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Abstract

We propose a novel architecture to design a neural associative memory that is capable of learning a large number of patterns
and recalling them later in presence of noise. It is based on dividing the neurons into local clusters and parallel plains, very
similar to the architecture of the visual cortex of macaque brain. The common features of our proposed architecture withthose
of spatially-coupled codes enable us to show that the performance of such networks in eliminating noise is drastically better than
the previous approaches while maintaining the ability of learning an exponentially large number of patterns. Previouswork either
failed in providing good performance during the recall phase or in offering large pattern retrieval (storage) capacities. We also
present computational experiments that lend additional support to the theoretical analysis.

I. I NTRODUCTION

The ability of the brain to memorize large quantities of dataand later recalling them from partially available information
is truly staggering. While relying on iterative operationsof simple (and sometimes faulty) neurons, our brain is capable of
retrieving the correct ”memory” with high degrees of reliability even when the cues are limited or inaccurate.

Not surprisingly, designing artificial neural networks capable of accomplishing this task, calledassociative memory, has been
a major point of interest in the neuroscience community for the past three decades. This problem, in its core, is very similar
to the reliable information transmission faced in communication systems where the goal is to find mechanisms to efficiently
encode and decode a set of transmitted patterns over a noisy channel. More interestingly, the novel techniques employedto
design good codes are extremely similar to those used in designing and analyzing neural networks. In both cases, graphical
models, iterative algorithms, and message passing play central roles.

Despite these similarities in the objectives and techniques, we witness a huge gap in terms of the efficiency achieved by
them. More specifically, by using modern coding techniques,we are capable of reliably transmitting2rn binary vectors of
lengthn over a noisy channel (0 < r < 1). This is achieved by intelligently introducing redundancy among the transmitted
messages, which is later used to recover the correct patternfrom the received noisy version. In contrast, until recently, artificial
neural associative memories were only capable of memorizing O(n) binary patterns of lengthn (see, [1], [2], [3], [4]).

Part of the reasons for this gap goes back to the assumption held in the mainstream work on artificial associative memories
which requires the network to memorizeany set of randomly chosen binary patterns. While it gives the network a certain
degree of versatility, it severely hinders the efficiency.

To achieve an exponential scaling in the storage capacity ofneural networks Kumar et al. [5] suggested a different viewpoint
in which the network is no longer required to memorizeany set of random patterns but only those that have some common
structure, namely, patterns all belong to a subspace with dimensionk < n. Karbasi et al. [6] extended this model to ”modular”
neural architectures and introduced a suitable online learning algorithm. They showed that the modular structure improves the
noise tolerance properties significantly.

In this work, we extend the model of [6] further by linking themodular structures to obtain a ”coupled” neural architecture.
Interestingly, this model looks very similar to some modelsfor processing visual signals in the macaque brain [7]. We then
make use of the recent developments in the analysis of spatially-coupled codes by [8] and [9] to derive analytical boundson
the performance of the proposed method. Finally, using simulations we show that the proposed method achieves much better
performance measures compared to previous work in eliminating noise during the recall phase.

II. RELATED WORK

Arguably, one of the most influential models for neural associative memories was introduced by Hopfield [1]. A ”Hopfield
network” is a complete graph ofn neurons that memorizes a subset ofrandomlychosen binary patterns of lengthn. It is known
that the pattern retrieval capacity (i.e., maximum number of memorized patterns) of Hopfield networks isC = (n/2 log(n))
[10].

There have been many attempts to increase the pattern retrieval capacity of such networks by introducing offline learning
schemes (in contrast to online schemes) [2] or multi-state neurons (instead of binary) [4], all of which resulted in memorizing
at mostO(n) patterns.
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By dividing the neural architecture into smallerdisjoint blocks, Venkatesh [11] increased the capacity toΘ
(
bn/b

)
(for

randompatterns), whereb = ω(lnn) is the size of blocks. This is a huge improvement but comes at the price of limitedworst-
casenoise tolerance capabilities. Specifically, due to the non-overlapping nature of the clusters (blocks), the error correction
is limited by the performance of individual clusters as there is no inter-cluster communication. Withoverlappingclusters, one
could hope for achieving better error correction, which is the reason we consider such structures in this paper.

More recently, a new perspective has been proposed with the aim of memorizing only those patterns that posses some degree
of redundancy. In this framework, a tradeoff is being made between versatility (i.e., the capability of the network to memorize
any set of random patterns) and the pattern retrieval capacity. Pioneering this frontier, Gripon and Berrou [12] proposed a
method based on neural clicks which increases the pattern retrieval capacity potentially toO(n2/ log(n)) with a low complexity
algorithm in the recall phase. The proposed approach is based on memorizing a set of patterns mapped from randomly chosen
binary vectors of lengthk = O(log(n)) to then-dimensional space. Along the same lines, by considering patterns that lie in
a subspace of dimensionk < n, Kumar et al. were able to show an exponential scaling in the pattern retrieval capacity, i.e.,
C = O(an), with somea > 1. This model was later extended to modular patterns, i.e., those in which patterns are divided
into sub-patterns where each sub-pattern come from a subspace [6]. The authors provided a simple iterative learning algorithm
that demonstrates a better performance in the recall phase as compared to [5].

In this paper, we follow the same line of thought by linking several instances of the model proposed in [6] in roder to have a
”coupled” structure. More specifically, the proposed modelis based onoverlappinglocal clusters, arranged in parallel planes,
with neighboring neurons. At the same time, we enforce sparse connections between various clusters in different planes. The
aim is to memorize only those patterns for which local sub-patterns in the domain of each cluster show a certain degree of
redundancy. On the one hand, the obtained model looks similar to neural modules in the visual cortex of the macaque brain
[7]. And on the other hand, it is similar to spatially-coupled codes on graphs [9]. Specifically, our suggested model is closely
related to the spatially-coupled Generalized LDPC code (GLDPC) with Hard Decision Decoding (HDD) proposed in [13].
This similarity helps us borrow analytical tools developedfor analyzing such codes [8] and investigate the performance of our
proposed neural error correcting algorithm.

The proposed approach enjoys the simplicity of message passing operations performed by neurons as compared to the more
complex iterative belief propagation decoding procedure of spatially coupled codes [9]. This simplicity may lead to aninferior
performance but already allows us to outperform the prior error resilient methods suggested for neural associative memories
in the literature.

III. PROBLEM SETTING AND NOTATIONS

In this paper, we work with non-binary neural networks, where the state of each neurons is a bounded non-negative integer
(which can be thought of as the short-term firing rate of neurons in a real neural network). Like other neural networks, neurons
could only perform simple operations, i.e.linear summationandnon-linear thresholding. More specifically, a neuronx updates
its state based on the states of its neighbors{si}

n
i=1 as follows:

1) It computes the weighted sumh =
∑n

i=1 wisi, wherewi denotes the weight of the input link fromsi.
2) It updates its state asx = f(h), wheref : R → S is a possibly non-linear function.

Let X denote a dataset ofC patterns of lengthn where the patterns are integer-valued with entries inS = {0, . . . , S−1}. A
natural way of interpreting this model is to consider the entries as the short-term firing rate ofn neuron. In this paper we are
interested in designing a neural network that is capable of memorizing these patterns in such a way that later, and in response
to noisy queries, the correct pattern will be returned. To this end, we break the patterns into smaller pieces/sub-patterns and
learn the resulting sub-patterns separately (and in parallel). Furthermore, as our objective is to memorize those patterns that
are highly correlated, we only consider a dataset in which the sub-patterns belong to a subspace (or have negligible minor
components).

More specifically, and to formalize the problem in a way whichis similar to the literature on spatially coupled codes, we
divide each pattern intoL sub-patterns of the same size and refer to them asplanes. Within each plane, we further divide the
patterns intoD overlappingclusters, i.e., an entry in a pattern can lie in the domain of multiple clusters. We also assume that
each element in planeℓ is connected to at least one cluster in planesℓ− Ω, . . . , ℓ+ Ω (except at the boundaries). Therefore,
each entry in a pattern is connected to2Ω + 1 planes, on average.

An alternative way of understanding the model is to consider2D datasets, i.e., images. In this regard, each row of the image
corresponds to a plane and clusters are the overlapping ”receptive fields” which cover an area composed of neighboring pixels
in different rows (planes). This is in fact very similar to the configuration of the receptive fields in human visual cortex[14].
Our assumptions on strong correlations then translates into assuming strong linear dependencies within each receptive field for
all patterns in the dataset.

Noise model: Throughout this paper, we consider an additive noise model.More specifically, the noise is an integer-valued
vector of sizen and for simplicity we assume that its entries are{−1, 0,+1}, where a−1 (resp.+1) corresponds to a neuron



L1

L2

L3

W (1,1) W (1,2) W (1,3)

Constraint neurons

Pattern neurons

Fig. 1: A coupled neural associative memory.

skipping a spike (resp. fire one more spike than expected).1 The noise probability is denoted bype and each entry of the noise
vector is+1 or −1 with probability pe/2. 2

Pattern Retrieval Capacity: This is the maximum number of patterns that can be memorized by a network while still being
able to return reliable responses in the recall phase.

IV. L EARNING PHASE

To ”memorize” the patterns, we learn a set of vectors that areorthogonal to the sub-patterns in each cluster, using the
algorithm proposed in [6]. The output of the learning algorithm is anmℓ,d × nℓ,d matrix W (ℓ,d) for clusterd in planeℓ. The
rows of this matrix correspond to the dual vectors and the columns correspond to the corresponding entries in the patterns.
Therefore, by lettingx(ℓ,d) denote the sub-pattern corresponding to the domain of cluster d of planeℓ, we have

W (ℓ,d) · x(ℓ,d) = 0. (1)

These matrices (i.e.,W (ℓ,d)) form the connectivity matrices of our neural graph, in which we can consider each cluster as
a bipartite graph composed ofpattern and constraintneurons. The left panel of Figure 1 illustrates the model, inwhich the
circles and rectangles correspond to pattern and constraint neurons, respectively. The details of the first plane are magnified in
the right panel of Figure 1.

Clusterd in planeℓ containsmℓ,d constraint neurons and is connected tonℓ,d pattern neurons. The constraint neurons do
not have any overlaps (i.e. each one belongs only to one cluster) whereas the pattern neurons can have connections to multiple
clusters and planes. To ensure good error correction capabilities we aim to keep the neural graph sparse (this model shows
significant similarity to some neural architectures in the macaque brain [7]).

We also consider the overall connectivity graph of planeℓ, denoted bỹW (ℓ), in which the constraint nodes in each cluster
are compressed into onesuper node. Any pattern node that is connected to a given cluster is connected with an (unweighted)
edge to the corresponding super node. Figure 2 illustrates this graph for plane1 in Figure 1.

V. RECALL PHASE

The main goal of our architecture is to retrieve correct memorized patterns in response to noisy queries. At this point,
the neural graph is learned (fixed) and we are looking for a simple iterative algorithm to eliminate noise from queries. The

1Other noise models, such as real-valued noise, can be considered as well. However, the thresholding functionf : R → S will eventually lead to
integer-valued ”equivalent” noise in our system.

2Our algorithm can also deal with erasures. Note that an erasure at nodexi corresponds to an integer noise with the negative value ofxi. So once we
have established the performance of our algorithm for integer-valued noise, it would be straightforward to extend the algorithm to erasure noise models.

Fig. 2: A connectivity graph with neural planes and super nodes. It corresponds to plane1 of Fig. 1.



Algorithm 1 Error Correction Within Cluster [16]

Input: Connectivity matrixW (ℓ,d), thresholdϕ, iterationtmax.
Output: Correct memorized sub-patternx(ℓ,d).

1: for t = 1 → tmax do
2: Forward iteration: Calculate the weighted input sumhi =

∑n
j=1 W

(ℓ,d)
ij x

(ℓ,d)
j , for each neurony(ℓ,d)i and set:

y
(ℓ,d)
i =





1, hi < 0
0, hi = 0
−1, otherwise

3: Backward iteration:Each neuronx(ℓ,d)
j computes

g
(ℓ,d)
j =

∑mℓ,d

i=1 W
(ℓ,d)
ij y

(ℓ,d)
i∑mℓ,d

i=1 |W
(ℓ,d)
ij |

.

4: Update the state of each pattern neuronj according tox(ℓ,d)
j = x

(ℓ,d)
j + sgn(g(ℓ,d)j ) only if |g(ℓ,d)j | > ϕ.

5: end for

Algorithm 2 Error Correction of the Coupled Network

Input: Connectivity matrix (W (ℓ,d), ∀ℓ, ∀d), iterationtmax

Output: Correct memorized patternx = [x1, x2, . . . , xn]
1: for t = 1 → tmax do
2: for ℓ = 1 → L do
3: for d = 1 → D do
4: Apply Algorithm 1 to clusterd of neural planeℓ.
5: Update the value of pattern nodesx(ℓ,d) only if all the constraints in the clustered are satisfied.
6: end for
7: end for
8: end for

proposed recall algorithm in this paper is the extension of the one in [6] to the coupled neural networks. For the sake of
completeness, we briefly discuss the details of the approachsuggested in [6] and explain the extension subsequently.

The recall method in [6] is composed of two types of separate algorithms:local (or intra-cluster) andglobal (or inter-cluster).
The local algorithm tries to correct errors within each cluster by the means of simple message-passings. It relies on 1) pattern
neurons transmitting their state to the constraint neuronsand then on 2) constraint neurons checking if the constraints are met
(i.e. the values transmitted by the pattern nodes to the constraint nodes should sum to zero). If not, the constraint neurons send
a message telling the direction of the violation (i.e. if theinput sum is less or greater than zero). The pattern neurons then
updates their state according to the received feedback fromtheir neighboring constraint neurons on a majority voting basis.
The process is summarized in Algorithm 1.

The overall error correction properties of Algorithm 1 is fairly limited. In fact, it can be shown that in a given cluster,the
algorithm could correct a single input error (i.e only one pattern neurons deviating from its correct state) with probability
1 − (d̄/m)dmin, whered̄ anddmin are the average and minimum degree of the pattern nodes. For more than one input error,
the algorithm can easily get stuck. To overcome this drawback, Karbasi et al. [6] proposed a sequential procedure by applying
Algorithm 1 in a Round Robbin fashion to each cluster. If the errors were eliminated, the pattern nodes in the cluster keep
their new values, and revert back to their original states, otherwise. This scheduling technique is in esprit similar tothe Peeling
Algorithm widely used in LDPC codes [15]. Correcting the error in the clusters with a single error can potentially help the
neighboring clusters.

Inspired by this boost in the performance, we can stretch theerror correction capabilities even further by coupling several
neural ”planes” with many clusters together, as mentioned earlier. We need to modify the global error correcting algorithm in
such a way that it first acts upon the clusters of a given plane in each round before moving to the next plane. The whole process
is repeated few times until all errors are corrected or a threshold on the number of iterations is reached (tmax). Algorithm 2
summarizes our approach.



VI. PERFORMANCEANALYSIS

We consider two variants of the above error correction algorithm. In the first one, calledconstrainedcoupled neural error
correction, we provide the network with some side information during the recall phase. This is equivalent to ”freezing”a few
of the pattern neurons to known and correct states, similar to spatially-coupled codes [8], [9]. In the case of neural associative
memory, the side information can come from the context. For instance, when trying to correct the error in the sentence ”The
cat flies”, we can use the side information (flying) to guess thecorrect answer among multiple choices. Without this side
information, we cannot tell if the correct answer corresponds tobat or rat.3

In the other variant, calledunconstrainedcoupled neural error correction, we perform the error correction without providing
any side information. This is similar to many standard recall algorithms in neural networks. In fact, the unconstrainedmodel
can be thought of as a very large convolutional network similar to the model proposed in [6]. Thus, the unconstrained model
serves as a benchmark to evaluate the performance of the proposed coupled model in this paper.

Let z(ℓ)(t) denote theaverageprobability of error for pattern nodes across neural planeℓ in iteration t. Thus, a super
constraint node in planeℓ receives noisy messages from its neighbors with an average probability z̄(ℓ):

z̄(ℓ) =
1

2Ω + 1

Ω∑

j=−Ω

z(ℓ−j) s.t. z(l) = 0, ∀l /∈ {1, . . . , L}.

Our goal is to derive a recursion forz(ℓ)(t + 1) in terms ofz(ℓ)(t) and z̄(ℓ)(t). To this end, in the graph̃W (ℓ) let λ(ℓ)
i

and ρ
(ℓ)
j be the fraction of edges (normalized by the total number of edges in graph̃W (ℓ)) connected to pattern and super

nodes with degreei andj, respectively. We define the degree distribution polynomials in planeℓ from anedge perspectiveas
λ(ℓ)(x) =

∑
i λ

(ℓ)
i xi andρ(ℓ)(x) =

∑
j ρ

(ℓ)
i xj−1.

Lemma 1. Let us defineg(z) = 1 − ρ(1 − z) −
∑e−1

i=1
zi

i!
diρ(1−z)

dzi and f(z; pe) = peλ(z), wheree is the number of errors
each cluster can correct. Then,

z(ℓ)(t+ 1) = f

(
1

2Ω + 1

Ω∑

i=−Ω

g(z̄(ℓ−i)(t)); pe

)
. (2)

Proof: Without loss of generality, we prove the lemma for the case that each cluster could correct at least two errors with
high probability, i.e.e = 2. Extending the proof toe > 2 would be straightforward.

Let z(ℓ)(t) denote theaverageprobability of error for pattern nodes across neural planeℓ and in iterationt. Furthermore,
let π(ℓ)(t) be theaverageprobability of asuper constraint nodein planeℓ sending an erroneous message to its neighbors. We
will derive recursive expressions forz(ℓ)(t) andπ(ℓ)(t).

A super constraint node in planeℓ receives noisy messages from its neighbors with an average probability of z̄(ℓ), where

z̄(ℓ) =
1

2Ω + 1

Ω∑

j=−Ω

z(ℓ−j)

with z(i) = 0 for i ≤ 0 and i > L.
Let π(ℓ)

i denote the the probability that a super constraint node withdegreei in planeℓ sends an erroneous message to one
of its neighboring noisy pattern nodes. Then, knowing that each super constraint node (cluster) is capable of correcting at least
e = 2 errors,π(ℓ)

i is equal to the probability of receiving two or more noisy messages fromother pattern neurons,

π
(ℓ)
i = 1−

(
1− z̄(ℓ)

)i−1

− (i − 1)z̄(ℓ)
(
1− z̄(ℓ)

)i−2

.

Now, letting π(ℓ)(t) denote the average probability of sending erroneous nodes by super constraint nodes in planeℓ and in
iteration t, we will have

π(ℓ)(t) = E{π
(ℓ)
i }

=
∑

i

ρiπ
(ℓ)
i

= 1− ρ(1− z̄(ℓ)(t)) − z̄(ℓ)(t)ρ′(1 − z̄(ℓ)(t)),

whereρ(z) =
∑

i ρiz
i−1 is the super constraint node degree distribution polynomial and ρ′(z) = dρ(z)/dz.

To simplify notations, let us define the functiong(z) = 1− ρ(1− z)− zρ′(1− z) such that

π(ℓ)(t) = g(z̄(ℓ)(t)).

3The same situation also happens in dealing with erasures, i.e. when trying to fill in the blank in the sentence ”Theat flies”.



Now consider a given pattern neuron with degreej in planeℓ. Let z(ℓ)j (t+ 1) denote the probability of sending an erroneous

message by this node in iterationt+1. Then,z(ℓ)j (t+ 1) is equal to the probability of this node being noisy in the first place
(pe) and having all its super constraint nodes sending erroneous messages in iterationt, the average probability of which is

π̄(ℓ)(t) =
1

2Ω + 1

Ω∑

i=−Ω

π(ℓ−i)(t).

Now, sincez(ℓ)(t+ 1) = E{z
(ℓ)
j (t+ 1)}, we get

z(ℓ)(t+ 1) = pe
∑

j

λj

(
π̄(ℓ)

)j

= peλ(π̄
(ℓ))

= peλ(
1

2Ω + 1

Ω∑

i=−Ω

g(z̄(ℓ−i)(t)))

Again to simplify the notation, let us define the functionf(z; pe) = peλ(z). This way, we will have the recursion as:

z(ℓ)(t+ 1) = f

(
1

2Ω + 1

Ω∑

i=−Ω

g(z̄(ℓ−i)(t)); pe

)
.

The decoding will be successful ifz(ℓ)(t+ 1) < z(ℓ)(t), ∀ℓ. As a result, we look for the maximumpe such that

f

(
1

2Ω + 1

Ω∑

i=−Ω

g(z̄(ℓ−i)(t)); pe

)
< z(ℓ) for z(ℓ) ∈ [0, pe].

Let p†e and p∗e be the maximumpe’s that admit successful decoding for the uncoupled and coupled systems, respectively.
To estimate these thresholds, we follow the approach recently proposed in [8] and define a potential function to track the
evolution of Eq. (2). Letz = {z(1), . . . , z(L)} denote the vector of average probabilities of error for pattern neurons in
each plane. Furthermore, letf(z; pe) : RL → R

L and g(z) : RL → R
L be two component-wise vector functions such that

[f(z; pe)]i = f(zi; pe) and [g(z)]i = g(zi), wheref(zi; pe) andg(zi) are defined in Lemma 1. Using these definitions, we can
rewrite Eq. (2) in the vector form as [8]:

z(t+ 1) = A⊤f(Ag(z(t)); pe) (3)

whereA is thecoupling matrixdefined as4:

 Ω

A = 1
2Ω+1







1 1 . . . 1 0 0 0 . . . 0 0

1 1 . . . 1 1 0 0 . . . 0 0
...

0 0 . . . 0 0 1 1 . . . 1 1

0 0 . . . 0 0 0 1 . . . 1 1

At this point, the potential function of the unconstrained coupled system could be defined as [8]:

U(z; pe) =

∫

C

g′(u)(u −A⊤f(Ag(u)).du

= g(z)⊤z −G(z)− F (Ag(z); pe) (4)

4Matrix A corresponds to the unconstrained system. A similar matrix can be defined for the constrained case.



whereg′(z) = diag([g′(ui)]), G(z) =
∫
C g(u) · du andF (z) =

∫
C f(u) · du.

A similar quantity can be defined for the uncoupled (scalar) system asUs(z; pe) = zg(z)−G(z)− F (g(z); pe) [8], where
z is the average probability of error in pattern neurons. The scalar potential function is defined in the way thatU ′

s(z; pe) > 0
for pe ≤ p†e. In other words, it ensures thatz(t+ 1) = f(g(z(t); pe) < z(t) (successful decoding) forpe ≤ p†e.

Furthermore, let us definep∗e = sup{pe|min(Us(z; pe) ≥ 0}. Thus, in order to findp∗e, it is sufficient to find the maximum
pe such thatmin{Us(z; pe)} > 0 [8]. We will show that the constrained coupled system achieves successful error correction
for pe < p∗e. Intuitively, we expect to havep†e ≤ p∗e (side information only helps), and as a result a better errorcorrection
performance for the constrained system. Theorem 2 and our experimental result will confirm this intuition later in the paper.

Let ∆E(pe) = minz Us(z; pe) be theenergy gapof the uncoupled system forpe ∈ (p†e, 1] [8]. The next theorem borrows
the results of [8] and [9] to show that the constrained coupled system achieves successful error correction forpe < p∗e.

Theorem 2. In the constrained system, whenpe < p∗e the potential function decreases in each iteration. Furthermore, if
Ω > ‖U ′′(z;pe)‖∞

∆E(pe)
, the only fixed point of Eq. (3) is0.

Proof: The proof of the theorem relies on results from [9] to show that the entries in the vectorz(t) = [z(1)(t), . . . , z(L)(t)]
are non-decreasing, i.e.,

z(1)(t) ≤ z(2)(t) ≤ · · · ≤ z(L)(t).

This can be shown using induction and the fact that the functionsf(·, pe) andg(·) are non-decreasing (see the proof of Lemma
22 in [9] for more details).

Then, one can apply the result of Lemma 3 in [8] to show that thepotential function of the constrained coupled system
decreases in each iteration. Finally, when

Ω > ‖U ′′(z; pe)‖∞/∆E(pe)

one could apply Theorem 1 of [8] to show the convergence of theprobability of errors to zero.
Note that Theorem 2 provides a sufficient condition (onΩ) for the coupled system to ensure it achieves successful error

correction for everype uptope = p∗e. However, the condition provided by Theorem 2 usually requiresΩ to betoo large, i.e.Ω
is required to be as large as1000 to 10000, depending on the degree distributions. Nevertheless, in the next section we show
that the analysis is still quite accurate for moderate values of Ω, i.e. Ω ≃ 2, 3, meaning that a system with a small coupling
parameters could still achieve very good error correction in practice.

VII. PATTERN RETRIEVAL CAPACITY

The following theorem shows that the number of patterns thatcan be memorized by the proposed scheme is exponential in
n, the pattern size.

Theorem 3. Let X be theC ×n dataset matrix, formed byC vectors of lengthn with entries from the setS. Let alsok = rn
for some0 < r < 1. Then, there exists a set of patterns for whichC = arn, with a > 1, and rank(X ) = k < n.

Proof: The proof is based on construction: we construct a data setX with the required properties such that it can be
memorized by the proposed neural network. To simplify the notations, we assume all the clusters have the same number of
pattern and constraint neurons, denote byñc and m̃c. In other words,nℓ,d = ñc andmℓ,d = m̃c for all ℓ = {1, . . . , L} and
d = {1, . . . , D}.

We start by considering a matrixG ∈ R
k×n, with non-negative integer-valued entries between0 andγ− 1 for someγ ≥ 2.

We also assumek = rn, with 0 < r < 1.
To construct the database, we first divide the columns ofG into L sets, each corresponding to the neurons in one plain.

Furthermore, in order to ensure that all the sub-patterns within each cluster form a subspace with dimension less thanñc,
we propose the following structure for the generator matrixG. This structure ensures that the rank of any sub-matrix ofG
composed of̃nc columns is less thañnc. In the matrices below, the hatched blocks represent parts of the matrix with some
non-zero entries. To simplify visualization, let us first define the sub-matrixĜ as the building blocks ofG:



Ĝ =







n/(D · L)

k/(D · L)





Then,G is structured as

G =







where each hatched block represents a random realization ofĜ.
Now consider a random vectoru ∈ R

k with integer-valued-entries between0 andυ − 1, whereυ ≥ 2. We construct the
dataset by assigning the patternx ∈ X to bex = u ·G, if all the entries ofx are between0 andS − 1. Obviously, since both
u andG have only non-negative entries, all entries inx are non-negative. Therefore, it is theS − 1 upper bound that we have
to worry about.

Let ̺j denote thejth column ofG. Then thejth entry in x is equal toxj = u · ̺j . Suppose̺ j hasdj non-zero elements.
Then, we have:

xj = u · ̺j ≤ dj(γ − 1)(υ − 1)

Therefore, lettingd∗ = maxj dj , we could chooseγ, υ andd∗ such that

S − 1 ≥ d∗(γ − 1)(υ − 1) (5)

to ensure all entries ofx are less thanS.
As a result, since there areυk vectorsu with integer entries between0 andυ− 1, we will haveυk = υrn patterns forming

X . Which meansC = υrn, which would be an exponential number inn if υ ≥ 2.

VIII. S IMULATIONS

In this paper, we are mainly interested in the performance ofthe recall phase and demonstrate a way, by the means of spatial
coupling, to improve upon the previous art. To this end, we assume that the learning phase is done (by using our proposed
algorithm in [6]) and we have the weighted connectivity graphs available. For the ease of presentation, we can simply produce
these matrices by generating sparse random bipartite graphs and assign random weights to the connections. Given the weight
matrices and the fact that they are orthogonal to the sub-patterns, we can assume w.l.o.g that in the recall phase we are
interested in recalling the all-zero pattern from its noisyversion.

We treat the patterns in the database as2D images of size64× 64. More precisely, we have generated a random network
with 29 planes and29 clusters within each plane (i.e.,L = D = 29). Each local cluster is composed of8×8 neurons and each
pattern neuron (pixel) is connected to2 consecutive planes and2 clusters within each plane (except at the boundaries). Thisis
achieved by moving the8×8 rectangular window over the2D pattern horizontally and vertically. The degree distribution of this
setting isλ = {0.0011, 0.0032, 0.0043, 0.0722, 0, 0.0054, 0, 0.0841, 0.0032, 0, 0, 0.098, 0, 0, 0, 0.7284}, ρ64 = 1 andρj = 0 for
1 ≤ j ≤ 63.

We investigated the performance of the recall phase by randomly generating a2D noise pattern in which each entry is set
to ±1 with probabilitype/2 and0 with probability1− pe. We then apply Algorithm 2 withtmax = 10 to eliminate the noise.
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Fig. 3: The final pattern error probability for the constrained and unconstrained coupled neural systems.

Once finished, we declare failure if the output of the algorithm, x̂, is not equal to the patternx (assumed to be the all-zero
vector).

Figure 3 illustrates the final error rate of the proposed algorithm, for the constrained and unconstrained system. For the
constrained system, we fixed the state of a patch of neurons ofsize3 × 3 at the four corners of the2D pattern. The results
are also compared to the similar algorithms in [5] and [6] (uncoupled systems). In [5] (the dashed-dotted curve), there are
no clustering while in [6] the network is divided into50 overlapping clusters all lying on a single plane (the dottedcurve).
Although clustering improves the performance, it is still inferior than the coupled system with some side information (the solid
curve). Even though the same recipe (i.e., Alg. 1) is used in all approaches, the differences in the architectures has a profound
effect on the performance. One also notes the sheer positiveeffect of network size on the performance (the dotted vs. dashed
curves).

Table I shows the thresholdsp†e andp∗e for different values ofe. From Figure 3 we notice thatp∗e ≃ 0.39 andp†e ≃ .1 which
is close to the thresholds fore = 2 in Table I. Note that according to Theorem 2, a sufficient condition for these thresholds
to be exact is forΩ to be very large. However, the comparison between Table I andFigure 3 suggest, one could obtain rather
exact results even withΩ being rather small.

p
†
e p∗e

e = 1 0.078 0.114

e = 2 0.197 0.394

TABLE I: The thresholds for the uncoupled (p†e) and coupled (p∗e) systems.

Figure 4 illustrates how the potential function for uncoupled systems behaves as a function ofz and for various values ofpe.
Note that forpe ≃ p∗e, the minimum value of potential reaches zero, i.e.∆E(p

∗
e) = 0, and forpe > p∗e the potential becomes

negative for large values ofz.

IX. CONCLUSIONS

In this paper, we proposed a novel architecture for neural associative memories. The proposed model comprises a set of
neural planes with sparsely connected overlapping clusters. Furthermore, planes are sparsely connected together as well.

Given the similarity of the suggested framework to spatially-coupled codes, we employed recent developments in analyzing
these codes to investigate the performance of our proposed neural algorithm. We also presented numerical simulations that
lend additional support to the theoretical analysis. We derived two thresholds on the maximum initial bit error probability that
can be corrected by the proposed algorithm with probabilityclose to1. Using simulations, we confirmed that there is a good
match between the thresholds derived theoretically and those obtained in practice.

Given that our main interest in this paper was the performance of the error correcting algorithm in the recall phase, we
did not address the learning phase here. However, we are currently in the middle of applying the learning method in [6] to a
database of natural images to assess the performance of the recall algorithm in this real-world setup as well.
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