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Abstract

We propose a novel architecture to design a neural ass@ciagemory that is capable of learning a large number of patter
and recalling them later in presence of noise. It is basediwiding the neurons into local clusters and parallel plainsry
similar to the architecture of the visual cortex of macaquarh The common features of our proposed architecture thitse
of spatially-coupled codes enable us to show that the paence of such networks in eliminating noise is drasticadittdr than
the previous approaches while maintaining the ability aféng an exponentially large number of patterns. Preweoik either
failed in providing good performance during the recall ghas in offering large pattern retrieval (storage) capasitiWe also
present computational experiments that lend additionppat to the theoretical analysis.

I. INTRODUCTION

The ability of the brain to memorize large quantities of datal later recalling them from partially available informoat
is truly staggering. While relying on iterative operationfssimple (and sometimes faulty) neurons, our brain is ckpab
retrieving the correct "'memory” with high degrees of rellay even when the cues are limited or inaccurate.

Not surprisingly, designing artificial neural networks abfe of accomplishing this task, calladsociative memoryas been
a major point of interest in the neuroscience community @ past three decades. This problem, in its core, is veryaimi
to the reliable information transmission faced in commatian systems where the goal is to find mechanisms to efflgient
encode and decode a set of transmitted patterns over a rfeasynel. More interestingly, the novel techniques emplayed
design good codes are extremely similar to those used imgmiagi and analyzing neural networks. In both cases, graphic
models, iterative algorithms, and message passing playateoles.

Despite these similarities in the objectives and techrigue witness a huge gap in terms of the efficiency achieved by
them. More specifically, by using modern coding technigwes,are capable of reliably transmittilj™ binary vectors of
lengthn over a noisy channelD(< r < 1). This is achieved by intelligently introducing redundgranong the transmitted
messages, which is later used to recover the correct pdttemthe received noisy version. In contrast, until recgrattificial
neural associative memories were only capable of memari2ifn) binary patterns of length (see, [1], [2], [3], [4]).

Part of the reasons for this gap goes back to the assumptidrirhthe mainstream work on artificial associative memories
which requires the network to memoriaay set of randomly chosen binary patterns. While it gives thivaegk a certain
degree of versatility, it severely hinders the efficiency.

To achieve an exponential scaling in the storage capacitgofal networks Kumar et al.|[5] suggested a different viawp
in which the network is no longer required to memoraey set of random patterns but only those that have some common
structure namely, patterns all belong to a subspace with dimensienn. Karbasi et al.[[6] extended this model to "modular”
neural architectures and introduced a suitable onlinaniegralgorithm. They showed that the modular structure owps the
noise tolerance properties significantly.

In this work, we extend the model ofl[6] further by linking theodular structures to obtain a "coupled” neural architextu
Interestingly, this model looks very similar to some models processing visual signals in the macaque brain [7]. Vénth
make use of the recent developments in the analysis of 8pat@ipled codes by [8] and [9] to derive analytical bourmts
the performance of the proposed method. Finally, using lsitimns we show that the proposed method achieves muctr bette
performance measures compared to previous work in elimigatoise during the recall phase.

Il. RELATED WORK

Arguably, one of the most influential models for neural atgo® memories was introduced by Hopfield [1]. A "Hopfield
network” is a complete graph ef neurons that memorizes a subsetaridomlychosen binary patterns of length It is known
that the pattern retrieval capacity (i.e., maximum numkfememorized patterns) of Hopfield networksds= (n/21log(n))
[10].

There have been many attempts to increase the patterrvattc@pacity of such networks by introducing offline leamin
schemes (in contrast to online schemes) [2] or multi-stategans (instead of binary)|[4], all of which resulted in meining
at mostO(n) patterns.
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By dividing the neural architecture into smalldisjoint blocks, Venkatesh [11] increased the capacity@):céb"/b) (for
randompatterns), wheré = w(lnn) is the size of blocks. This is a huge improvement but comelseaptice of limitedworst-
casenoise tolerance capabilities. Specifically, due to the aeedapping nature of the clusters (blocks), the errorexdion
is limited by the performance of individual clusters as éer no inter-cluster communication. Witlverlappingclusters, one
could hope for achieving better error correction, whichhis teason we consider such structures in this paper.

More recently, a new perspective has been proposed withithefamemorizing only those patterns that posses some degree
of redundancy. In this framework, a tradeoff is being madsvben versatility (i.e., the capability of the network to rmarize
any set of random patterns) and the pattern retrieval cgpaioneering this frontier, Gripon and Berrau [12] propdsa
method based on neural clicks which increases the patteieva capacity potentially t&)(n?/ log(n)) with a low complexity
algorithm in the recall phase. The proposed approach isdb@senemorizing a set of patterns mapped from randomly chosen
binary vectors of lengtlt = O(log(n)) to then-dimensional space. Along the same lines, by consideritigne that lie in
a subspace of dimensidn< n, Kumar et al. were able to show an exponential scaling in #itéeem retrieval capacity, i.e.,

C = O(a™), with somea > 1. This model was later extended to modular patterns, i.esettin which patterns are divided
into sub-patterns where each sub-pattern come from a stb$pl The authors provided a simple iterative learningetgm
that demonstrates a better performance in the recall ptsaserapared to [5].

In this paper, we follow the same line of thought by linkingesel instances of the model proposed.inh [6] in roder to have a
"coupled” structure. More specifically, the proposed maddbased oroverlappinglocal clusters, arranged in parallel planes,
with neighboring neurons. At the same time, we enforce spaosinections between various clusters in different plahkee
aim is to memorize only those patterns for which local suttepas in the domain of each cluster show a certain degree of
redundancy. On the one hand, the obtained model looks sitilaeural modules in the visual cortex of the macaque brain
[7]. And on the other hand, it is similar to spatially-coupleodes on graphs|[9]. Specifically, our suggested modebiseb}
related to the spatially-coupled Generalized LDPC code¥BC) with Hard Decision Decoding (HDD) proposed in][13].
This similarity helps us borrow analytical tools develogedanalyzing such codes][8] and investigate the performaricour
proposed neural error correcting algorithm.

The proposed approach enjoys the simplicity of messagengasperations performed by neurons as compared to the more
complex iterative belief propagation decoding proceddrgpatially coupled code$|[9]. This simplicity may lead toiaferior
performance but already allows us to outperform the priooretesilient methods suggested for neural associative gries
in the literature.

IIl. PROBLEM SETTING AND NOTATIONS

In this paper, we work with non-binary neural networks, vehtire state of each neurons is a bounded non-negative integer
(which can be thought of as the short-term firing rate of nesiia a real neural network). Like other neural networks roes
could only perform simple operations, ileear summatiorandnon-linear thresholdingMore specifically, a neuron updates
its state based on the states of its neighHar$?_, as follows:

1) It computes the weighted sum= """, w;s;, wherew; denotes the weight of the input link from.

2) It updates its state as= f(h), wheref : R — S is a possibly non-linear function.

Let X denote a dataset @f patterns of lengtln where the patterns are integer-valued with entrieS ia {0,...,5—1}. A
natural way of interpreting this model is to consider theriestas the short-term firing rate efneuron. In this paper we are
interested in designing a neural network that is capableahaorizing these patterns in such a way that later, and iroressp
to noisy queries, the correct pattern will be returned. Tie #nd, we break the patterns into smaller pieces/subrpatand
learn the resulting sub-patterns separately (and in géralfurthermore, as our objective is to memorize thosespatthat
are highly correlated, we only consider a dataset in whih ghb-patterns belong to a subspace (or have negligiblermino
components).

More specifically, and to formalize the problem in a way whistsimilar to the literature on spatially coupled codes, we
divide each pattern intd. sub-patterns of the same size and refer to themplases Within each plane, we further divide the
patterns intaD overlappingclusters, i.e., an entry in a pattern can lie in the domain oftipie clusters. We also assume that
each element in planéis connected to at least one cluster in plafes(?,..., ¢+  (except at the boundaries). Therefore,
each entry in a pattern is connected2t@ + 1 planes, on average.

An alternative way of understanding the model is to consiki2idatasets, i.e., images. In this regard, each row of thgema
corresponds to a plane and clusters are the overlappinggtiee fields” which cover an area composed of neighboringlpi
in different rows (planes). This is in fact very similar tcetlionfiguration of the receptive fields in human visual coffief.
Our assumptions on strong correlations then translatesasguming strong linear dependencies within each reesfitid for
all patterns in the dataset.

Noise model: Throughout this paper, we consider an additive noise madete specifically, the noise is an integer-valued
vector of sizen and for simplicity we assume that its entries &rel,0,+1}, where a—1 (resp.+1) corresponds to a neuron
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Fig. 1: A coupled neural associative memory.

skipping a spike (resp. fire one more spike than expeBtatie noise probability is denoted by and each entry of the noise
vector is+1 or —1 with probability p, /2.

Pattern Retrieval Capacity: This is the maximum number of patterns that can be memorigedrietwork while still being
able to return reliable responses in the recall phase.

IV. LEARNING PHASE

To "memorize” the patterns, we learn a set of vectors thataatleogonal to the sub-patterns in each cluster, using the
algorithm proposed ir [6]. The output of the learning alfori is anmy 4 x ng 4 matrix W4 for clusterd in planef. The
rows of this matrix correspond to the dual vectors and th@rmak correspond to the corresponding entries in the pattern
Therefore, by letting«“9) denote the sub-pattern corresponding to the domain ofesldsof plane?, we have

wtd)  x(td) — o, 1)

These matrices (i.ely “-4) form the connectivity matrices of our neural graph, in whige can consider each cluster as
a bipartite graph composed phttern and constraintneurons. The left panel of Figuié 1 illustrates the modelviich the
circles and rectangles correspond to pattern and corstraimons, respectively. The details of the first plane argnifi@d in
the right panel of Figurgl1.

Clusterd in plane? containsm, 4 constraint neurons and is connectedniq; pattern neurons. The constraint neurons do
not have any overlaps (i.e. each one belongs only to oneecjushereas the pattern neurons can have connections tiplault
clusters and planes. To ensure good error correction défbive aim to keep the neural graph sparse (this model show
significant similarity to some neural architectures in thacaque brain]7]).

We also consider the overall connectivity graph of pléandenoted by (), in which the constraint nodes in each cluster
are compressed into orseiper nodeAny pattern node that is connected to a given cluster is ected with an (unweighted)
edge to the corresponding super node. Fidilire 2 illustraissgtaph for pland in Figure[1.

V. RECALL PHASE

The main goal of our architecture is to retrieve correct mened patterns in response to noisy queries. At this point,
the neural graph is learned (fixed) and we are looking for gknterative algorithm to eliminate noise from querieseTh

10ther noise models, such as real-valued noise, can be eoedichs well. However, the thresholding functign: R — S will eventually lead to
integer-valued "equivalent” noise in our system.

20ur algorithm can also deal with erasures. Note that an erasunodez; corresponds to an integer noise with the negative valug;0fSo once we
have established the performance of our algorithm for erteglued noise, it would be straightforward to extend tlgwrthm to erasure noise models.

Fig. 2: A connectivity graph with neural planes and superesodt corresponds to plarieof Fig.[d.



Algorithm 1 Error Correction Within Cluster [16]

Input: Connectivity matrixi (¢4 thresholdy, iterationt, .
Output: Correct memorized sub-pattexf’-®).
1: for t =1 — tax dO

2:  Forward iteration: Calculate the weighted input sum =37, Wg’d):zzy’d), for each neuroryy’d) and set:
1, h; <0
yfé,d) = 07 hz = 0
—1, otherwise
3:  Backward iteration:Each neuromy’d) computes
me, 6,d) (£,d
glbd i’ Wi(j it
’ S W)
4:  Update the state of each pattern neugoaccording to:af’d) = xf’d) + sgr(gj(.é’d)) only if |gj(-é’d)| > p.
5. end for
Algorithm 2 Error Correction of the Coupled Network
Input: Connectivity matrix (V43 V¢, ¥d), iterationt .
Output: Correct memorized pattepa= [z1, 22, . . ., Zp)]
1: for t =1 — tax dO
22 for{=1— L do
3 ford=1— D do
4 Apply Algorithm [T to clusterd of neural plane’.
5: Update the value of pattern node$:%) only if all the constraints in the clustered are satisfied.
6 end for
7:  end for
8: end for

proposed recall algorithm in this paper is the extensionhef @ane in [[6] to the coupled neural networks. For the sake of
completeness, we briefly discuss the details of the appreagfested in_[6] and explain the extension subsequently.

The recall method in_|6] is composed of two types of sepangterithms:local (or intra-cluster) angjlobal (or inter-cluster).
The local algorithm tries to correct errors within each tdudy the means of simple message-passings. It relies oatterp
neurons transmitting their state to the constraint neuasristhen on 2) constraint neurons checking if the consgairg met
(i.e. the values transmitted by the pattern nodes to thet@nsnodes should sum to zero). If not, the constraint oesisend
a message telling the direction of the violation (i.e. if ihput sum is less or greater than zero). The pattern neuhars t
updates their state according to the received feedback fhein neighboring constraint neurons on a majority votiragib.
The process is summarized in Algoritim 1.

The overall error correction properties of Algorittith 1 isrifalimited. In fact, it can be shown that in a given clustére
algorithm could correct a single input error (i.e only ondtg@a neurons deviating from its correct state) with praligb
1-— (J/m)dmin, whered andd,,;, are the average and minimum degree of the pattern nodes. i@ than one input error,
the algorithm can easily get stuck. To overcome this drakbidarbasi et al.[[6] proposed a sequential procedure byyampl
Algorithm [ in a Round Robbin fashion to each cluster. If thees were eliminated, the pattern nodes in the cluster keep
their new values, and revert back to their original statésemvise. This scheduling technique is in esprit similath® Peeling
Algorithm widely used in LDPC code$ [15]. Correcting theogrm the clusters with a single error can potentially help th
neighboring clusters.

Inspired by this boost in the performance, we can stretctether correction capabilities even further by couplingesaV
neural "planes” with many clusters together, as mentioratiez. We need to modify the global error correcting algori in
such a way that it first acts upon the clusters of a given plam&ach round before moving to the next plane. The whole psoces
is repeated few times until all errors are corrected or astholel on the number of iterations is reacheg.(). Algorithm[2
summarizes our approach.



VI. PERFORMANCEANALYSIS

We consider two variants of the above error correction dtgaor. In the first one, calledonstrainedcoupled neural error
correction, we provide the network with some side informtiluring the recall phase. This is equivalent to "freeziagéw
of the pattern neurons to known and correct states, sinulapatially-coupled codes][8],1[9]. In the case of neurabaisgive
memory, the side information can come from the context. Retaince, when trying to correct the error in the sentence "Th
cat flies”, we can use the side information (flying) to guess ¢berect answer among multiple choices. Without this side
information, we cannot tell if the correct answer corregftobat or ratf

In the other variant, callednconstrainedcoupled neural error correction, we perform the error aioe without providing
any side information. This is similar to many standard reakgjorithms in neural networks. In fact, the unconstraineatlel
can be thought of as a very large convolutional network simtib the model proposed inl[6]. Thus, the unconstrained inode
serves as a benchmark to evaluate the performance of theggdmoupled model in this paper.

Let z(Y(¢) denote theaverageprobability of error for pattern nodes across neural plarie iteration t. Thus, a super
constraint node in plané receives noisy messages from its neighbors with an avenageipility z(*):

Q
70 = ﬁ“ Z 2D st 20 =0, Vi¢g{1,...,L}.
j=—Q
Our goal is to derive a recursion faf?) (¢ + 1) in terms of 2()(¢) and 2()(¢). To this end, in the graphi’(® let A\
and py) be the fraction of edges (normalized by the total number gfesdn graphw(e)) connected to pattern and super
nodes with degreé and j, respectively. We define the degree distribution polyndsriia plane/ from anedge perspectivas
AO (@) =Y, A2 and pO () = ¥, p{V29 1,

Lemma 1. Let us defingg(z) =1 — p(1 — 2) — Zf;ll j—,% and f(z;p.) = peA(z), wheree is the number of errors
each cluster can correct. Then,

20 +1 s

Q
2 +1)=f ( ! > g(f(ei)(t));pe> : )
Proof: Without loss of generality, we prove the lemma for the case #ach cluster could correct at least two errors with

high probability, i.e.e = 2. Extending the proof te@ > 2 would be straightforward.

Let (9 (¢) denote theaverageprobability of error for pattern nodes across neural plarad in iterationt. Furthermore,
let 7()(¢) be theaverageprobability of asuper constraint noda plane/ sending an erroneous message to its neighbors. We
will derive recursive expressions faf®) (t) and w(“)(t).

A super constraint node in plarfereceives noisy messages from its neighbors with an avenadmpility of 29, where

1 Q
(0 _ (-5
~ 20+ 1 _Zz ~

Jj==f

with z() =0 for i < 0 andi > L.

Let WZ@ denote the the probability that a super constraint node deétjreei in planel sends an erroneous message to one
of its neighboring noisy pattern nodes. Then, knowing tlehesuper constraint node (cluster) is capable of corigetieast
e=2 errors,wie is equal to the probability of receiving two or more noisy seges fronother pattern neurons,

i—1 =2
a0 =1- (1 - z<f>) ~ (i~ 1)z® (1 - z<f>) .
Now, letting 7(¥) (¢) denote the average probability of sending erroneous nogesiper constraint nodes in plafieand in
iterationt, we will have
") = E{n}
= Z piﬂ'gl)
= 1-p(1=29() — 20 0)p (1 - 2 (1)),

wherep(z) = 3", p;z*~! is the super constraint node degree distribution polynbanid p’(z) = dp(z)/dz.
To simplify notations, let us define the functigz) = 1 — p(1 — 2z) — zp'(1 — 2) such that

rl(t) = 9(z19 (1))

3The same situation also happens in dealing with erasugesyhien trying to fill in the blank in the sentence "That flies”.



Now consider a given pattern neuron with degjde plane/. Let z](.e)(t + 1) denote the probability of sending an erroneous
message by this node in iteratior- 1. Then,zj(é)(tJr 1) is equal to the probability of this node being noisy in thetfpkace
(pe) and having all its super constraint nodes sending erraamssages in iteratian the average probability of which is

Q

1 .
(O(p) — (e-i)
"0 =5g7 2. ™0

i=—¢

Now, sincez(O(t +1) = ]E{z](.é)(t +1)}, we get
X0t+1) = pe Z Aj (7?(8))]
J

— pe)\(ﬁ-(l))
Q

ST O 9T

1=—

DeA(

Again to simplify the notation, let us define the functig(z;p.) = p.A(z). This way, we will have the recursion as:
<

Y
A +1)=f <291+1 > g(z(é_i)(t));pe> :
i=—Q

The decoding will be successful #%)(t 4 1) < 2()(t), V¢. As a result, we look for the maximum. such that

Q
f (rillz:s 9(2(81)(1?));])6) < 2 for 29 € [0, pe]-
Let p! and p? be the maximunp,.’s that admit successful decoding for the uncoupled and ledugystems, respectively.
To estimate these thresholds, we follow the approach rigcpnbposed in([8] and define a potential function to track the
evolution of Eq. [2). Letz = {z(M),... 210} denote the vector of average probabilities of error for grattneurons in
each plane. Furthermore, I&z;p.) : R* — R* andg(z) : R — R’ be two component-wise vector functions such that
[f(z;pe))i = f(zi;p.) and[g(2)]; = g(z:), where f(z;; p.) andg(z;) are defined in Lemmia 1. Using these definitions, we can
rewrite Eq. [2) in the vector form a5][8]:

2(t + 1) = ATH(Ag(z(t)); pe) 3
where A is the coupling matrixdefined &%
O
——— -
11 -1 0 00
) 0 - 0
A= 5977
00 -0 0 11
00 -0 1 11

At this point, the potential function of the unconstrainedipled system could be defined as [8]:
U(z;pe) = / g (u)(u— ATf(Ag(u)).du
c
= 9(2)'z- G(z) - F(A9(2); pe) 4)

4Matrix A corresponds to the unconstrained system. A similar masix lie defined for the constrained case.



whereg'(z) = diag([¢'(u;)]), G(2) = [, 9(u) - du and F'(z) = [ f(u) - du.

A similar quantity can be defined for the uncoupled (scalgstesn asU;(z;p.) = zg(z) — G(2) — F(g(2);p.) [8], where
z is the average probability of error in pattern neurons. Tdwas potential function is defined in the way that(z; p.) > 0
for p. < pi. In other words, it ensures thaft + 1) = f(g(z(t); p.) < z(t) (successful decoding) fgr. < p.

Furthermore, let us defingt = sup{p.| min(Us(z; p.) > 0}. Thus, in order to fing?, it is sufficient to find the maximum
pe such thatmin{Us(z; p.)} > 0 [8]. We will show that the constrained coupled system aasesuccessful error correction
for p. < p?. Intuitively, we expect to have! < p? (side information only helps), and as a result a better ecoorection
performance for the constrained system. Thedrém 2 and qariexental result will confirm this intuition later in the jper.

Let AE(p.) = min, U,(z;p.) be theenergy gapof the uncoupled system far, € (p!, 1] [8]. The next theorem borrows
the results of([8] and_[9] to show that the constrained cadiglestem achieves successful error correctiorpfok p;.

Theorer/’r) 2. In the constrained system, whep < p* the potential function decreases in each iteration. Funthere, if
Q> %, the only fixed point of Eq[3) .

Proof: The proof of the theorem relies on results frarm [9] to showt tha entries in the vecta(t) = [ (t), ..., 2(F)(¢)]
are non-decreasing, i.e.,
Z(l)(t) < 2(2)(15) <... < Z(L)@_

This can be shown using induction and the fact that the fansfi(-, p.) andg(-) are non-decreasing (see the proof of Lemma
22 in [Q] for more details).
Then, one can apply the result of Lemma 3in [8] to show thatpbiential function of the constrained coupled system
decreases in each iteration. Finally, when
Q> HUH(Z;pe)”OO/AE(pe)

one could apply Theorem 1 dfl[8] to show the convergence optisdability of errors to zero. ]
Note that Theorerhl2 provides a sufficient condition (@nfor the coupled system to ensure it achieves successfoit err

correction for every, uptop. = p:. However, the condition provided by Theoréin 2 usually resgfi to betoo large i.e. 2

is required to be as large 4800 to 10000, depending on the degree distributions. Neverthelesfi@mext section we show

that the analysis is still quite accurate for moderate \&hi?, i.e. Q2 ~ 2,3, meaning that a system with a small coupling

parameters could still achieve very good error correctiopractice.

VIl. PATTERN RETRIEVAL CAPACITY

The following theorem shows that the number of patterns ¢hatbe memorized by the proposed scheme is exponential in
n, the pattern size.

Theorem 3. Let X' be theC x n dataset matrix, formed b§ vectors of lengtm with entries from the sef. Let alsok = rn
for some0 < r < 1. Then, there exists a set of patterns for whitk= o™, with a > 1, and ranKX') = k < n.

Proof: The proof is based on construction: we construct a datatsetith the required properties such that it can be
memorized by the proposed neural network. To simplify theations, we assume all the clusters have the same number of
pattern and constraint neurons, denoteryand m.. In other wordsne g = n. andmyq = m. for all ¢ = {1,..., L} and
d=1{1,...,D}.

We start by considering a matri¥ € R¥*™, with non-negative integer-valued entries betwéeand~ — 1 for some~y > 2.

We also assumeé = rn, with 0 < r < 1.

To construct the database, we first divide the column&/dfto L sets, each corresponding to the neurons in one plain.
Furthermore, in order to ensure that all the sub-patternisinveach cluster form a subspace with dimension less than
we propose the following structure for the generator maf¥ixThis structure ensures that the rank of any sub-matrig of
composed ofi. columns is less than.. In the matrices below, the hatched blocks represent péariseomatrix with some
non-zero entries. To simplify visualization, let us firsfide the sub-matri>xG as the building blocks of::



n/(D- L)

k/(D-L)

Q>

Then, G is structured as

where each hatched block represents a random realizatiéh of

Now consider a random vectar € R* with integer-valued-entries betwe@nandv — 1, wherev > 2. We construct the
dataset by assigning the pattetre X to bex = u - G, if all the entries ok are betweer) and S — 1. Obviously, since both
u andG have only non-negative entries, all entriesximre non-negative. Therefore, it is tlse— 1 upper bound that we have
to worry about.

Let o; denote thej'" column of G. Then thej*" entry inx is equal tox; = u - g;. Supposep; hasd; non-zero elements.
Then, we have:

zj=u-0; <dj(y—1)(v—1)
Therefore, lettingl* = max; d;, we could choose/, v andd* such that
S—1>d"(y-1)(v—-1) (5)

to ensure all entries of are less tharb.
As a result, since there aré vectorsu with integer entries betweehandv — 1, we will havev® = v™ patterns forming
X. Which meang = v™, which would be an exponential numberqinif v > 2. [ |

VIII. SIMULATIONS

In this paper, we are mainly interested in the performandb®fecall phase and demonstrate a way, by the means oflspatia
coupling, to improve upon the previous art. To this end, wauase that the learning phase is done (by using our proposed
algorithm in [6]) and we have the weighted connectivity dgrejavailable. For the ease of presentation, we can simpijugmo
these matrices by generating sparse random bipartite gtamth assign random weights to the connections. Given thghtvei
matrices and the fact that they are orthogonal to the sulespat we can assume w.l.0o.g that in the recall phase we are
interested in recalling the all-zero pattern from its noigysion.

We treat the patterns in the database&simages of siz&4 x 64. More precisely, we have generated a random network
with 29 planes an@9 clusters within each plane (i.e,= D = 29). Each local cluster is composed &k 8 neurons and each
pattern neuron (pixel) is connectedZaonsecutive planes ariclusters within each plane (except at the boundaries). iShis
achieved by moving th& x 8 rectangular window over thD pattern horizontally and vertically. The degree distributof this
setting isA = {0.0011,0.0032,0.0043, 0.0722, 0,0.0054, 0, 0.0841, 0.0032, 0,0, 0.098, 0,0, 0,0.7284}, ps4+ = 1 andp; = 0 for
1<j<63.

We investigated the performance of the recall phase by rahdgenerating 2D noise pattern in which each entry is set
to +1 with probability p. /2 and0 with probability 1 — p.. We then apply Algorithni]2 with,,., = 10 to eliminate the noise.
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Fig. 3: The final pattern error probability for the constednand unconstrained coupled neural systems.

Once finished, we declare failure if the output of the aldnmnitX, is not equal to the pattem (assumed to be the all-zero

vector).
Figure[3 illustrates the final error rate of the proposed ritlgm, for the constrained and unconstrained system. Fer th
constrained system, we fixed the state of a patch of neurosze8 x 3 at the four corners of theD pattern. The results
are also compared to the similar algorithmslin [5] and [6]c@upled systems). Iri[5] (the dashed-dotted curve), theze a
no clustering while in[[B] the network is divided infs) overlapping clusters all lying on a single plane (the dottadve).
Although clustering improves the performance, it is stifierior than the coupled system with some side informatiba §olid
curve). Even though the same recipe (i.e., Alg. 1) is used! iapproaches, the differences in the architectures hasfaymd
effect on the performance. One also notes the sheer posffiwet of network size on the performance (the dotted vshelds
curves).
Table[l shows the thresholgd andp; for different values ok. From Figurd B we notice that ~ 0.39 andp! ~ .1 which
is close to the thresholds fer= 2 in Table[l. Note that according to Theorémh 2, a sufficient ¢or for these thresholds
to be exact is fof) to be very large. However, the comparison between Table IFagare[3 suggest, one could obtain rather

exact results even witk2 being rather small.

pl p:
c=1 10078 0.4

e=2 | 0.197 | 0.394
TABLE I: The thresholds for the uncoupledij and coupled’) systems.

Figure[4 illustrates how the potential function for uncapsystems behaves as a functiorr @nd for various values qf..
Note that forp. ~ pZ, the minimum value of potential reaches zero, Ng;(p;) = 0, and forp. > p; the potential becomes

negative for large values of.
IX. CONCLUSIONS

In this paper, we proposed a novel architecture for neursb@ative memories. The proposed model comprises a set of
neural planes with sparsely connected overlapping claskarrthermore, planes are sparsely connected togetheelas w

Given the similarity of the suggested framework to spatiatbupled codes, we employed recent developments in anglyz
these codes to investigate the performance of our proposedhinalgorithm. We also presented numerical simulatibras t
lend additional support to the theoretical analysis. Wevddrtwo thresholds on the maximum initial bit error probipithat
can be corrected by the proposed algorithm with probahilibge tol. Using simulations, we confirmed that there is a good

match between the thresholds derived theoretically ansetlobtained in practice.
Given that our main interest in this paper was the performasfcthe error correcting algorithm in the recall phase, we

did not address the learning phase here. However, we arentlyrin the middle of applying the learning method [in [6] to a
database of natural images to assess the performance afdalk algorithm in this real-world setup as well.
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Fig. 4: The scalar potential functidii; as function of average pattern neurons error probabiitgnd different initial symbol
error probabilitiesp.,.
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