e. q⋆(e) = 1

n iff M⋆
e = 1,

RColorBand-1(T ) = E

[
T∑

t=1

nqt−1 • r̃(t)−
T∑

t=1

nq⋆ • r̃(t)
]

≤ ηncT

2
+

n logµ−1
min

η
,

since

KL(q⋆, q0) = − 1

n

∑

e∈M⋆

lognµ0
e ≤ log µ−1

min.

The proof is completed by setting η =

√
2c logµ−1

min

T . �

5.2 Bandit feedback: ColorBand-2 Algorithm

We now adapt our algorithm to deal with bandit feedback. For this case, we present ColorBand-2 algo-
rithm, which is described as Algorithm 3.

Theorem 8 Let λ be the smallest nonzero eigenvalue of E[MM⊤], where M is uniformly distributed over
M. We have

RColorBand-2(T ) ≤ 2

√

n3T

(

nc+
n1/2

λ

)

logµ−1
min +

n5/2 logµ−1
min

λ
.

Note that for the full interference case, we have λ = 1
n−1 by [6][Proposition 4], and therefore, ColorBand-

2 for c ≥ n has a regret of O(
√

n4cT log(n)).
Proof. We first prove a simple result:

Lemma 9 For all x ∈ R
nc, we have Σ+

t−1Σt−1x = x, where x is the orthogonal projection of x onto
span(M), the linear space spanned by M.

Proof: Note that for all y ∈ R
nc, if Σt−1y = 0, then we have

y⊤Σt−1y = E
[
y⊤MM⊤y

]
= E

[
(y⊤M)2

]
= 0, (11)

where M has law pt−1 such that
∑

M Mpt−1(M) = q′n−1 and q′t−1 = (1 − γ)qt−1 + γµ0. By definition of
µ0, each M ∈ M has a positive probability. Hence, by (11), y⊤M = 0 for all M ∈ M. In particular, we
see that the linear application Σt−1 restricted to span(M) is invertible and is zero on span(M)⊥, hence we
have Σ+

t−1Σt−1x = x. �
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Algorithm 3 ColorBand-2

Initialization: Start with the distribution q0 = µ0. Set γ =

√
n logµ−1

min√
n logµ−1

min+
√

C(Cn3c+n)T
and η = γC, with

C = λ
n3/2 .

for all t ≥ 1 do

Let q′t−1 = (1 − γ)qt−1 + γµ0.

Select a distribution pt−1 over M such that
∑

M pt−1(M)M = nq′t−1.

Select a random matching M(t) with distribution pt−1.

Observe a reward Yt =
∑

ij rij(t)Mij(t).

Let Σt−1 = E
[
MM⊤

]
, where M has law pt−1. Set r̃(t) = YtΣ

+
t−1M(t), where Σ+

t−1 is the pseudo-inverse
of Σt−1.

Update q̃t(ij) ∝ qt−1(ij) exp (ηr̃ij(t)).

Set qt to be the projection of q̃t onto the set P using the KL divergence.

end for

Lemma 10 We have for any η ≤ γλ
n3/2 and any q ∈ P,

T∑

t=1

q • r̃(t)−
T∑

t=1

qt−1 • r̃(t) ≤
η

2

T∑

t=1

qt−1 • r̃2(t) +
KL(q, q0)

η
,

where r̃2(t) is the vector that is the coordinate-wise square of r̃(t).

Proof: We have

KL(q, q̃t)−KL(q, qt−1) =
∑

e

q(e) log
qt−1(e)

q̃t(e)
= −η

∑

e

q(e)r̃e(t) + logZt,

with

logZt = log
∑

e

qt−1(e) exp (ηr̃e(t))

≤ log
∑

e

qt−1(e)
(
1 + ηr̃e(t) + η2r̃2e(t)

)
(12)

≤ ηqt−1 • r̃(t) + η2qt−1 • r̃2(t), (13)

where we used exp(z) ≤ 1 + z + z2 for all |z| ≤ 1 in (12) and log(1 + z) ≤ z for all z > −1 in (13). We will
verify later that the choice of η ensures that η|r̃e(t)| ≤ 1 for all e ∈ [n]× [c].

Hence we have

KL(q, q̃t)−KL(q, qt−1) ≤ ηqt−1 • r̃(t)− ηq • r̃(t) + η2qt−1 • r̃2(t).

Generalized Pythagorean inequality (see Theorem 3.1 in [7]) gives

KL(q, qt) + KL(qt, q̃t) ≤ KL(q, q̃t).

Since KL(qt, q̃t) ≥ 0, we get

KL(q, qt)−KL(q, qt−1) ≤ ηqt−1 • r̃(t)− ηq • r̃(t) + η2qt−1 • r̃2(t).

11



Finally, summing over t gives

T∑

t=1

(q • r̃(t)− qt−1 • r̃(t)) ≤ η
T∑

t=1

qt−1 • r̃2(t) +
KL(q, q0)

η
.

To satisfy the condition for the inequality (12), i.e., η|r̃e(t)| ≤ 1, ∀e ∈ [n]× [c], we find the upper bound
for maxe∈[n]×[c] |r̃e(t)| as follows:

max
e∈[n]×[c]

|r̃e(t)| ≤ ‖r̃(t)‖2

= ‖Σ+
t−1M(t)Yt‖2

≤ n‖Σ+
t−1M(t)‖2

≤ n
√

M(t)⊤Σ+
t−1Σ

+
t−1M(t)

≤ n‖M(t)‖2
√

λmax

(
Σ+

t−1Σ
+
t−1

)

= n3/2
√

λmax

(
Σ+

t−1Σ
+
t−1

)

= n3/2 λmax

(
Σ+

t−1

)

=
n3/2

λmin (Σt−1)
,

where λmax(A) and λmin(A) respectively denote the maximum and the minimum nonzero eigenvalue of
matrix A. Note that µ0 induces uniform distribution over M. Thus by q′t−1 = (1− γ)qt−1+ γµ0 we see that
pt−1 is a mixture of uniform distribution and the distribution induced by qt−1. Note that, we have:

λmin (Σt−1) = min
‖x‖2=1,x∈span(M)

x⊤Σt−1x.

Moreover, we have

x⊤Σt−1x = E
[
x⊤M(t)M(t)⊤x

]
= E

[
(M(t)⊤x)2

]
≥ γE

[
(M⊤x)2

]
,

where in the last inequality M has law µ0. By definition, we have for any x ∈ span(M) with ‖x‖2 = 1,

E
[
(M⊤x)2

]
≥ λ,

so that in the end, we get λmin(Σt−1) ≥ γλ, and hence η|r̃e(t)| ≤ ηn3/2

γλ , ∀e ∈ [n] × [c]. Finally, we choose

η ≤ γλ
n3/2 to satisfy the condition for the inequality we used in (12).

�

We have

Et [r̃(t)] = Et

[
YtΣ

+
t−1M(t)

]
= Et

[
Σ+

t−1M(t)M(t)⊤r(t)
]
= Σ+

t−1Σt−1r(t) = r(t),

where the last equality follows from Lemma 9 and r(t) is the orthogonal projection of r(t) onto span(M).
In particular, for any n′ ∈ Co(M), we have

Et [nq
′ • r̃(t)] = nq′ • r(t) = nq′ • r(t).

Moreover, we have:

Et

[
qt−1 • r̃2(t)

]
=
∑

e

qt−1(e)Et

[
r̃2e(t)

]

=
∑

e

q′t−1(e)− γµ0(e)

1− γ
Et

[
r̃2e(t)

]

≤ 1

n(1− γ)

∑

e

nq′t−1(e)Et

[
r̃2e(t)

]

=
1

n(1− γ)
Et

[
∑

e

M̃e(t)r̃
2
e(t)

]

,

12



where M̃(t) is a random matching with the same law as M(t) and independent of M(t). Note that M̃2
e (t) =

M̃e(t), so that we have

Et

[
∑

e

M̃e(t)r̃
2
e(t)

]

= Et

[

r(t)⊤M(t)M(t)⊤Σ+
t−1M̃(t)M̃(t)⊤Σ+

t−1M(t)M(t)⊤r(t)
]

≤ n2
Et[M(t)⊤Σ+

t−1M(t)],

where we used the bound M(t)⊤r(t) ≤ n. By Lemma 15 in [6], Et[M(t)⊤Σ+
t−1M(t)] ≤ nc, so that we have:

Et

[
qt−1 • r̃2(t)

]
≤ n2c

1− γ
.

Observe that

Et

[
q⋆ • r̃(t)− q′t−1 • r̃(t)

]
= Et

[
q⋆ • r̃(t)− (1− γ)qt−1 • r̃(t)− γµ0 • r̃(t)

]

= Et [q
⋆ • r̃(t)− qt−1 • r̃(t)] + γqt−1 • r(t) − γµ0 • r(t)

≤ Et [q
⋆ • r̃(t)− qt−1 • r̃(t)] + γqt−1 • r(t)

≤ Et [q
⋆ • r̃(t)− qt−1 • r̃(t)] + γ.

Using Lemma 10 and the above bounds, we get with nq⋆ the optimal allocation, i.e. q⋆(e) = 1
n iff M⋆

e = 1,

RColorBand-2(T ) = E

[
T∑

t=1

nq⋆ • r̃(t)−
T∑

t=1

nq′t−1 • r̃(t)
]

≤ E

[
T∑

t=1

nq⋆ • r̃(t)−
T∑

t=1

nqt−1 • r̃(t)
]

+ nγT

≤ ηn3cT

1− γ
+

n logµ−1
min

η
+ nγT,

since

KL(q⋆, q0) = − 1

n

∑

e∈M⋆

lognµ0
e ≤ log µ−1

min.

Choosing η = γC with C = λ
n3/2 gives

RColorBand-2(T ) ≤ γCn3cT

1− γ
+

n logµ−1
min

γC
+ nγT

=
Cn3c+ n− nγ

1− γ
γT +

n logµ−1
min

γC

≤ (Cn3c+ n)γT

1− γ
+

n logµ−1
min

γC
.

The proof is completed by setting γ =

√
n log µ−1

min√
n logµ−1

min+
√

C(Cn3c+n)T
. �

5.3 Implementation

There is a specific case where our algorithm can be efficiently implementable: when the convex hull Co(M)
can be captured by polynomial in n many constraints. Note that this cannot be ensured unless restrictive
assumptions are made on the interference graph G since there are up to 3n/3 maximal cliques in a graph with
n vertices [16]. There are families of graphs in which the number of cliques is polynomially bounded. These
families include chordal graphs, complete graphs, triangle-free graphs, interval graphs, and planar graphs.
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Note however, that a limited number of cliques does not ensure a priori that Co(M) can be captured by a
limited number of constraints. To the best of our knowledge, this problem is open and only particular cases
have been solved as for the stable set polytope (corresponding to the case c = 2, ri1 = 1 and ri2 = 0 with
our notation) [19].

We consider the case where

Co(M) = Co{∀i,
∑

j∈[c]

Mij ≤ 1, ∀ℓ, j,
∑

i∈[n]

KℓiMij ≤ 1}. (14)

Note that in the special case where G is the complete graph, we have such a representation as in this case,
we have

Co(M) = Co{
∑

j∈[c]

Mij ≤ 1, ∀i,
∑

i∈[n]

Mij ≤ 1, ∀j}.

We now give an algorithm for the projection of the algorithms, i.e. the projection onto P . Since P is a
scaled version of Co(M), we give an algorithm for the projection onto Co(M) given by (14).

Set λi(0) = µj(0) = 0 for all i, j and then define for t ≥ 0,

∀i ∈ [n], λi(t+ 1) = log




∑

j

Mije
−µj(t)



 (15)

∀j ∈ [c], µj(t+ 1) =max
ℓ

log

(
∑

i

KiℓMije
−λi(t+1)

)

. (16)

We can show that

Proposition 1 Let M⋆
ij = limt→∞ Mije

−λi(t)−µj(t). Then M⋆ is the projection of M onto Co(M) using
the KL divergence.

Although this algorithm is shown to converge, we must stress that the step (16) might be expensive as the
number of distinct values of ℓ might be exponential in n. Again in the case of full interference, this step is
easy and our algorithm reduces to Sinkhorn’s algorithm (see [11] for a discussion).

Proof: First note that the definition of projection can be extended to non-negative vectors thanks to
(10). More precisely, given an alphabet A and a vector q ∈ R

A
+, we have for any probability vector p ∈ R

A
+

∑

a∈A

p(a) log
p(a)

q(a)
≥

∑

a

p(a) log

∑

a p(a)∑

a q(a)

= log
1

‖q‖1
,

thanks to the log-sum inequality. Hence we see that p⋆(a) = q(a)
‖q‖1

is the projection of q onto the simplex of

R
A
+.
Now define Ai = Co{Mij ,

∑

j Mij ≤ 1} and Bℓj = Co{Mij ,
∑

i KℓiMij ≤ 1}. Hence
⋂

iAi

⋂⋂

ℓj Bℓj =
Co(M). By the argument described above, iteration (15) (resp. (16)) corresponds to the projection onto Ai

(resp.
⋂

ℓ Bℓj) and the proposition follows from Theorem 5.1 in [7].
�

6 Conclusion

In this paper, we investigate the problem of sequential spectrum allocation in wireless networks where a
potentially large number of channels are available, and whose radio conditions are initially unknown. The
design of such allocations has been mapped into a generic linear multi-armed bandit problem, for which
we have devised efficient online algorithms. Upper bounds for the performance of these algorithms have
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been derived, and they are shown be as good as those of existing algorithms, both in the stochastic setting
where the radio conditions on the various channels and links are modelled as stationary processes, and in
the adversarial setting where no assumptions are made regarding the evolution of channel qualities. The
practical implementation of our algorithms has just been briefly discussed. In particular, proposing efficient
distributed implementations of these algorithms seems quite challenging, and we are currently working
towards this objective.
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A Proof of Theorem 2

To derive regret lower bounds, we apply the techniques used by Graves and Lai [9] to investigate efficient
adaptive decision rules in controlled Markov chains. We recall here their general framework. Consider a
controlled Markov chain (Xt)t≥0 on a finite state space S with a control set U . The transition probabilities
given control u ∈ U are parameterized by θ taking values in a compact metric space Θ: the probability to
move from state x to state y given the control u and the parameter θ is p(x, y;u, θ). The parameter θ is
not known. The decision maker is provided with a finite set of stationary control laws G = {g1, . . . , gK}
where each control law gj is a mapping from S to U : when control law gj is applied in state x, the applied
control is u = gj(x). It is assumed that if the decision maker always selects the same control law g the
Markov chain is then irreducible with stationary distribution πg

θ . Now the reward obtained when applying
control u in state x is denoted by r(x, u), so that the expected reward achieved under control law g is:
µθ(g) =

∑

x r(x, g(x))π
g
θ (x). There is an optimal control law given θ whose expected reward is denoted by

µ⋆
θ = maxg∈G µθ(g). Now the objective of the decision maker is to sequentially choose control laws so as to

maximize the expected reward up to a given time horizon T . As for MAB problems, the performance of a
decision scheme can be quantified through the notion of regret which compares the expected reward to that
obtained by always applying the optimal control law.

Proof of Theorem 2. We now apply the above framework to our linear bandit problem. To simplify the
presentation, we consider the case where in each slot, a single packet is transmitted. We will indicate what
to modify when m packets are transmitted per slot.

The parameter θ takes values in [0, 1]n×c. The Markov chain has values in S = {0, 1}n. When m packets
are transmitted per slot, S = {0, 1/m, 2/m, . . . , 1}n. The set of controls corresponds to the set of matchings
M, and the set of control laws is also M. These laws are constant, in the sense that the control applied by
control law M does not depend on the state of the Markov chain, and corresponds to selecting matching M .
The transition probabilities are given as follows: for all x, y ∈ S,

p(x, y;M, θ) = p(y;M, θ) =
∏

i∈[n]

pi(yi;M, θ),

where for all i ∈ [n], if
∑

j∈[c] Mij = 0, pi(0;M, θ) = 1, and if
∑

j∈[c] Mij = MiM(i) = 1, pi(yi;M, θ) =

θyi

iM(i)(1−θiM(i))
1−yi . Whenm packets are sent per slot, the last formula has to be replaced by: pi(yi;M, θ) =

(
m

myi

)
θmyi

iM(i)(1 − θiM(i))
m−myi . Finally, the reward r(y,M) is defined by r(y,M) = M • y. Note that the

state space of the Markov chain is here finite, and so, we do not need to impose any cost associated with
switching control laws (see the discussion on page 718 in [9]).

We can now apply Theorem 1 in [9]. Note that the KL number under matching M is:

KLM (θ, λ) =
∑

y

log
p(y;M, θ)

p(y;M,λ)
p(y;M, θ)

=
∑

i∈[n]

∑

yi∈S

log
pi(yi;M, θ)

pi(yi;M,λ)
pi(yi;M, θ),

where S = {0, 1} when one packet is sent per slot and S = {0, 1/m, . . . , 1} if m packets per slot are sent.
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For instance, when a single packet is sent per slot, we get:

KLM (θ, λ) =
∑

i∈[n]

∑

j∈[c]

MijKL(θij , λij),

where KL(u, v) = u log(u/v)+ (1− u) log((1− u)/(1− v)). From Theorem 1 in [9], we conclude that for any
uniformly good rule π,

lim inf
T→∞

Rπ(T )

log(T )
≥ C(θ),

where C(θ) is the optimal value of the following optimization problem:

inf
xM≥0,M∈M

∑

M 6=M⋆

xM (µ⋆ − µM (θ)), (17)

s.t. inf
λ∈B(θ)

∑

Q6=M⋆

xQKLQ(θ, λ) ≥ 1. (18)

The result is obtained by observing that B(θ) =
⋃

M 6=M⋆ BM (θ).
�

Proof of Theorem 5. In the case of bandit feedback, when matching M is selected at time t, the global
reward rM (t) only is known. To take this limited feedback into account, the state space of the corresponding
Markov chain should record the aggregate reward only. Hence, we have S = {0, 1, . . . , n}. When the state is
k, it means that the global received reward is equal to k. The probability that the reward under matching
M is equal to k is then p(k;M, θ) defined in (6), and so: for all k′, k ∈ S,

p(k′, k;M, θ) = p(k;M, θ).

Theorem 5 is then a direct consequence of Theorem 1 in [9]. �

B Proof of Theorem 3

The proof proceeds in three steps. In the subsequent analysis, given the optimization problem P, we use
val(P) to denote its optimal value.

Step 1. In this step, first we introduce an equivalent formulation for problem (4) by simplifying its con-
straints. We show that constraint (5) is equivalent to:

inf
λ∈BM (θ)

∑

ℓ∈M\M⋆

KL(θℓ, λℓ)
∑

Q6=M⋆

QℓxQ ≥ 1, ∀M 6= M⋆.

Observe that:

∑

Q6=M⋆

xQKLQ(θ, λ) =
∑

Q6=M⋆

xQ

∑

ℓ∈[n]×[c]

QℓKL(θℓ, λℓ) =
∑

ℓ

KL(θℓ, λℓ)
∑

Q6=M⋆

QℓxQ.

Fix M 6= M⋆. In view of the definition of BM (θ), we can find λ ∈ BM (θ) such that λℓ = θℓ, ∀ℓ ∈
([n]× [c] \M) ∪M⋆. Thus, for the r.h.s. of the M -th constraint in (5), we get:

inf
λ∈BM (θ)

∑

Q6=M⋆

xQKLQ(θ, λ) = inf
λ∈BM (θ)

∑

ℓ∈[n]×[c]

KL(θℓ, λℓ)
∑

Q6=M⋆

QℓxQ

= inf
λ∈BM (θ)

∑

ℓ∈M\M⋆

KL(θℓ, λℓ)
∑

Q

QℓxQ,
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and therefore problem (4) can be equivalently written as:

C(θ) = inf
xM≥0,M∈M

∑

M 6=M⋆

xM (µ⋆ − µM (θ)), (19)

s.t. inf
λ∈BM (θ)

∑

ℓ∈M\M⋆

KL(θℓ, λℓ)
∑

Q

QℓxQ ≥ 1, ∀M 6= M⋆. (20)

Next, we formulate an LP whose value gives a lower bound for C(θ). Define λ̂(M) = (λ̂ℓ(M), ℓ ∈ [n]× [c])
with

λ̂ℓ(M) =

{ 1
|M\M⋆|

∑

k∈M⋆\M θk if ℓ ∈ M \M⋆

θℓ otherwise.

Clearly λ̂(M) ∈ BM (θ), and therefore:

inf
λ∈BM (θ)

∑

ℓ∈M\M⋆

KL(θℓ, λℓ)
∑

Q

QℓxQ ≤
∑

ℓ∈M\M⋆

KL(θℓ, λ̂ℓ(M))
∑

Q

QℓxQ.

Then, we can write:

C(θ) ≥ inf
x≥0

∑

M 6=M⋆

∆MxM (21)

s.t.
∑

ℓ∈M\M⋆

KL(θℓ, λ̂ℓ(M))
∑

Q

QℓxQ ≥ 1, ∀M 6= M⋆. (22)

For any M 6= M⋆ introduce: gM = maxℓ∈M\M⋆ KL(θℓ, λ̂ℓ(M)). Now we form P1 as follows:

P1: inf
x≥0

∑

M 6=M⋆

∆MxM (23)

s.t.
∑

ℓ∈M\M⋆

∑

Q

QℓxQ ≥ 1

gM
, ∀M 6= M⋆. (24)

Observe that C(θ) ≥ val(P1) since the feasible set of problem (21) is contained in that of P1.

Step 2. In this step, we formulate an LP to give a lower bound for val(P1). To this end, for any sub-
optimal edge ℓ ∈ [n]× [c] \M⋆, we define zℓ =

∑

M MℓxM . Further, we let z = [zℓ, ℓ ∈ [n]× [c] \M⋆]. Next,
we represent the objective of P1 in terms of z, and give a lower bound for it as follows:

∑

M 6=M⋆

∆MxM =
∑

M 6=M⋆

xM

∑

ℓ∈M\M⋆

∆M

|M \M⋆|

=
∑

M 6=M⋆

xM

∑

ℓ∈[n]×[c]\M⋆

∆M

|M \M⋆|Mℓ

≥ min
M 6=M⋆

∆M

|M \M⋆| ·
∑

ℓ∈[n]×[c]\M⋆

∑

M ′ 6=M⋆

M ′
ℓxM ′

= min
M 6=M⋆

∆M

|M \M⋆| ·
∑

ℓ∈[n]×[c]\M⋆

zℓ

= β(θ)
∑

ℓ∈[n]×[c]\M⋆

zℓ.
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Then, defining

P2: inf
z≥0

β(θ)
∑

ℓ∈[n]×[c]\M⋆

zℓ

s.t.
∑

ℓ∈M\M⋆

zℓ ≥
1

gM
, ∀M 6= M⋆,

yields: val(P1) ≥ val(P2).

Step 3. Introduce set H satisfying property P (θ) as stated in Section 4. Now define

Z =






z ∈ R

nc−n
+ :

∑

ℓ∈M\M⋆

zℓ ≥
1

gM
, ∀M ∈ H






,

and

P3: inf
z∈Z

β(θ)
∑

ℓ∈[n]×[c]\M⋆

zℓ.

Observe that val(P2) ≥ val(P3) since the feasible set of P2 is contained in Z.
It can be easily seen that:

val(P3) =
∑

M∈H

β(θ)

gM

≥
∑

M∈H

β(θ)

maxℓ∈M\M⋆ KL(θℓ, λ̂ℓ(M))

=
∑

M∈H

β(θ)

maxℓ∈M\M⋆ KL
(

θℓ,
1

|M\M⋆|

∑

k∈M⋆\M θk

) .

The proof is completed by observing that: C(θ) ≥ val(P1) ≥ val(P2) ≥ val(P3). �

C Proof of Theorem 4

We first provide a bound on the probability of choosing a sub-optimal matching M . In what follows, we
denote XM (t) =

∑

i∈VM
r̂iM(i),TiM(i)(t), where

VM = {i ∈ [n] : Mij = 1 for some j ∈ [c]}

with cardinality VM .
For t > d, the probability of choosing a sub-optimal matching M can be written as

P [It = M ] ≤ ǫt
A
1{M ∈ A}+ (1− ǫt)F,

where F = P
[
XM (t− 1) ≥ XM⋆

(t− 1)
]
. Then

F ≤ P

[
∑

i∈VM

r̂iM(i),TiM(i)(t−1) ≥
∑

i∈VM

(

θiM(i) +
∆M

2VM

)]

+ P




∑

i∈VM⋆

r̂iM⋆(i),TiM⋆(i)(t−1) ≤
∑

i∈VM⋆

(

θiM⋆(i) −
∆M

2VM⋆

)


 .
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Using the union bound we get

P

[
∑

i∈VM

r̂iM(i),TiM(i)(t−1) ≥
∑

i∈VM

(

θiM(i) +
∆M

2VM

)]

≤
∑

i∈VM

P

[

r̂iM(i),TiM(i)(t−1) ≥ θiM(i) +
∆M

2VM

}

︸ ︷︷ ︸

P{Bi(t−1)}

.

Now for i ∈ VM , using Chernoff-Hoeffding bound we get

P[Bi(t)] ≤
t∑

s=1

e
− s

2

(

∆M

VM

)2

P

[

TiM(i)(t) = s : r̂iM(i),s ≥ θiM(i) +
∆M

2VM

]

. (25)

Observe that for w > 0,
∑t

s=x+1 e
−ws < 1

we
−wx. This implies

∑t
s=x+1 e

− s
2

(

∆M

VM

)2

≤ 2
(
VM

∆M

)2
e
− x

2

(

∆M

VM

)2

.

Let y0 = 1
2A

∑t
s=1 ǫs. We have:

t∑

s=⌊y0⌋+1

e
− s

2

(

∆M

VM

)2

P

[

TiM(i)(t) = s : r̂iM(i),s ≥ θiM(i) +
∆M

2VM

]

≤ 2

(
VM

∆M

)2

e
−

⌊y0⌋
2

(

∆M

VM

)2

.

We also have:

⌊y0⌋∑

s=1

e
− s

2

(

∆M

VM

)2

P

[

TiM(i)(t) = s : r̂iM(i),s ≥ θiM(i) +
∆M

2VM

]

≤
⌊y0⌋∑

s=1

P

[

TiM(i)(t) = s : r̂iM(i),s ≥ θiM(i) +
∆M

2VM

]

≤
⌊y0⌋∑

s=1

P

[

TR
iM(i)(t) ≤ s : r̂iM(i),s ≥ θiM(i) +

∆M

2VM

]

≤
⌊y0⌋∑

s=1

P

[

TR
iM(i)(t) ≤ s

]

≤ y0P
[

TR
iM(i)(t) ≤ y0

]

,

where TR
iM(i)(t) denotes the number of times that pair (i,M(i)) is chosen during the exploration phase up to

time t, and where we used the fact that TR
iM(i)(t) ≤ TiM(i)(t) implies P[TiM(i)(t) ≤ y0] ≤ P

[

TR
iM(i)(t) ≤ y0

]

.

Now it can be easily shown that:

E
[
TR
iM(i)(t)

]
=

1

A

t∑

s=1

ǫs = 2y0,

Var
[
TR
iM(i)(t)

]
=

t∑

s=1

ǫs
A

(

1− ǫs
A

)

≤ 1

A

t∑

s=1

ǫs = 2y0.

Using Bernstein’s inequality, we then have P

[

TR
iM(i)(t) ≤ y0

]

≤ e−
y0
5 . Finally, using ǫs = min(1, d/s), we

get y0 = d
2A + d

2A log t
d = d

2A log et
d . In summary, we proved that:

P[Bi(t)] ≤y0e
−

y0
5 + 2

(
VM

∆M

)2

e
−

⌊y0⌋
2

(

∆M

VM

)2

=
d

2A
log

et

d
.e−

d
10A log et

d + 2

(
VM

∆M

)2

e
− d

4A

(

∆M

VM

)2
log et

d

=h(t)t−
d

10A +GM t
− d

4A

(

∆M

VM

)2

,
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where h(t) , d
2A

(
e
d

)− d
10A log

(
et
d

)
and GM , 2

(
VM

∆M

)2 ( e
d

)− d
4A

(

∆M

VM

)2

. As a result, we obtain:

P

[
∑

i∈VM

r̂iM(i),TiM(i)(t−1) ≥
∑

i∈VM

(

θiM(i) +
∆M

2VM

)]

≤
∑

i∈VM

P[Bi(t− 1)]

≤ VMh(t− 1)(t− 1)−
d

10A + VMGM · (t− 1)
− d

4A

(

∆M

VM

)2

.

It can be shown similarly that

P




∑

i∈VM⋆

r̂iM⋆(i),TiM⋆(i)(t−1) ≤
∑

i∈VM⋆

(

θiM⋆(i) −
∆M

2VM⋆

)


 ≤ VM⋆h(t− 1)(t− 1)−
d

10A + VM⋆GM⋆(t− 1)
− d

4A

(

∆M

VM⋆

)2

,

where GM⋆ = 2
(

VM⋆

∆M

)2 (
e
d

)− d
4A

(

∆M

VM⋆

)2

.

We conclude that:

P[It = M ] ≤ d

tA
1{M ∈ A} + (VM⋆ + VM )

(

1− d

t

)

h(t− 1)(t− 1)−
d

10A

+ VMGM

(

1− d

t

)

(t− 1)
− d

4A

(

∆M

VM

)2

+ VM⋆GM⋆

(

1− d

t

)

(t− 1)
− d

4A

(

∆M

VM⋆

)2

.

The upper bound on regret is then

Rǫ−Greedy(t) =

t∑

s=1

∑

M 6=M⋆

∆M
P[Is = M ]

≤∆max

t∑

s=1

∑

M 6=M⋆

P[Is = M ]

≤∆max

t∑

s=1

∑

M 6=M⋆

d

sA
1{M ∈ A}

+∆max

t∑

s=1

∑

M 6=M⋆

(VM + VM⋆)

(

1− d

s

)

h(s− 1)(s− 1)−
d

10A

+∆max

t∑

s=1

∑

M 6=M⋆

VMGM

(

1− d

s

)

(s− 1)
− d

4A

(

∆M

VM

)2

+∆max

t∑

s=1

∑

M 6=M⋆

VM⋆GM⋆

(

1− d

s

)

(s− 1)
− d

4A

(

∆M

VM⋆

)2

. (26)

Observe that d > 10An2/∆2
min implies d > 10A. Note further that VM ≤ n, ∀M . Then d > 10An2/∆2

min

implies that for any M 6= M⋆:

d > 4A

(
VM

∆M

)2

and d > 4A

(
VM⋆

∆M

)2

.

As a result, in the r.h.s. of (26), except the first term, the others will be bounded as t grows large. Then,
after simplifications, we get:

Rǫ−Greedy(t) ≤ d∆max log t+O(1), as t → ∞. (27)

The proof is completed by taking the infimum in the r.h.s. over d > 10An2/∆2
min.

�
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