arXiv:1411.0060v1 [cs.IT] 1 Nov 2014

Secrecy in Cascade Networks

Paul Cuff — Princeton University

Abstract— We consider a cascade network where a sequence nRy bits
of nodes each send a message to their downstream neighbor to
enable coordination, the first node having access to an infana-
tion signal. An adversary also receives all of the communidean X"
as well as additional side-information. The performance ofthe . .
system is measured by a payoff function evaluated on actions F .l bits G Nl bits H
produced at each of the nodes, including the adversary. The " M, " M, "

challenge is to effectively use a secret key to infuse somevée yn

of privacy into the encoding, in order thwart the adversary’s (2

attempt to reduce the payoff. We obtain information-theoreic
inner and outer bounds on performance, and give examples wine
they are tight. From these bounds, we also derive the optimal {Ml,Mg,W(tf)l,Wg)l,ng} —~ E, —Z
equivocation for this setting as a special case.

|. INTRODUCTION Fig. 1. Cascade Source Codinghe i.i.d. sequencé&™ is given by nature.
. ) . ) MessagedV/; and M, satisfy the rate constraint®; and Ry. Secret key at
This work extends the rate-distortion theory for point-torate Ry is shared by all three nodes. The adversary obtains the gesssad

point secrecy systems in [1] to cascade networks. Here, efygerves noisy versions of the signals produced by the oibdes but does
. . . . . . not have access to the secret key.
information source (an i.i.d. sequence) is available tofittse
node in a cascade, and communication is possible among
adjacent nodes in the cascade (see Figure 1). As in [1],
after communication, each node produces an action sequeri¢e last node in the cascade is the first layer of a superpositi
Furthermore, an adversary observes all communication ts v&@de. The refined layer of the superposition code is sent only
as additional side-information pertaining to the actiohshe to the closer node.
nodes and the information source, either causally or non-However, the merging of these two separate contexts (i.e.
causally. The performance of the communication system §gcoding for the cascade network while in the presence of an
measured by average payoff, which is specified by a functi@dlversary) presents some subtle conflicts. We commentn thi
of the source, actions of the nodes, and an action produdddsectionIll-G.
by the adversary for the purpose of minimizing the payoff. A We also examine a couple of special cases of the main
limited amount of secret key is available to the commundgati result of this work. One such special case occurs when lsg-lo
system (but not the adversary) to enable secrecy. functions are used as the payoff function and side-infoionat
We give inner and outer bounds on the achievable pé$-chosen appropriately. This choice allows us to charaeter
formance. Both bounds have properties similar to the mdif€ maximum achievable equivocation measured with respect
features discovered in the point-to-point setting in [4.the tO the adversary, with distortion constraints at the ineshd
point-to-point case the optimal communication system aan feceivers—a familiar metric of secrecy in the literature.
understood in two steps, each related to a different notions I
of coordination defined in [2]. In the first step, empirical o
coordination is used to send a first layer of information t® tHf\- Communication
receiver. No attempt is made to keep this information secretLet X" be an ii.d. sequencé&, X, ..., X,, referred to
from the adversary—accordingly, the secret key is not used the information source, with distributioki; ~ Px. We
in this step. This is the only information that the adversagonsider a sequence of three nodes, with rate-limited com-
gains in addition to the side information. In the second ,stefaunication between them, where the first node observes the
secure strong coordination is performed, conditioned @n tRource. The action sequences produced by the other nodes in
first layer of information from step one. the network are designated &%, for the second node in the
In the cascade setting of this work, we also constructca@scade and’j;, for the third node. A uniformly distributed
communication system that designs some information to becret keyK € [2"%], independent of the information source,
recovered by the adversary while keeping the rest perfecity available to all nodes. The communication system sends
secure. The secure strong coordination step builds on thessages\/; € [27#1] from node 1 to node 2 and/, €
result from [3] for the optimal communication design fof2"#2] from node 2 to node 3 to enable coordination. The
secure cascade channel synthesis. We also draw on the bpticoastraints imposed upon the communication system can be
empirical coordination design for a cascade network desdri summarized in the following way:
in [2]—the key feature of that result being that the message f
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Constraints: where & = {Mj, Mo, W'=1}, which is everything that is

1) Source and Key available to the adversary at tinie
n Some other performance metrics stronger than expected
(X", K) ~ 2 "o H Py (x4). (1) average performance yield the same result, as demonsinated
t=1 [1]. Furthermore, multiple payoff functions can be optiedz
2) Message Rates jointly, without a significant change to the main result.
My € [2M], (2) D. Achievability
nR
My e [2"7%]. ®3) We say that a rate-payoff tupleRo, R1, R2,II) is achiev-
3) Markov structure able if there exists a block-lengthand a valid( Ry, R1, Rs)

N . communication system that achieves performanceIl.
X' = (MyLEK) — (M27 Y(2)) ,(4) Let C be the set of achievable rate-payoff tuples.

(Xn’Ml’Y(g)) - (M2, K) - Y, ®) 1. MAIN RESULT
For a given block-length, a rate(Ry, R1, R2) communi- A, Outer bound
cation system is valid if and only if it satisfies the above set

. Theorem 3.1:The set of achievable rate-payoff tupléds
of constraints.

contained in the set of tupldRy, R1, Ro, II) satisfying
B. Adversary’s Side information

As observed in the point-to-point setting of [4], the theory Ro = I(W;Viy)|U),
that emerges from this problem is very limited if additional R = I(X; V), )
side information at the adversary is not taken into account. Ry > I(X; Vi), (8)
Aside from an overly simplistic theory, two problems result o <

K . . .. . min £ ﬂ-(Xa }/(2)7}/(3)72([]))7
The secrecy obtained in the optimally efficient communica- z(")

tion system is extremely fragile, meaning that any addélons,. come distributionPy.y.,, v, 0.vy,.vig,.wv Salisfying
information obtained by the adversary would completely eom ERTEE M,

promise the secrecy design. Also, with such a limited theory X ~ Py, (9)
secrecy results pertaining to equivocation do not occur as a P |X. Yo Yo UV Vi, = Pwix,viey vis)
special case. | ~ _ |

Thus, in addition to observing the communicatidd; X Vi Y2, (10)
and M, the adversary observes the actions in the network, (X, V). Yo)) = Viey — Y, (11)
with or without noise. We model this side information as H(Vi),UlViy) = 0.

outputs of orthogonal memoryless channels from each of the

action sequences. Denoting the collection of all of the sid¥'€r€Fw|x vy, iS the side information channel stated in
information asiV’ = {W,y), Wiz, Ws)} we have (6). Furthermore, cardinality bounds can be obtained fer th

variablesU, V(yy, and V().
Pwix Yy v = PwaxPwe Ve Pwe e - (6)
In this work we assume that the side information is observ&d "Ner bound
strictly causally, meaning that the adversary only see$ pasTheorem 3.2:The set of achievable rate-payoff tuplés
side information each time he must commit to an actiogontains the set of tuplesRy, R1, Re, II) satisfying [7), [B),
This assumption implies that the adversary is forming hiand
reconstruction in real-time and allows for choices of side
information channels, such as the identity channel, thatlévo Ry > I(W:Viy|Uw)),
be uninteresting if non-causal observations were availabl I < minEn(X,Y9),Ys),2(Uy))),
However, the same communication design is effective even =)
when the side information is non-causal and can be readity some distributionPxy., v, U1 ,U ). Vi), Vi), w Salisfying

characterized. @, (10), (11), and

C. Performance

) Pw X Yoy Yoy Uy Uy Viy Vi = EWIX Y)Y
A payoff function H(Vi),Un|Vy) = 0,
T . XX y(g) X y(3) xZ — R H(U(2)|U(1)) = O,
encapsulates the objective of the system. The performance o H{Up)Vie) = 0,
the system is then measured by Uy — Ug — Vo,

1 & . . . . .
P - mi%n Eﬁ ZW(XIH Yioyo Yiay.s Zt)- where Py x v, v, IS the side information channel stated in
Zt|E St=1 =1



C. Interpretation and Gap nR;

The variableU ;) in the inner bound (likewisel/ in the
outer bound) plays the role of information that is designed
to be revealed to the adversary in order to reduce the re-
quired secret key rate. Although the inner bound introduces
an additionalU,) auxiliary random variables, it is the final
Markov relationship in the inner bound, relating the vari-
ables(U(1, Uz), V(2)), that is the key difference between the
bounds. Its absence would render the two bounds equal.

This Markov chain represents a clash of two conflicting
ideas. In cascade networks, efficient coordination demfirstls
constructing the message for the last node in the network, as
the first layer of a superposition code. On the other hand, in
secrecy settings, optimal secrecy is achieved by constguct
the public message first. It is not clear which should get
priority in this setting, the public message for the middiela
or the private message for the last node—sacrifice secrecy
or efficiency. The Markov chain allows both messages to be
constructed at the same layer, without prioritizing onerakie
other.
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The rateR, is bounded in a similar manner. Finally,

IV. PROOFS II

A. Outer bound

Let T be uniformly distributed on the sdfl,...,n} and
independent of all other variables defined thus far witheesp
to the communication system.

The outer bound involves the following naming of variables:

X = XT7
Yo = Yo,
Y3 = Yo,

U = {M;, My, W= T},

‘/(1) = {]\/flaMQaWT_laTaK}a
T-1 T-1
‘/(2) = {J\/IQa W(l) » YV (3) 1T7 K}7
w Wr.

<

™

min

1 n
E— 7(Xe, Yoy, Yizy 4, Z
Pz} n; (X, Yi2).0, Y305 Zt)

min  E7n(Xr, Yo r,Ys),1m Zr),

Pz er,T

min E7n(X,Y (9, Y3, Z7),

Pzriv

min K 7T(X, }/(2)7 }/(3)7 Z(U))

z(u)

B. Inner bound sketch

The inner bound is proven in the manner of [1] and
[3]. Consider the following random codebook construction.
Begin with a codebook’y,, of i.i.d. u,y sequences drawn
according toFy, and indexed bym, € [2nfia], For each
sequence i€y, we construct two superposition codebooks.
Let Cy,, be independently sampled sequences drawn ac-

cording t0 Py, v, (-|u(y)(ma)) and indexed by the triple

The Markov chains and other conditions of the joint distribu 7 772; k) Wheremy, € 2" and k € [ano]- Likewise,
tion stated in the outer bound can be verified for these viarialy/€ constructCy,,, according toFy v, (- (ma)) with

assignments.
Now we verify the rate and payoff inequalities:

sequences indexed by the péin,, m.) wherem, € [2"f].
Finally, we construct the superposition codeb@gk, accord-

ing to PV(l) U1y, V(2) (|u?1) (ma7 mc)a ’UEIQ) (maa mp, k)) with se-

nRy H(K)
H(K|M,, M)

I(W™; K|My, M)

vV IV IV

quences indexed by the tuplen,,my, me.,mq, k) where
mq € [2"Rd].

To prove achievability, we use the likelihood encoder [5].
The analysis uses an approximating distribution. We let all

n the indiceg M,,, My, M., My, K) be uniformly distributed and

> I(Wis K| My, My, W)
t=1

nl(Wr; K|My, My, W1, T)
nI(W, Vi |U).

independent and consider the resulting distributionsdhiaes
from applying (vf‘l)(Ma, My, M., My, K), v&)(Ma, M., K))

as the input to a memoryless channel specified by the condi-
tional distributionPx v, v, Vi), Vi) -



Define A. Justification

My, = (My, My, M., My), To verify, let us first consider the outer bound of Theo-
My = (Mg, M). rem[3.1. First notice that
Furthermore, choose I(X; Vi) > I(X;Y(2),Ys)
R, =1(X;Ug)) +e, = H(X),
Ry = I(X; Vi9)|Ug)) + e, I(X;Vig)) = I(X;Y(3))
R. = 1(X; Uy |V(g) + e, = H(X) - H(X[Y3)),
Ra = I(X;V(y|Uqy, Vigy) + €. which give the first two inequalities.

The communication constraints ifl (2] (3)J (4), andl (5) are The sparsity of the distributiqn arising _from the r(e_quireIMe
satisfied withR; = I(X; V) +4e and Ry = I(X; Vig)) +2¢. _that _X, Y(2), and Y3 all be different with probability one
The remaining part of the proof relies on a soft coveringnplies that H(Y(s)|V(2)) = 0 and H(Y(2), Y(3)|V(1)) = 0.
lemma and its extensions (see section VII-B of [6]). It cahherefore,

be shown through iterative steps that the constrainklin 1) i

nearly satisfied in total variation. Thus, a joint distriout Ro = I(W;Viy|U)

can be constructed (corresponding to the likelihood emgode = I(X,Y{(2), Y(3: VinIU)
which exactly satisfies all of the communication constsaint = H(X,Y(qy),YsU)
and behaves much like this joint distribution. Also, it can > H(X|U).

be shown through similar methods that without knowledge
of the key K, the posterior distribution of¥’™ given the The  optimal  tradeoff  between H(X|U) and
messages M, M-) is nearly that of a memoryless channeiin.,)E 1;xz, has been derived elsewhere to be
from Uf, (Mo, M) to W™, which renderg¥V*—1! useless to the payoff functionlI(R,) stated above.
the adversary. After these observations, the inner boueadsg ~ Now consider the inner bound of Theoréml3.2. Construct
to verify. a joint distribution beginning wittPx v, v,, as the uniform
V. EXAMPLE distribution over all ter_nary triples wher&, Y(,), and Y3,
are unequal. Also, defing’ = Y,y — Y3y mod 3. We focus

Here we provide an _examplg of a distributid?x and a now on achieving the two corner points B Ry), namely,
payoff functions for which the inner and outer bounds arQ Ry, 11) = (1,1/2) and (Ro, I1) = (log, 3,2/3).

tight and we can characterize the achievable rate-payplésu
analytically.

Let Px be the uniform distribution on the sét, 2,3}, and
define the payoff function to be

For the first corner point, lel/(, satisfy the Markov chain
(X,Y(2)) — Y3y — Uy and be a ternary random variable
uniformly distributed on the two values unequal #g;. Let
Viey = {Y3),U} and Uy = {U', U} and Vi) =

(Y2, Y3),2) =~ Lfoye e 1={1.2.3}) Y(2), Yi3), Uiy - , _
+ 1(pn) For the second corner point, use the same construction but
let U(Q) = (Z)

In words, the payoff function is finite if and only if, y(s),

andys) are all different ternary values, in which case a payoff VI. EQUIVOCATION

of 1 is obtained if: differs from . Traditionally, information theoretic secrecy in the imper
This unbounded negative payoff function requires a mog- Y, y mp

ification to the theorems of Sectignllll. Instead of expecte ct.soecc;?g)r/] cr)??alr:r]'if(];cr);uast?::sgn r?ea?in;'ggnt;; )nom:hzed
distortion, the average distortion is achieved with highlpr quivocat : ' u eH (X" | M) whi

ability. We don't detail this extension to the theorems iisth achieving a comn’1un|cat|0n object_|ve. This approach goek ba
- S at least to Wyner’'s work on the wiretap channel [7]. In [8] we
paper, but it is studied in [1].

For this example, a finite payoff is achievable if and onl howed that the equivocation approach to measuring seiecy

ifl special case of rate-distortion secrecy with causalalisce.
In the case of the cascade network, the bounds provided in
Ry > logy3, Theorem§ 311 arld 3.2 are tight for characterizing equivocat
Ry > logy3—1. The standard metric of equivocation is with respect to the

information sourceX™. However, in general we can also
consider equivocation with respect to the other actiondién t
network,Y(g) andY(g). For notational simplicity, let us define

Assuming the above conditions are met, the optimal paoff
is

RO/21 RO < 17
II(Ry) = m+1/2, 1 < Ry <log, 3, S C{X,Y), Y5}
2/3, log, 3 < Ry.

to be the information that we intend to keep secret from the
Iwe ignore the cases of equality, as edge cases, and leaveathbiguous. eavesdropper, for which we will characterize the maximum



equivocation: where[-]+ = max{0,-} and

i i _ 1 n Px vy Y1, V2

Equivocation = nH(S | My, Ms). (12) @)% X ~ Py

We arrive at a characterization of equivocation by using X — 1 = Yy,

a log-loss payoff function, as has been recently studied as a (X,V1,Y9)) — Vo — V),

distortion function in [9] and [10]. P = H(VlV1) = 0,
Edi(X,Y) < D,
A. Log-loss Edy(X,Y) < Do,
Consider the log-loss payoff function I(X;V1) < Ry,
1 I(X;Ve) < R .
n(s,z) = log—. For the case wher§ = X, the optimal choices of variables
2(s) areVi = {Y(2),Y(3)} andV, = Y(3. Similarly, for bothS =

where z € Ag is a probability mass function. In other{X,Y(s)} andS = Y(3), the optimal choice o¥? is Y(s).
words, the eavesdropper produces a reconstrucjowhich
is a probability distribution over the alphabet of the secur C. Proof of Theor?r@].l o )
information. In order to produce the lowest expected digtoy __ 1h€ conditions in the definition 0P come entirely from
the adversary’s best choice & is the posterior distribution Theorems 311 and 3.2. Let us focus first on the outer bound.
of S; given everything he knows to that point, resulting in aflotice from Theorera 311,
expecte_q payoff that equals conditiongl entropy. . Ry > I(W;Vy|U)

Specifically, in the case thdal/ = S (i.e. the causal side-

information is exactly the information that is to be keptrety = &V |U)’1
we find that the objective simplifies as II < minE log G
z(u) z
T o= min E lZT&'(S“ZJ = H(S|U)
{(Pze )i N = H(S)-1I(S;U)
~ i ELY i = H(S) = I(S; Via), U) + 1(S; Vi) [U)
(Pre i, nim  Zi(Si) = H(S) = I(S; Vi) + I(S;:Viyy [U)
n < H(S)-I(S;Vi))+ Ro.
= IS Hs M, My, S (8) = 1S Viy) + Bo
ni By identifying V; = V{;) andV; = V|,) we can conclude that
1
= EH(S”|M1,M2) II S H(S)—[I(S,Vl)—R0]+
= Equivocation To prove the inner bound for TheorémJ6.1 we construct valid

B i1 choices ofU(y, U2y, V(1), andV(,y and apply Theorern 3.2.
where; = {My, Mz, S} This is omitted for lack of space.
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