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Secrecy in Cascade Networks
Paul Cuff – Princeton University

Abstract— We consider a cascade network where a sequence
of nodes each send a message to their downstream neighbor to
enable coordination, the first node having access to an informa-
tion signal. An adversary also receives all of the communication
as well as additional side-information. The performance ofthe
system is measured by a payoff function evaluated on actions
produced at each of the nodes, including the adversary. The
challenge is to effectively use a secret key to infuse some level
of privacy into the encoding, in order thwart the adversary’s
attempt to reduce the payoff. We obtain information-theoretic
inner and outer bounds on performance, and give examples where
they are tight. From these bounds, we also derive the optimal
equivocation for this setting as a special case.

I. I NTRODUCTION

This work extends the rate-distortion theory for point-to-
point secrecy systems in [1] to cascade networks. Here, an
information source (an i.i.d. sequence) is available to thefirst
node in a cascade, and communication is possible among
adjacent nodes in the cascade (see Figure 1). As in [1],
after communication, each node produces an action sequence.
Furthermore, an adversary observes all communication as well
as additional side-information pertaining to the actions of the
nodes and the information source, either causally or non-
causally. The performance of the communication system is
measured by average payoff, which is specified by a function
of the source, actions of the nodes, and an action produced
by the adversary for the purpose of minimizing the payoff. A
limited amount of secret key is available to the communication
system (but not the adversary) to enable secrecy.

We give inner and outer bounds on the achievable per-
formance. Both bounds have properties similar to the main
features discovered in the point-to-point setting in [1]. In the
point-to-point case the optimal communication system can be
understood in two steps, each related to a different notions
of coordination defined in [2]. In the first step, empirical
coordination is used to send a first layer of information to the
receiver. No attempt is made to keep this information secret
from the adversary—accordingly, the secret key is not used
in this step. This is the only information that the adversary
gains in addition to the side information. In the second step,
secure strong coordination is performed, conditioned on the
first layer of information from step one.

In the cascade setting of this work, we also construct a
communication system that designs some information to be
recovered by the adversary while keeping the rest perfectly
secure. The secure strong coordination step builds on the
result from [3] for the optimal communication design for
secure cascade channel synthesis. We also draw on the optimal
empirical coordination design for a cascade network described
in [2]—the key feature of that result being that the message for
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Fig. 1. Cascade Source Coding:The i.i.d. sequenceXn is given by nature.
MessagesM1 andM2 satisfy the rate constraintsR1 andR2. Secret key at
rateR0 is shared by all three nodes. The adversary obtains the messages and
observes noisy versions of the signals produced by the othernodes but does
not have access to the secret key.

the last node in the cascade is the first layer of a superposition
code. The refined layer of the superposition code is sent only
to the closer node.

However, the merging of these two separate contexts (i.e.
encoding for the cascade network while in the presence of an
adversary) presents some subtle conflicts. We comment on this
in Section III-C.

We also examine a couple of special cases of the main
result of this work. One such special case occurs when log-loss
functions are used as the payoff function and side-information
is chosen appropriately. This choice allows us to characterize
the maximum achievable equivocation measured with respect
to the adversary, with distortion constraints at the intended
receivers—a familiar metric of secrecy in the literature.

II. PROBLEM STATEMENT

A. Communication

Let Xn be an i.i.d. sequenceX1, X2, ..., Xn referred to
as the information source, with distributionX1 ∼ PX . We
consider a sequence of three nodes, with rate-limited com-
munication between them, where the first node observes the
source. The action sequences produced by the other nodes in
the network are designated asY n

(2) for the second node in the
cascade andY n

(3) for the third node. A uniformly distributed
secret keyK ∈ [2nR0 ], independent of the information source,
is available to all nodes. The communication system sends
messagesM1 ∈ [2nR1 ] from node 1 to node 2 andM2 ∈
[2nR2 ] from node 2 to node 3 to enable coordination. The
constraints imposed upon the communication system can be
summarized in the following way:
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Constraints:
1) Source and Key

(Xn,K) ∼ 2−nR0

n
∏

t=1

PX(xt). (1)

2) Message Rates

M1 ∈ [2nR1 ], (2)

M2 ∈ [2nR2 ]. (3)

3) Markov structure

Xn − (M1,K) −
(

M2, Y
n
(2)

)

, (4)
(

Xn,M1, Y
n
(2)

)

− (M2,K) − Y n
(3). (5)

For a given block-lengthn, a rate(R0, R1, R2) communi-
cation system is valid if and only if it satisfies the above set
of constraints.

B. Adversary’s Side information

As observed in the point-to-point setting of [4], the theory
that emerges from this problem is very limited if additional
side information at the adversary is not taken into account.
Aside from an overly simplistic theory, two problems result.
The secrecy obtained in the optimally efficient communica-
tion system is extremely fragile, meaning that any additional
information obtained by the adversary would completely com-
promise the secrecy design. Also, with such a limited theory,
secrecy results pertaining to equivocation do not occur as a
special case.

Thus, in addition to observing the communicationM1

and M2, the adversary observes the actions in the network,
with or without noise. We model this side information as
outputs of orthogonal memoryless channels from each of the
action sequences. Denoting the collection of all of the side
information asW = {W(1),W(2),W(3)} we have

PW |X,Y(2),Y(3)
= PW(1)|XPW(2)|Y(2)

PW(3)|Y(3)
. (6)

In this work we assume that the side information is observed
strictly causally, meaning that the adversary only sees past
side information each time he must commit to an action.
This assumption implies that the adversary is forming his
reconstruction in real-time and allows for choices of side
information channels, such as the identity channel, that would
be uninteresting if non-causal observations were available.
However, the same communication design is effective even
when the side information is non-causal and can be readily
characterized.

C. Performance

A payoff function

π : X × Y(2) × Y(3) ×Z → R

encapsulates the objective of the system. The performance of
the system is then measured by

π̄ = min
{PZt|Et

}n
t=1

E
1

n

n
∑

t=1

π(Xt, Y(2),t, Y(3),t, Zt).

where Et = {M1,M2,W
t−1}, which is everything that is

available to the adversary at timet.
Some other performance metrics stronger than expected

average performance yield the same result, as demonstratedin
[1]. Furthermore, multiple payoff functions can be optimized
jointly, without a significant change to the main result.

D. Achievability

We say that a rate-payoff tuple(R0, R1, R2,Π) is achiev-
able if there exists a block-lengthn and a valid(R0, R1, R2)
communication system that achieves performanceπ̄ ≥ Π.

Let C be the set of achievable rate-payoff tuples.

III. M AIN RESULT

A. Outer bound

Theorem 3.1:The set of achievable rate-payoff tuplesC is
contained in the set of tuples(R0, R1, R2,Π) satisfying

R0 ≥ I(W ;V(1)|U),

R1 ≥ I(X ;V(1)), (7)

R2 ≥ I(X ;V(2)), (8)

Π ≤ min
z(·)

E π(X,Y(2), Y(3), z(U)),

for some distributionPX,Y(2),Y(3),U,V(1),V(2),W satisfying

X ∼ PX , (9)

PW |X,Y(2),Y(3),U,V(1),V(2)
= PW |X,Y(2),Y(3)

X − V(1) − Y(2), (10)

(X,V(1), Y(2)) − V(2) − Y(3), (11)

H(V(2), U |V(1)) = 0.

wherePW |X,Y(2),Y(3)
is the side information channel stated in

(6). Furthermore, cardinality bounds can be obtained for the
variablesU , V(1), andV(2).

B. Inner bound

Theorem 3.2:The set of achievable rate-payoff tuplesC
contains the set of tuples(R0, R1, R2,Π) satisfying (7), (8),
and

R0 > I(W ;V(1)|U(1)),

Π < min
z(·)

E π(X,Y(2), Y(3), z(U(1))),

for some distributionPX,Y(2),Y(3),U(1),U(2),V(1),V(2),W satisfying
(9), (10), (11), and

PW |X,Y(2),Y(3),U(1),U(2),V(1),V(2)
= PW |X,Y(2),Y(3)

H(V(2), U(1)|V(1)) = 0,

H(U(2)|U(1)) = 0,

H(U(2)|V(2)) = 0,

U(1) − U(2) − V(2),

wherePW |X,Y(2),Y(3)
is the side information channel stated in

(6).



C. Interpretation and Gap

The variableU(1) in the inner bound (likewise,U in the
outer bound) plays the role of information that is designed
to be revealed to the adversary in order to reduce the re-
quired secret key rate. Although the inner bound introduces
an additionalU(2) auxiliary random variables, it is the final
Markov relationship in the inner bound, relating the vari-
ables(U(1), U(2), V(2)), that is the key difference between the
bounds. Its absence would render the two bounds equal.

This Markov chain represents a clash of two conflicting
ideas. In cascade networks, efficient coordination demandsfirst
constructing the message for the last node in the network, as
the first layer of a superposition code. On the other hand, in
secrecy settings, optimal secrecy is achieved by constructing
the public message first. It is not clear which should get
priority in this setting, the public message for the middle node
or the private message for the last node—sacrifice secrecy
or efficiency. The Markov chain allows both messages to be
constructed at the same layer, without prioritizing one over the
other.

IV. PROOFS

A. Outer bound

Let T be uniformly distributed on the set{1, ..., n} and
independent of all other variables defined thus far with respect
to the communication system.

The outer bound involves the following naming of variables:

X = XT ,

Y(2) = Y(2),T ,

Y(3) = Y(3),T ,

U = {M1,M2,W
T−1, T },

V(1) = {M1,M2,W
T−1, T,K},

V(2) = {M2,W
T−1
(1) ,WT−1

(3) , T,K},

W = WT .

The Markov chains and other conditions of the joint distribu-
tion stated in the outer bound can be verified for these variable
assignments.

Now we verify the rate and payoff inequalities:

nR0 ≥ H(K)

≥ H(K|M1,M2)

≥ I(Wn;K|M1,M2)

=

n
∑

t=1

I(Wt;K|M1,M2,W
t−1)

= nI(WT ;K|M1,M2,W
T−1, T )

= nI(W,V(1)|U).

nR1 ≥ H(M1)

≥ H(M1|K)

≥ I(Xn;M1|K)

= I(Xn;M1,K)

= I(Xn;M1,K,M2)

=

n
∑

t=1

I(Xt;M1,K,M2|X
t−1)

=

n
∑

t=1

I(Xt;M1,K,M2, X
t−1)

=

n
∑

t=1

I(Xt;M1,K,M2, X
t−1, Y t−1

(2) , Y t−1
(3) )

≥
n
∑

t=1

I(Xt;M1,K,M2,W
t−1)

= nI(XT ;M1,K,M2,W
T−1, T )

= nI(X ;V(1)).

The rateR2 is bounded in a similar manner. Finally,

Π ≤ π̄

= min
{PZt|Et

}n
t=1

E
1

n

n
∑

t=1

π(Xt, Y(2),t, Y(3),t, Zt)

= min
PZT |ET ,T

Eπ(XT , Y(2),T , Y(3),T , ZT ),

= min
PZT |U

Eπ(X,Y(2), Y(3), ZT ),

= min
z(u)

E π(X,Y(2), Y(3), z(U)).

B. Inner bound sketch

The inner bound is proven in the manner of [1] and
[3]. Consider the following random codebook construction.
Begin with a codebookCU(2)

of i.i.d. un
(2) sequences drawn

according toPU(2)
and indexed byma ∈ [2nRa ]. For each

sequence inCU(2)
we construct two superposition codebooks.

Let CV(2)
be independently sampled sequences drawn ac-

cording to PV(2)|U(2)
(·|un

(2)(ma)) and indexed by the triple
(ma,mb, k) wheremb ∈ [2nRb ] and k ∈ [2nR0 ]. Likewise,
we constructCU(1)

according toPU(1)|U(2)
(·|un

(2)(ma)) with
sequences indexed by the pair(ma,mc) wheremc ∈ [2nRc ].
Finally, we construct the superposition codebookCV(1)

accord-
ing toPV(1)|U(1),V(2)

(·|un
(1)(ma,mc), v

n
(2)(ma,mb, k)) with se-

quences indexed by the tuple(ma,mb,mc,md, k) where
md ∈ [2nRd ].

To prove achievability, we use the likelihood encoder [5].
The analysis uses an approximating distribution. We let all
the indices(Ma,Mb,Mc,Md,K) be uniformly distributed and
independent and consider the resulting distributions thatarises
from applying (vn(1)(Ma,Mb,Mc,Md,K), vn(2)(Ma,Mc,K))
as the input to a memoryless channel specified by the condi-
tional distributionPX,Y(2),Y(3)|V(1),V(2)

.



Define

M1 = (Ma,Mb,Mc,Md),

M2 = (Ma,Mb).

Furthermore, choose

Ra = I(X ;U(2)) + ǫ,

Rb = I(X ;V(2)|U(2)) + ǫ,

Rc = I(X ;U(1)|V(2)) + ǫ,

Rd = I(X ;V(1)|U(1), V(2)) + ǫ.

The communication constraints in (2), (3), (4), and (5) are
satisfied withR1 = I(X ;V(1))+4ǫ andR2 = I(X ;V(2))+2ǫ.

The remaining part of the proof relies on a soft covering
lemma and its extensions (see section VII-B of [6]). It can
be shown through iterative steps that the constraint in (1) is
nearly satisfied in total variation. Thus, a joint distribution
can be constructed (corresponding to the likelihood encoder)
which exactly satisfies all of the communication constraints
and behaves much like this joint distribution. Also, it can
be shown through similar methods that without knowledge
of the key K, the posterior distribution ofWn given the
messages(M1,M2) is nearly that of a memoryless channel
from Un

(1)(Ma,Mc) to Wn, which rendersW t−1 useless to
the adversary. After these observations, the inner bound iseasy
to verify.

V. EXAMPLE

Here we provide an example of a distributionPX and a
payoff functionπ for which the inner and outer bounds are
tight and we can characterize the achievable rate-payoff tuples
analytically.

Let PX be the uniform distribution on the set{1, 2, 3}, and
define the payoff function to be

π(x, y(2), y(3), z) = −∞ 1{{x,y(2),y(3)}={1,2,3}}

+ 1{x 6=z}.

In words, the payoff function is finite if and only ifx, y(2),
andy(3) are all different ternary values, in which case a payoff
of 1 is obtained ifz differs fromx.

This unbounded negative payoff function requires a mod-
ification to the theorems of Section III. Instead of expected
distortion, the average distortion is achieved with high prob-
ability. We don’t detail this extension to the theorems in this
paper, but it is studied in [1].

For this example, a finite payoff is achievable if and only
if1

R1 > log2 3,

R2 > log2 3− 1.

Assuming the above conditions are met, the optimal payoffΠ
is

Π(R0) =







R0/2, R0 ≤ 1,
R0−1

6(log2 3−1) + 1/2, 1 < R0 ≤ log2 3,

2/3, log2 3 < R0.

1We ignore the cases of equality, as edge cases, and leave themambiguous.

A. Justification

To verify, let us first consider the outer bound of Theo-
rem 3.1. First notice that

I(X ;V(1)) ≥ I(X ;Y(2), Y(3))

= H(X),

I(X ;V(2)) ≥ I(X ;Y(3))

= H(X)−H(X |Y(3)),

which give the first two inequalities.
The sparsity of the distribution arising from the requirement

that X , Y(2), and Y(3) all be different with probability one
implies thatH(Y(3)|V(2)) = 0 and H(Y(2), Y(3)|V(1)) = 0.
Therefore,

R0 ≥ I(W ;V(1)|U)

= I(X,Y(2), Y(3);V(1)|U)

= H(X,Y(2), Y(3)|U)

≥ H(X |U).

The optimal tradeoff between H(X |U) and
minz(u) E 1{X 6=Z} has been derived elsewhere to be
the payoff functionΠ(R0) stated above.

Now consider the inner bound of Theorem 3.2. Construct
a joint distribution beginning withPX,Y(2),Y(3)

as the uniform
distribution over all ternary triples whereX , Y(2), and Y(3)

are unequal. Also, defineU ′ = Y(2) − Y(3) mod 3. We focus
now on achieving the two corner points ofΠ(R0), namely,
(R0,Π) = (1, 1/2) and (R0,Π) = (log2 3, 2/3).

For the first corner point, letU(2) satisfy the Markov chain
(X,Y(2)) − Y(3) − U(2) and be a ternary random variable
uniformly distributed on the two values unequal toY(3). Let
V(2) = {Y(3), U(2)} and U(1) = {U ′, U(2)} and V(1) =
{Y(2), Y(3), U(2)}.

For the second corner point, use the same construction but
let U(2) = ∅.

VI. EQUIVOCATION

Traditionally, information theoretic secrecy in the imper-
fect secrecy regime focusses on maximizing the normalized
equivocation of an information source (i.e.1

n
H(Xn|M)) while

achieving a communication objective. This approach goes back
at least to Wyner’s work on the wiretap channel [7]. In [8] we
showed that the equivocation approach to measuring secrecyis
a special case of rate-distortion secrecy with causal disclosure.
In the case of the cascade network, the bounds provided in
Theorems 3.1 and 3.2 are tight for characterizing equivocation.

The standard metric of equivocation is with respect to the
information sourceXn. However, in general we can also
consider equivocation with respect to the other actions in the
network,Y n

(2) andY n
(3). For notational simplicity, let us define

S ⊂ {X,Y(2), Y(3)}

to be the information that we intend to keep secret from the
eavesdropper, for which we will characterize the maximum



equivocation:

Equivocation =
1

n
H(Sn|M1,M2). (12)

We arrive at a characterization of equivocation by using
a log-loss payoff function, as has been recently studied as a
distortion function in [9] and [10].

A. Log-loss

Consider the log-loss payoff function

π(s, z) = log
1

z(s)
.

where z ∈ ∆S is a probability mass function. In other
words, the eavesdropper produces a reconstructionZt which
is a probability distribution over the alphabet of the secured
information. In order to produce the lowest expected distortion,
the adversary’s best choice ofZt is the posterior distribution
of St given everything he knows to that point, resulting in an
expected payoff that equals conditional entropy.

Specifically, in the case thatW = S (i.e. the causal side-
information is exactly the information that is to be kept secret),
we find that the objectivēπ simplifies as

π̄ = min
{PZt|Et

}n
t=1

E
1

n

n
∑

t=1

π(Si, Zi)

= min
{PZt|Et

}n
t=1

E
1

n

n
∑

t=1

log
1

Zi(Si)

=
1

n

n
∑

t=1

H(St|M1,M2,S
t−1)

=
1

n
H(Sn|M1,M2)

= Equivocation,

whereEt = {M1,M2,St−1}.

B. Optimal Equivocation

We characterize the optimal equivocationπ̄ by applying
Theorems 3.1 and 3.2 with the log-loss payoff function. In
addition to maximizing the equivocation, we assume that
the action sequencesY n

(2) and Y n
(3) are constrained to have

low distortion with the information sourceXn under average
distortion metrics

E
1

n

n
∑

t=1

d1(Xt, Y(2),t) ≤ D1,

E
1

n

n
∑

t=1

d2(Xt, Y(3),t) ≤ D2.

This draws on a simple technical extension to Theorems 3.1
and 3.2, not detailed in this paper, needed to handle more than
one payoff function simultaneously.

Theorem 6.1:The maximum achievable equivocation ofS
while satisfying distortion contraintsD1 andD2 is

sup π̄ = max
P

(

H(S)− [I(S;V1)−R0]+
)

,

where[·]+ = max{0, ·} and

P =























































PX,Y(2),Y(3),V1,V2 :

X ∼ PX ,
X − V1 − Y(2),

(X,V1, Y(2)) − V2 − Y(3),
H(V2|V1) = 0,

E d1(X,Y(2)) ≤ D1,
E d2(X,Y(3)) ≤ D2,

I(X ;V1) ≤ R1,
I(X ;V2) ≤ R2.























































.

For the case whereS = X , the optimal choices of variables
areV1 = {Y(2), Y(3)} andV2 = Y(3). Similarly, for bothS =
{X,Y(2)} andS = Y(2), the optimal choice ofV2 is Y(3).

C. Proof of Theorem 6.1

The conditions in the definition ofP come entirely from
Theorems 3.1 and 3.2. Let us focus first on the outer bound.
Notice from Theorem 3.1,

R0 ≥ I(W ;V(1)|U)

= I(S;V(1)|U),

Π ≤ min
z(u)

E log
1

z(S)

= H(S|U)

= H(S)− I(S;U)

= H(S)− I(S;V(1), U) + I(S;V(1)|U)

= H(S)− I(S;V(1)) + I(S;V(1)|U)

≤ H(S)− I(S;V(1)) +R0.

By identifyingV1 = V(1) andV2 = V(2) we can conclude that

Π ≤ H(S)− [I(S;V1)−R0]+ .

To prove the inner bound for Theorem 6.1 we construct valid
choices ofU(1), U(2), V(1), andV(2) and apply Theorem 3.2.
This is omitted for lack of space.
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