
Design of Non-Binary Quasi-Cyclic LDPC Codes by
ACE Optimization

Alex Bazarsky, Noam Presman and Simon Litsyn
School of Electrical Engineering, Tel Aviv University, Ramat Aviv 69978 Israel

e-mail: {bazarsky,presmann,litsyn}@eng.tau.ac.il

Abstract—An algorithm for constructing Tanner graphs of non-
binary irregular quasi-cyclic LDPC codes is introduced. It employs
a new method for selection of edge labels allowing control over the
code’s non-binary ACE spectrum and resulting in low error-floor.
The efficiency of the algorithm is demonstrated by generating good
codes of short to moderate length over small fields, outperforming
codes generated by the known methods.

I. INTRODUCTION

LDPC codes introduced by Gallager [1] are excellent error
correcting codes, which are being used in many modern ap-
plications. Non-binary (NB) LDPC codes exhibit better error
correcting performance compared to the binary ones [2]. As
the field size grows, error correcting capability improves, at the
price of increasing decoding complexity.

Binary LDPC codes constructed by quasi-cyclic (QC) lifting
of a base-graph have a structure that can be utilized in an
efficient implementation of both the encoder and the iterative
decoder [3], [4], [5]. NB QC codes based on α-multiplied
circulant permutation matrices have similar properties [6].

In LDPC codes, the error-floor is induced by the presence
of small combinatorial structures in the Tanner graph (e.g.
stopping-sets, trapping-sets, etc.). These structures always con-
tain cycles, therefore manipulating the parameters of the cycles
also affects the error-floor. The parameters of importance here
are the cycles’ length and connectivity, manifested by their
approximate cycle extrinsic message degree (ACE). For binary
codes, the error-floor can be reduced significantly by removing
short cycles having small ACE value from the graph [7], [8], [9],
[10]. For QC codes, the ACE-constrained construction becomes
more computationally efficient by utilizing the relation between
cycles in the protograph and their realization in the lifted graph.
Based on this idea, Asvadi et al.[11] introduced an algorithm
for design of irregular binary QC codes with an excellent error-
correcting performance.

NB LDPC codes are conventionally constructed by first
obtaining a binary mother parity check-matrix Hb, and then
replacing the non-zero elements of Hb by non-zero values from
the field, often referred to as labels. The label assignment is
performed either randomly or intelligently (by meeting some
design criteria).

Poulliat et al. [8] designed regular NB (2, dc) codes (cy-
cle codes) by first using the progressive edge growth (PEG)
algorithm [12] to construct Hb having an associated Tanner
graph with large girth. Then, they introduced a method for label

assignment based on cycle cancelation, resulting in low error-
floor codes. Peng and Chen extended this idea for the design of
NB QC regular cycle codes [13]. Other design algorithms for
NB QC codes were also explored recently [14] [15].

In this paper, we use a relation between the protograph and
the QC lifted graph, to produce good irregular NB QC LDPC
codes. Our design involves a new method to select edge labels
which constrain the code’s NB ACE spectrum, resulting in
improved performance. We demonstrate the efficiency of this
algorithm by constructing good codes of short to moderate
length over small fields. Such codes are practical due to
their moderate decoding complexity. Note that irregular profiles
achieve better error correcting performance compared to regular
ones for codes over small fields [2] [12], which motivates our
ACE based design.

The paper is organized as follows. In Section II, we begin
by presenting the relevant background and notations that are
used throughout. In Section III, we present our NB QC code
construction method. The performance of codes generated by
the method is demonstrated by simulations in Section IV.

II. PRELIMINARIES

Throughout we use the following notations. For an integer
n > 0, let [n] = {1, 2, . . . , n}. For two integers a, b, the
remainder of the division of a by b is denoted by Rb[a]. For
two vectors u, v of length `, u ≥ v iff ui ≥ vi, ∀i ∈ [`].
A. LDPC Codes

A binary LDPC code of length n is a linear block code
defined by a binary parity-check matrix Hm×n. The code
can be equivalently represented by a bipartite Tanner graph
G = (V ∪ C,E), where the set V consists of variable nodes
vi, i ∈ [n], and the set C consists of check nodes cj , j ∈ [m].
An edge connects a variable node vi to a check node cj iff
Hj,i = 1. The degree distribution of the code is represented by
two polynomials: λ(x) =

∑dv
i=2 λix

i−1 for the variable nodes
and γ(x) =

∑dc
i=2 γix

i−1 for the check nodes, where dv (dc) is
the maximum variable (check) node degree, and λi (γi) is the
fraction of edges connected to variable (check) nodes of degree
i. If λ(x) = xdv−1 and γ(x) = xdc−1, the code is called regular
(dv, dc) LDPC. Otherwise, the code is called irregular LDPC.

An NB LDPC code over GF (q) is defined by a parity-check
matrix H with elements from the field (q = 2r, r > 1). The
Tanner graph of the code has labels on its edges which are the
corresponding non-zero entries from H . For such a code, we

ar
X

iv
:1

30
4.

74
87

v2
 [

cs
.I

T
]

 2
5

Ju
l 2

01
3

define a binary matrix Hb of the same dimensions as H , such
that each entry in Hb is 1 iff the corresponding entry in H is
non-zero. Hb is referred to as the binary mother matrix of the
code.
B. QC Lifted Codes

Definition 1 (Lifted graph): Let Ĝ = (V̂ ∪ Ĉ, Ê) be a
Tanner graph. For each (v, c) ∈ Ê define a permutation π(v,c)
on the set [Z]. To each v ∈ V̂ (c ∈ Ĉ) we generate a set
of Z duplicates vi (ci), i ∈ [Z]. Then G = (V ∪ C,E) is
a Z-lifted graph of Ĝ, associated with these permutations, if
V = {vi|v ∈ V̂ , i ∈ [Z]}, C = {ci|c ∈ Ĉ, i ∈ [Z]} and
E =

{
(vi, cj)|(v, c) ∈ Ê

∧
π(v,c)(i) = j

}
.

The graph Ĝ is called a base-graph or a protograph. When
all the edge permutations in G are cyclic shifts of [Z], then
G is called Z-lifted QC graph. In this case, a binary LDPC
code associated with G, has a compact block-representation of
its parity check matrix H , based on the parity check matrix
Ĥ associated with the protograph. In this representation, each
entry is replaced by a Z×Z matrix as follows. The zero entries
are replaced by zero matrices. Each non-zero entry is replaced
by a (Z, d)-circulant permutation matrix (CPM), defined below,
if a right circular shift of d places is assigned to it.

Definition 2 (CPM): A (Z, d)-CPM is formed by a circular
shift to the right by d places of the columns of the Z × Z
identity matrix.

In an NB QC Z-lifted code, each non-zero element of the
protograph parity check matrix, corresponding to an edge e,
is replaced by a (Z, λe, ρe, de)-multiplied CPM (MCPM), as
defined below [6], [13].

Definition 3 (MCPM): Let (q − 1)|λZ and α is a primitive
element of GF (q). A (Z, λ, ρ, d)-MCPM over GF (q), is a Z×
Z matrix, with underlying binary mother matrix (Z, d)-CPM.
Furthermore, for each row i of the MCPM i ∈ [Z], the single
non-zero element is αρ+(i−1)·λ.
Note that in a CPM, each row is an αλ-multiplied circular right
shift of the row above it. This is also true for the first row,
where the row ”above it” is defined to be the last row.
C. Cycles and ACE

Cycles in the Tanner graph are known to influence the error-
floor of iterative decoders (e.g. stopping-sets, trapping-sets,
etc.). Important combinatorial characteristics of a cycle are its
length and its extrinsic message degree (EMD), which is the
number of check-nodes that are connected to the variables of
the cycle by only one edge. In this paper, we use for simplicity,
the approximate cycle EMD (ACE), defined as

∑
vi
(dvi − 2),

where dv is the degree of a node v, and the summation is over
all the variable-nodes of the cycle. A code with long cycles and
large ACE usually exhibits lower error-floor compared to a code
with shorter cycles or smaller ACE. This notion motivates the
following definition.

Definition 4 (ACE spectrum): For an LDPC code repre-
sented by a Tanner graph G, the `-depth ACE spectrum is
τ (b)(G) =

(
τ
(b)
2 , τ

(b)
4 , ..., τ

(b)
`

)
where τ

(b)
i , i ≤ `, is the

minimum ACE value of any cycle of length i in G. G achieves
an `-depth ACE constraint τ̂ (b) =

(
τ̂
(b)
2 , τ̂

(b)
4 , ..., τ̂

(b)
`

)
if

τ (b)(G) ≥ τ̂ (b).
To lower error-floor, it is beneficial to achieve higher ACE
spectrum values for cycles of lower length.

We now discuss the relationship between cycles in the
protograph Ĝ and the resultant QC Z-lifted graph G. Let C
be a cycle in Ĝ of even length `, being a sequence of edges
{ei}`i=1, having ACE τ . Assume that in G, for each edge ei
we used a (Z, di)-CPM, i ∈ [`]. The order of C in G is defined
as O(C) = Z/ gcd(Z, d), where d = RZ

[∑`−1
i=0(−1)idi+1

]
is

called the total shift of the cycle C. It is easy to see that the
lifted nodes and edges of C in G form a union of gcd(Z, d)
cycles, each one of them having length ` · O(C) and ACE
τ · O(C). Moreover, every cycle in G corresponds to a cycle
in Ĝ. Therefore, the ACE spectrum of G can be easily derived
from the knowledge about cycles in Ĝ and the shifts of its
edges.

In NB LDPC codes each cycle also has a meaningful alge-
braic structure, defined by the labels on its edges. A simple
and minimal cycle (i.e. that does not contain a cycle being a
subset of its nodes), C, of length ` in an NB Tanner graph G,
with parity check matrix H can be represented by an `/2× `/2
matrix denoted B. Here, B is the sub-matrix of H with rows and
columns that correspond to the check nodes and variable nodes
that are in C. Without loss of generality, we can assume that
B has the following canonical form. The ith row, i ∈ [`/2− 1]
is of the form

[
0i−1, β2(i−1), β2(i−1)+1,0`/2−i−1

]
and the last

row is
[
β`−1,0`/2−2, β`−2

]
. Here, for i ≥ 0, 0i, is the zero-

vector of length i (in case i = 0, this is the empty vector) and
{βi}`−1i=0 are non-zero elements of GF (q).

In LDPC cycle codes, studied by Poulliat et al. [8], the
variable nodes of every simple and minimal cycle form support
of a codeword, unless its corresponding matrix B is full-rank.
In a canonical form of B, this full-rank condition (FRC) is
equivalent to the following

(FRC) :

`/2−1∏
i=0

β2i+1 6=
`/2−1∏
i=0

β2i. (1)

Therefore, to avoid low-weight codewords in cycle codes
(causing high error-floor), Poulliat et al., assign the labels of
the NB code, so that cycles of short length fulfill the FRC. A
cycle C, that satisfies the FRC is said to be ”canceled”.

We argue that even for general NB irregular codes, assigning
labels such that a cycle C is canceled, should reduce the
probability that the BP iterative decoder fails to converge due
to errors in the variables of the cycle. The intuition behind it is
that the constraints of the matrix B corresponding to C, imply
a local-code on the variables of C with a single codeword (the
zero-codeword) iff C is canceled. Since the iterative decoder is
local in its behavior, if C is not canceled, the decoder could
be misled to converge to one of the wrong codewords of the
local-code of C. The cycle’s extrinsic check nodes may prevent
such an erroneous convergence. Having more such extrinsic

check nodes should increase the chance to overcome errors in
the variables of C. Hence, because label assignment can cancel
only a limited number of cycles, it seems reasonable to prefer
canceling the shorter ones with low ACE. This notion justifies
the next useful definition.

Definition 5 (NB ACE spectrum): For an NB LDPC code,
represented by a Tanner graph G, the `-depth NB ACE spectrum
is τ (nb)(G) =

(
τ
(nb)
2 , τ

(nb)
4 , ..., τ

(nb)
`

)
where τ

(nb)
i , i ≤ `,

is the minimum ACE value of any non-canceled cycle of
length i in G. G achieves an `-depth NB ACE spectrum
τ̂ (nb) = {τ̂ (nb)2 , τ̂

(nb)
4 , .., τ̂

(nb)
` } if τ (nb)(G) ≥ τ̂ (nb).

Peng and Chen [13] showed that for NB QC Z-lifted codes,
the FRC of the lifted-cycles resulting from a protograph cycle C
can be simply expressed through the parameters of the MCPMs
assigned to the edges of C.

Theorem 1 ([13]): Suppose a simple and minimal cycle C
of length ` on the protograph is represented by a matrix B in
its canonical form. Let B̃ be the QC Z-lifted representation of
B

B̃ =

P0 P1 0 . . . 0 0
0 P2 P3 . . . 0 0
0 0 P4 . . . 0 0 0
...

...
...

...
...

...

0 0 0
. . . P`−4 P`−3

P`−1 0 0 . . . 0 P`−2

 , (2)

where Pi is (Z, λ, ρi, di)-MCPM. The FRC condition for the
cycles induced by C in the lifted graph (each one of length
O(C) · `) is

O(C) ·
`−1∑
i=0

(−1)iρi 6= 0 mod (q − 1). (3)

Note, that Peng and Chen required that (q − 1) = Z · λ,
however their proof is still valid even in a more general case
of (q − 1)|Z · λ. The combinatorial and algebraic connections
between the cycles of the protograph and the cycles of the lifted-
graph, are a key to the efficient algorithms we present in the
next section.

III. NON-BINARY QC ACE CONSTRAINED CODE
CONSTRUCTION

In this section, we introduce a code construction algorithm.
The inputs to the algorithm are the degree profile of a
protograph Ĝ, a lifting order Z and a field size q. The
algorithm is also given two `-depth ACE spectrum constraints,
τ̂ (b) = (τ̂

(b)
2 , . . . , τ̂

(b)
`) and τ̂ (nb) = (τ̂

(nb)
2 , . . . , τ̂

(nb)
`), such

that τ̂ (nb) ≥ τ̂ (b). The output is G, a QC Z-lifting of Ĝ with
labels from GF (q) \ {0}, which is NB ACE constrained by
τ̂ (nb) and its binary mother matrix is ACE constrained by τ̂ (b),
if both spectrums are achievable. The algorithm consists of the
following steps:
Step 1: Construct a good protograph Ĝ by any protograph
selection method (e.g [9]).
Step 2: Construct a QC Z-lifted graph of Ĝ, that is τ̂ (b)-ACE
constrained, by carefully choosing for each edge of Ĝ the
cyclic shift of its Z copies (see Subsection III-A). This graph
is the binary mother matrix of the output G.

Step 3: Assign labels to the edges of the mother matrix, such
that the resultant NB labeled graph G is NB ACE constrained
by τ̂ (nb). This label assignment ensures that all the cycles in
G that violate τ̂ (nb) satisfy the FRC (see Subsection III-B).

Good achievable constraint vectors τ̂ (b), τ̂ (nb) and their depth
` may be found by the following heuristic search. Find initial
constraints τ̂ (b), τ̂ (nb) by first running the above algorithm with
no constraints, and retrieve the spectra of the resultant graph G.
Then, attempt to improve the spectra by increasing their depth `
or increasing their components and rerun the algorithm with the
amended spectrum. Repeat this procedure (amending the spectra
and rerunning the algorithm) until no further improvement is
achieved (i.e. the algorithm fails to find a graph that achieves
the constraints). Note that since it is not always possible to
determine which spectrum is better (see e.g. [9, Section IV]),
the designer is advised in these cases, to generate graphs for
each of these competing spectra and choose the best one by a
simulation. Furthermore, because of the random nature of the
algorithm, it is recommended to run the algorithm several times
for each set of good parameters, thereby generating different
instances of G satisfying the requirements. Here, again, the best
instance, may be chosen by a simulation.
A. Construction of the Binary Mother Matrix

We now describe an algorithm that finds a QC binary code
that satisfies certain ACE spectrum constraints. The inputs to
the algorithm are a protograph Ĝ, a lifting factor Z and an
ACE spectrum constraint vector τ̂ (b) =

(
τ̂
(b)
2 , τ̂

(b)
4 , .., τ̂

(b)
`

)
.

The algorithm searches for a QC Z-lifted code with Tanner
graph G which achieves τ̂ (b). G is defined by assigning a cyclic
shift de ∈ [Z] to each edge e of Ĝ.

We begin by a preliminary step in which we find all the
problematic cycles of Ĝ which violate τ̂ (b). Denote this set
of problematic cycles by S. The lifted versions of the other
cycles of Ĝ will satisfy the τ̂ (b) constraint for any choice of
shifts. Next, for each edge e of Ĝ we enumerate the problematic
cycles which include e. We arbitrarily choose initial assignments
of de for each edge e of Ĝ (it is recommended to draw these
assignments uniformly at random).

The generation of G is iterative. In each iteration, we scan
all the edges of Ĝ in an arbitrary order. For each edge e, we
choose a shift de ∈ [Z] that minimizes the number of cycles
in S which still violate the τ̂ (b) constraint. If by the end of
the iteration, all the lifted versions of the cycles in S satisfy
τ̂ (b), the algorithm outputs G, otherwise, another iteration may
be initiated. Note that there is no guarantee that the algorithm
finds G that achieves τ̂ (b) even if such G exists. If after a
predefined number of iterations G is not found, the designer
may consider choosing a different initial assignment of the shifts
de or changing the order in which the edges are visited, and
repeat the iterative part of the algorithm. Our experience shows
that usually when G exists, it is found after a small number of
iterations.

Our method differs from the algorithm of Asvadi et al. [11],

[16] in the following aspects. In [16, Algorithm 1], the cycles
in S are sequentially scanned and for each cycle, the shifts de
of the ”unshifted edges” are assigned whereas in our method,
the objects being treated are the edges. Furthermore, we allow
reassignment of de in case the ACE spectrum constraint was
not satisfied after the first iteration. Our experience indicates
that in many cases our proposed algorithm finds G faster than
[16, Algorithm 1]. Peng and Chen [13], suggested to find the
binary lifted graph G of cycle codes, having girth `. Note that
this is equivalent to having ACE spectrum constraints τ̂ (b) such
that τ̂ (b)i = ∞ for all i ≤ `. Such a spectrum can be achieved
only for relatively small `. As a result, longer cycles with low
ACE are ignored. Our results indicate that these cycles have an
impact on the code’s performance in the error-floor region.

B. Non-Binary ACE Constrained Label Assignment

We now describe the label assignment algorithm to the entries
of the binary mother matrix. The inputs to the algorithm are the
QC Z-lifted graph G (associated with the binary mother matrix)
expressed as the underlying protograph Ĝ and the selected shifts
of its edges. Additional inputs are the NB ACE constraint vector
τ̂ (nb) and the field size q. The output of the algorithm is an NB
QC code over GF (q) that satisfies τ̂ (nb).

The structure of the algorithm is very similar to the one
presented in the previous subsection, therefore we only highlight
here the differences between them. We begin by enumerating
the set S of problematic cycles in Ĝ. This time a cycle is
problematic if its Z-lift in G violates τ̂ (nb). For each edge
e in Ĝ we choose an initial label ρe (preferably at random).
We then run the iterative part of the algorithm from Subsection
III-A in which we assign labels ρe (instead of shifts). Note that,
in this case, a problematic cycle violates τ̂ (nb) if its labels do
not satisfy (3).

The algorithm we described can be seen as a generalization of
the method suggested by Peng and Chen [13] for construction
of NB QC lifted graphs of cycle codes. In their algorithm, all
cycles up to length ` are canceled, which is equivalent to using
our algorithm with τ̂ (nb) such that τ̂ (nb)i = ∞ for all i ≤ `.
Furthermore, we allow a more flexible choice of the lifting order
Z and the CPM parameter λ, by only requiring that (q−1)|Zλ
(Peng and Chen’s requirement is that Z|(q − 1) and λ = (q −
1)/Z).

IV. SIMULATION RESULTS

In this section, we compare the error correcting performance
of codes generated by the following techniques: PEG - PEG
generated mother binary matrix of an irregular code with
randomly selected labels [12]. REG - PEG generated mother
binary matrix of a regular cycle code (dv = 2, dc = 4) with
selective choice of NB labels using the FRC [8]. GIRTH - the
QC construction presented by Peng and Chen [13] modified to
produce irregular codes, where only the girth requirements are
taken into account. ACENB - our algorithm from Section III.
ACEB - our algorithm ACENB in which Step 3 is replaced by
random edge label assignment.

All the codes are simulated over a memoryless binary input
AWGN channel using the BPSK modulation and decoded by
the iterative NB belief-propagation (BP) algorithm. The maxi-
mum number of BP flooding iterations is fixed to 80. All the
generated codes are of rate 1/2, and their ensemble properties
are summarized in Table I. The degree distributions are selected
according to Hu et al. [12]. Note that λ(x) and γ(x) are degrees
profiles of the protograph and Z is the lifting order, resulting
in an ensemble of QC codes of the specified length in bits. For
each ensemble, we use a single protograph matrix (Step 1 in
Section III) throughout the various generation methods.

In Table II, the achieved ACE spectra are summarized. For
the codes, generated by ACENB and GIRTH, two spectra are
provided. The first one is the spectrum achieved by the binary
mother matrix (Step 2 in our code construction). The second
one is the NB ACE spectrum achieved by the edge labels
assignment (Step 3 in our code construction). For the codes
generated by ACEB, only one spectrum is provided, since the
random label assignment does not take into account any NB
ACE spectrum requirement. The achieved ACE spectrum of
the codes generated by GIRTH, depends only on the codes’
girth, while the NB ACE spectrum depends only on the canceled
cycles’ length. Note that the achievable ACE spectrum values
grow with the code length.

Field Length λ(x) γ(x) Z

[bits]
1 GF(16) 504 0.588x+0.176x2+0.235x3 0.118x3+0.882x4 9

2 GF(8) 1008 0.487x+0.22x2+0.292x3 0.853x4+0.146x5 21

3 GF(16) 1008 0.588x+0.176x2+0.235x3 0.118x3+0.882x4 18

4 GF(16) 1512 0.588x+0.176x2+0.235x3 0.118x3+0.882x4 27

TABLE I
ENSEMBLE PROPERTIES OF THE GENERATED CODES

GIRTH ACEB ACENB

1 τi =∞, i ≤ 6

τi =∞, i ≤ 8
(∞,∞,∞, 4) (∞,∞,∞, 4)

(∞,∞,∞,∞,∞, 4)

2 τi =∞, i ≤ 6

τi =∞, i ≤ 8
(∞,∞,∞, 5, 2) (∞,∞,∞, 6, 2)

(∞,∞,∞,∞, 6, 2)

3 τi =∞, i ≤ 8

τi =∞, i ≤ 10
(∞,∞,∞,∞, 3, 1) (∞,∞,∞,∞, 3, 1)

(∞,∞,∞,∞,∞, 6, 2)

4 τi =∞, i ≤ 8

τi =∞, i ≤ 10
(∞,∞,∞,∞, 4, 2) (∞,∞,∞,∞, 4, 2)

(∞,∞,∞,∞,∞, 9, 3)

TABLE II
ACE SPECTRA ACHIEVED BY EACH OF THE GENERATED CODES. FOR

COLUMNS ACEB AND ACENB, THE SPECTRUM’S FORMAT IS
(τ2, τ4, τ6, . . .).

In Figure 1, the block error rate (BLER) curves of codes from
ensembles #2 and #3 from Table I are depicted. As expected, the
regular code generated by REG is inferior to the other irregular
codes. Furthermore, even though the code generated by PEG
is not constrained by the QC requirement, its performance in

Fig. 1. Simulation of codes having length nb = 1008 and rate 1/2, constructed
by various methods over GF(8) and GF(16)

the high SNR region is worse than our QC codes. For each
ensemble, it is evident that the code generated by ACENB
outperforms the codes generated by the other methods in the
high SNR region. Since the codes generated by ACEB and
ACENB have the same binary mother matrix, the error curves
highlight the advantage of applying Step 3 in ACENB instead
of random label assignment. Also, with the increase of the field
size, we see an improvement in the high SNR region.

In Figure 2, the BLER curves of codes from ensembles #1
and #4 from Table I are depicted. We also give as a reference
the BLER curve of L20R32A, a QC code recently generated
by Chang et al. [14, Figure 10]. Note that, the performance of
the code generated by REG agrees with the results of Poulliat
et al. [8, Figure 4], which is simulated using 1000 as the
maximum number of BP iterations. To have a fair comparison
with the latter code, we use the same limitation on the number of
iterations for the codes from ensemble #4. The curves indicate
that codes generated by ACENB outperform the other codes
with similar lengths in the high SNR region. Furthermore,
the comparison of the curves corresponding to ACENB and
GIRTH indicates the advantage of ACE driven construction of
NB codes.

V. SUMMARY AND CONCLUSIONS

We presented an algorithm to design the Tanner graph of NB
QC LDPC codes using ACE constraints for both the generation
of the binary mother matrix and the selection of NB labels. Our
simulation results indicate that codes generated by this method
outperform codes generated by known methods, for different
small field sizes and code lengths.

Our method is composed of three separate steps. It is an
open question whether combining could be beneficial. This is
a matter for future research.

Fig. 2. Simulation of rate 1/2 codes having lengths around nb = 512 and
nb = 1504 over GF(16)

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” Information Theory, IRE
Transactions on, vol. 8, no. 1, pp. 21 –28, january 1962.

[2] M. Davey and D. MacKay, “Low-density parity check codes over GF(q),”
Communications Letters, IEEE, vol. 2, no. 6, pp. 165–167, 1998.

[3] M. Mansour and N. Shanbhag, “High-throughput LDPC decoders,” IEEE
Trans. on Very Large Scale Integration Systems, vol. 11, no. 6, pp. 976–
996, 2003.

[4] V. Novichkov, H. Jin, and T. Richardson, “Programmable vector processor
for irregular LDPC codes,” in 38th Annual Conf. on Info. Sciences and
Systems, March 2004.

[5] J. Thorpe, “Low-density parity-check (ldpc) codes constructed from
protographs,” IPN Progress Report, Tech. Rep. 42-154, 2003.

[6] L. Zeng, L. Lan, Y. Tai, S. Song, S. Lin, and K. Abdel-Ghaffar, “Con-
structions of nonbinary quasi-cyclic LDPC codes: A finite field approach,”
IEEE Trans. Commun., vol. 56, no. 4, pp. 545 –554, april 2008.

[7] T. Tian, C. Jones, J. Villasenor, and R. Wesel, “Selective avoidance of
cycles in irregular LDPC code construction,” IEEE Trans. Commun.,
vol. 52, no. 8, pp. 1242 – 1247, aug. 2004.

[8] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2,dc)-
LDPC codes over GF(q) using their binary images,” IEEE Trans. Com-
mun., vol. 56, no. 10, pp. 1626 –1635, october 2008.

[9] D. Vukobratovic and V. Senk, “Generalized ACE constrained progressive
edge-growth LDPC code design,” IEEE Commun. Lett., vol. 12, no. 1, pp.
32 –34, january 2008.

[10] E. Sharon and S. Litsyn, “Constructing LDPC codes by error minimization
progressive edge growth,” IEEE Trans. Commun., vol. 56, no. 3, pp. 359–
368, 2008.

[11] R. Asvadi, A. Banihashemi, and M. Ahmadian-Attari, “Design of finite-
length irregular protograph codes with low error floors over the binary-
input AWGN channel using cyclic liftings,” IEEE Trans. Commun.,
vol. 60, no. 4, pp. 902 –907, april 2012.

[12] X.-Y. Hu, E. Eleftheriou, and D. Arnold, “Regular and irregular progres-
sive edge-growth tanner graphs,” IEEE Trans. Inf. Theory, vol. 51, no. 1,
pp. 386 –398, jan. 2005.

[13] R.-H. Peng and R.-R. Chen, “Design of nonbinary quasi-cyclic LDPC
cycle codes,” in Information Theory Workshop, 2007. ITW ’07. IEEE,
sept. 2007, pp. 13 –18.

[14] B.-Y. Chang, D. Divsalar, and L. Dolecek, “Non-binary protograph-based
LDPC codes for short block-lengths,” in Information Theory Workshop
(ITW), 2012 IEEE, Sept., pp. 282–286.

[15] J. Huang, L. Liu, W. Zhou, and S. Zhou, “Large-girth nonbinary QC-

LDPC codes of various lengths,” IEEE Trans. Commun., vol. 58, no. 12,
pp. 3436–3447, Dec. 2010.

[16] R. Asvadi, A. Banihashemi, and M. Ahmadian-Attari, “Lowering the error
floor of LDPC codes using cyclic liftings,” IEEE Trans. Inf. Theory,
vol. 57, no. 4, pp. 2213 –2224, april 2011.

	I Introduction
	II Preliminaries
	II-A LDPC Codes
	II-B QC Lifted Codes
	II-C Cycles and ACE

	III Non-Binary QC ACE Constrained Code Construction
	III-A Construction of the Binary Mother Matrix
	III-B Non-Binary ACE Constrained Label Assignment

	IV Simulation Results
	V Summary and Conclusions
	References

