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Abstract—We consider the problem of linear network coding
over communication networks, representable by directed acyclic
graphs, with multiple groupcast sessions: the network comprises
of multiple destination nodes, each desiring messages frommul-
tiple sources. We adopt an interference alignment perspective,
providing new insights into designing practical network coding
schemes as well as the impact of network topology on the
complexity of the alignment scheme. In particular, we show
that under certain (polynomial-time checkable) constraints on
networks with K sources, it is possible to achieve a rate of
1/(L+d+1) per source using linear network coding coupled with
interference alignment, where each destination receives messages
from L sources(L < K), and d is a parameter, solely dependent
on the network topology, that satisfies0 ≤ d < K − L.

Index Terms—groupcast, linear network coding, alignment

I. I NTRODUCTION

The problem of characterizing the capacity of communica-
tion networks and designing coding strategies with achievable
rates close to network capacity has been an important topic
of research. Ever since the development of the novel concept
of linear network coding(LNC) and its success in demon-
strating the achievability of maximum throughput in multicast
networks, extensions of the concept have been applied to
more general settings for obtaining useful answers to network
capacity problems [1], [2], [3], [4]. However, both scalar and
vector versions of LNC have been shown to be inadequate in
typifying the limits of inter-session network coding [5], [6], [7];
and this has hindered the progress towards the development of
coding schemes that provide improved rates or even guarantees
on the achievable rates with respect to network capacity.

In this paper, we consider the problem of LNC for networks,
represented by directed acyclic graphs, with multiple groupcast
sessions. As defined in [8], [9], a groupcast session refers to
the setup where a destination is interested in messages from
multiple (not necessarily all) sources, or analogously, messages
from a source are transmitted to multiple (not necessarily all)
destinations. Thus, unicast (one source to one destination) and
broadcast (one source to all destinations) can be thought of
as special cases of groupcast. The use of LNC results in a
linear transfer function representation for the network interms
of its transmission streams; these streams can “mix” with each
other and generate “interference” at the destinations [3],[10].
A sufficient but somewhat restrictive condition for interference-
free transmission in networks employing LNC is derived in [3],

but it is highly non-trivial to design LNC schemes that satisfy
this condition in case of multiple transmission sessions.

We analyze the problem of LNC over networks with multiple
groupcast sessions from an interference alignment perspective,
along the lines of [11], [12], [13], [14], that look at the
problem of LNC for networks with three unicast sessions.
The motivation for this approach comes from the fact that a
network with groupcast sessions and using LNC is analogous to
a generalized version of the information-theoretic interference
channel where each destination desires messages from multiple
sources. A similar approach has been adopted in the context
of analyzing multiple groupcasts for index coding [8], [9].We
focus on designing coding schemes based on LNC coupled
with interference alignment, through the use of precoding
matrices and multiple transmissions [15]. We also examine
the effect of groupcast configurations and network topology
on achievable source rates and the ease of using alignment
methods for decoding relevant messages at destinations.

Related Work: The problem of designing inter-session
LNC schemes achieving specific source rates for general net-
work topologies has been shown to be NP-hard [5]; this has
prompted the development of sub-optimal constructive LNC
schemes for networks with multiple transmission sessions;
examples include packing a network using poison-antidote
butterflies [16], linear programming [17], and network tiling
for networks based on triangular lattices [18]. The problem
of determining the feasibility of LNC and constructing coding
schemes for two multicast sessions is analyzed in [19], [20]
using a graph-theoretic approach. The use of interference
alignment methods alongside LNC has been examined in [11],
[12], [14] for three unicast sessions, where the main resultis
that each source can achieve a rate close to half the mincut
using large enough number of transmissions, if the mincuts
are ones and certain network constraints are satisfied.

Main Results: In this paper, we introduce the concept of an
interference graphassociated with a network having multiple
groupcast sessions. We utilize this interference graph to design
precoding matrices, and examine its impact on achievable
source rates. In particular, for networks withK sources and
mincuts of either zero or one for any source-destination pair,
we show that, if the interference graph has no cycles, then
each source can achieve a rate of1L+1 using LNC coupled
with interference alignment over(L+ 1) transmissions, given
that each destination is interested in messages fromL (L < K)
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sources and a set of polynomial-time checkable network con-
straints are satisfied. We obtain a weaker achievability result
if the interference graph has cycles – we show that a rate of

1
L+d+1 per source can be achieved with interference alignment
over (L+ d+ 1) transmissions under certain polynomial-time
checkable network constraints, whered depends only on the
topology of interference graph and satisfies0 ≤ d < K − L.
Furthermore, we develop an algorithm that gives the optimal
(or smallest feasible) value ofd for a given interference graph,
and hence the maximal rates for the coding scheme.

The rest of the paper is organized as follows. We describe
the system model and preliminaries in Section II. We design
coding schemes and state the achievability results in Section
III. Finally, we conclude the paper with Section IV.

II. SYSTEM MODEL AND PRELIMINARIES

Notation: We useFq to represent the finite field withq
elements, whereq is a prime number or its power. Given a
vector of variablesz, we useFq[z] to denote the polynomial
ring overFq constructed using variables inz. For any matrix
A and vector spaceU over some field, we use span(A) to
refer to the vector space spanned by the column vectors ofA,
and dim(U) to represent the dimension number ofU .

System Model: We consider a communication network
represented by a directed acyclic graphG = (V , E), where
V is the set of nodes andE is the set of directed links.
We assume that each link represents a noiseless channel and
transmissions across different links do not interfere witheach
other. There areK sourcesS1, S2, . . . , SK , andM destinations
D1, D2, . . . , DM , among the nodes inV . We have multiple
groupcast sessions inG, i.e.,Di is interested in messages from
some subset of sources, sayAi ⊂ {S1, S2, . . . , SK}. For the
sake of simplicity, we let|Ai| = L for all i. We assume that the
messages generated by different sources are probabilistically
independent and transmitted in form of symbols fromFq,
whereq is a prime or its power. We also restrict the capacity
of links in E to one symbol (fromFq) per transmission.

We employ LNC for communication between the sources
and destinations inG. In other words, every node generates and
transmits linear combinations of its received packets, where
the coefficients for linear combination come fromFq. These
coefficients can be treated as variables, sayξ1, ξ2, . . . , ξs, that
take values fromFq. Then a LNC scheme refers to choosing
a suitable assignment ofξ := [ξ1 ξ2 · · · ξs] from F

s
q.

The generalization ofMax-flow Mincut Theorem for net-
works states that the transmission rate between a source and
destination is bounded above by the mincut between them [3].
As a starting point for tackling the problem of designing codes
for groupcast sessions, we assume that the mincut betweenSj

and Di is one if Sj ∈ Ai, and at most one for remaining
choices ofi, j – this ensures thatDi is connected to sources
in Ai and it can receive at most one symbol per transmission
from them. We definexj ∈ Fq as the symbol transmitted by
Sj andmij(ξ) ∈ Fq[ξ] as the transfer function betweenSj and
Di for some transmission. Then, the symbol received byDi,

also denoted byyi ∈ Fq[ξ], is given by the following relation:

yi =

K
∑

j=1

mij(ξ)xj , i = 1, 2, . . . ,M.

SinceDi is only interested in messages from sources inAi, the
presence of non-zero transfer functionsmij(ξ), Sj 6∈ Ai, acts
as “interference” to the decoding processes at the destinations.
Note thatmij(ξ) 6≡ 0 for Sj ∈ Ai, since the mincut between
each source inAi andDi is one. Also, the mincut betweenSj

andDi being zero for somei, j implies thatmij(ξ) ≡ 0. We
defineBi = {Sj 6∈ Ai : mij(ξ) 6≡ 0} – the set of interfering
sources forDi. We also assumeBi 6= ∅ for all i – this ensures
the presence of “interference” at each of the destinations.

Interference Alignment: The presence of interfering trans-
fer functions in the system model described above, motivates
the need for interference alignment in conjunction with LNC
schemes [11], [12], [13], [14]. In particular, we focus on the
application of alignment schemes based on symbol-extension
that ensures the sources inG are able to transmit at equal rates.
We considern time-slots or transmissions and defineξ(k) as
the assignment ofξ for the kth transmission,k = 1, 2, . . . , n.
Given a, b, n such thata ≤ b and n ≥ La + b, we define
zi ∈ F

a×1
q as the message vector ofSi, and consider an× a

precoding matrixVi that encodeszi into n symbols. ThenDi

receives an× 1 vectoryi that satisfies the following relation:

yi =

K
∑

j=1

MijVjzj , i = 1, 2, . . . ,M.

Note thatMij is a n × n diagonal matrix withmij(ξ
(k)) as

the (k, k)th entry. We defineδ as the vector of variables in
ξ(1), ξ(2), . . . , ξ(n) and those used for constructing the precod-
ing matrices, and also the following vector spaces overFq[δ]:

Ui = span([MijVj : Sj ∈ Ai]),

Wi = span([MijVj : Sj ∈ Bi]),

for i = 1, 2, . . . ,M . Then the interference alignment approach
seeks to design precoding matrices that satisfy the following
conditions for some assignment of the entries ofδ from Fq:

dim(Ui) = La, dim(Wi) = b, dim(Ui ∩Wi) = 0, (1)

for i = 1, 2, . . . ,M . The constraint on the dimension ofWi

maps the interference vectors to a single subspace at each des-
tination. The constraint on the dimension ofUi∩Wi guarantees
that the subspace spanned by the interference vectors is linearly
independent of the subspace spanned by the desired vectors;
this along with the constraint on the dimension ofUi permits
error-free recovery of the desired messages. Therefore,Si can
transmita symbols inn transmissions, thereby achieving a rate
of a

n – we refer to this network coding scheme asprecoding-
based network alignment(PBNA), along lines of [14].

Interference Graph: We define an undirected bipartite
graphH = (X ,Y,F), whereX = {S1, S2, . . . , SK}, Y =
{W1,W2, . . . ,WM} are the node partitions, andF is the set



of undirected edges such that(Sj ,Wi) ∈ F if and only if
Sj ∈ Bi. Thus,H encodes the set of sources whose signals
act as interference, and therefore, need to be aligned/mapped
to a single subspace at each destination - hence, we refer to
it as theinterference graph. Note that the topology ofH has
a direct bearing on the achievable rates of the sources; for
example, abundant low-degree nodes inY and smaller values
of |F| could result in potentially higher achievable rates due to
lesser number of interference terms (and therefore, alignment
constraints) at the destinations. We explore this connection,
using PBNA as the coding scheme, in the next section.

III. R ESULTS FORACHIEVABLE RATES

We first consider the case where the interference graphH
has no cycles. Then we have the following achievability result:

Theorem III.1. If H has no cycles, then one can achieve a
rate of 1

L+1 per source using PBNA, provided the finite field
sizeq is chosen to be sufficiently large and certain constraints
(checkable in time that is polynomial inL, |F| and transfer
function degrees) are satisfied by the transfer functions.

Proof: We prove this achievability result by settingn =
(L+1), a = b = 1, and designing precoding matricesVi, i =
1, 2, . . . ,K, that satisfy the relations in (1). Note that sinceH
has no cycles, it is either a tree or a collection of disjoint trees.
We assume there arec ≥ 1 disjoint trees and denote them by
Tl = (Xl,Yl,Fl), l = 1, 2, . . . , c. Thus,{Xl : l = 1, 2, . . . , c},
{Yl : l = 1, 2, . . . , c}, {Fl : l = 1, 2, . . . , c} are partitions
of X ,Y,F respectively, andH = ∪cl=1Tl. Note that ifH is a
single spanning tree, then we havec = 1 andH = T1.

We handle the disjoint trees separately, i.e., the precoding
vectors for sources inXl are designed independently of those
for sources inXk, k 6= l. Given l ∈ {1, 2, . . . , c}, we choose
anySal

∈ Xl as the tree root. Next, we defineN (l)
0 = {Sal

},
N

(l)
1 as the set of neighbor nodes ofSal

in Tl, andN (l)
k+1 as

the set of neighbors of nodes inN (l)
k for k ≥ 1 (these sets are

levels of the BFS tree rooted atSal
). SinceTl is a bipartite

graph,N (l)
2k+1 ⊆ Yl andN (l)

2k ⊆ Xl for k ≥ 0. Thereafter, we
associate a(L+1)× (L+1) matrix Hij with (Sj ,Wi) ∈ Fl:

Hij :=

{

Mij , Sj ∈ N
(l)
2k , Wi ∈ N

(l)
2k+1, k ≥ 0,

M−1
ij , Sj ∈ N

(l)
2k+2, Wi ∈ N

(l)
2k+1, k ≥ 0.

Thus, by construction,Hij is a diagonal matrix withhij(ξ
(k))

as (k, k)th entry, such thathij(ξ) ≡ mij(ξ) for Sj ∈ N
(l)
2k ,

Wi ∈ N
(l)
2k+1, (Sj ,Wi) ∈ Fl, and hij(ξ) ≡ (mij(ξ))

−1 for

Sj ∈ N
(l)
2k+2, Wi ∈ N

(l)
2k+1, (Sj ,Wi) ∈ Fl, for k ≥ 0.

We set Val
= [θ

(1)
l θ

(2)
l · · · θ

(L+1)
l ]T , where θ

(k)
l , k =

1, 2, . . . , L + 1, are variables drawing values fromFq. Since
H is a collection of trees, there exists a unique path between
Su andSv, sayPuv, if they are connected to each other via
edges. Giveni 6= al andSi ∈ Xl, we setVi = TiVal

, where

Ti =
∏

(u,v):(Sv,Wu)∈Pi,al

Huv.

Ti is a diagonal matrix with(k, k)th entry asti(ξ
(k)), where

ti(ξ) ≡
∏

(u,v):(Sv,Wu)∈Pi,al

huv(ξ).

This choice of precoding vectors ensuresMijVj = MikVk if
Sj , Sk ∈ Bi and|Bi| ≥ 2. Therefore, the constraint dim(Wi) =
1 is satisfied for alli (this is trivially satisfied if|Bi| = 1). Also,
the constraints dim(Wi) = 1, dim(Ui∩Wi) = 0 are satisfied if
and only if the set of vectors{MijVj : Sj ∈ Ai} andMikVk,
for any k ∈ Bi, form a full rank (L + 1) × (L + 1) matrix,
say Rik. Note that the entries ofRik are rational functions
based on polynomials inFq[δ], whereδ comprises of variables
in ξ(k) andθ(k)l , k = 1, 2, . . . , L+ 1, l = 1, 2, . . . , c.

The fact whetherRik is full rank or not can be checked
by computing the determinant ofRik – if the determinant
is a rational function with non-zero numerator-denominator
product, sayrik(δ) ∈ Fq[δ], then Rik is full rank, else it
is not. Also, computing these determinant values require time
that is polynomial inL, |F| and the transfer function degrees.
Therefore, we need the following polynomial to be non-trivial:

f(δ) =

L+1
∏

k=1

∏

(i,j):mij(ξ) 6≡0

mij(ξ
(k))

K
∏

i=1

∏

k 6∈Ai

rik(δ),

for satisfying all constraints in (1). An assignment ofδ
from F

(L+1)(s+c)
q that makesf(δ) non-zero is guaranteed for

large enough finite field sizeq using a simplified version of
Schwartz-Zippel Lemma [11], [14]. Therefore, this assignment
of δ enables each source to transmit at rate of1

L+1 .
Thus, the absence of cycles in the interference graph enables

one to choose a set of precoding matrices/vectors indepen-
dently of each other (corresponding to the sources that are
chosen as roots of the disjoint trees in the above proof)
and use them to construct precoding matrices/vectors for the
remaining sources. Moreover, PBNA makes use of exactly
(L + 1) transmissions to enable each source to transmit one
message, thereby achieving a total sum rate ofK

L+1 .
The presence of cycles in the interference graph can impose

restrictions on the precoding matrices that may the affect the
ease of using alignment schemes. We illustrate this using a
4× 4 network – we setA1 = {S3, S4}, A2 = {S1, S4}, A3 =
{S1, S2},A4 = {S2, S3}, and assume all the transfer functions
are non-trivial. We also define the following rational function:

t(ξ) ≡
m12(ξ)m23(ξ)m34(ξ)m41(ξ)

m11(ξ)m22(ξ)m33(ξ)m44(ξ)
.

It is easy to see that the resulting interference graphH is a
cycle; we now have the following negative result for this setup:

Theorem III.2. If H is the cycle interference graph of the
network described above andt(ξ) is a non-constant rational
function (i.e.,t(ξ) 6≡ a, a ∈ Fq), then one cannot achieve a
rate of 1

3 per source in finite number of transmissions.

Proof: Note thatL = 2 for this case, therefore, we require
a = b andn = 2a+ b to achieve a rate ofan = 1

3 per source.



Then the constraints dim(Wi) = a for all i, as given in (1),
imply that precoding matrices satisfy the following relations:

M11V1A1 = M12V2, M22V2A2 = M23V3,

M33V3A3 = M34V4, M44V4A4 = M41V1,

where Ai, i = 1, 2, 3, 4, are full rank a × a matrices.
These relations result in the equationTV1 = V1A, where
T = M12M23M34M41(M11M22M33M44)

−1 and A =
A1A2A3A4; this imposes restrictions on choices ofV1. T
is a diagonal matrix with its(k, k)th entry ast(ξ(k)). Thus,
we havet(ξ(k))vk = vkA, wherevk is the kth row of V1,
k = 1, 2, . . . , n. This means ifvk is not the zero vector for
somek, then it is one of the left eigenvectors ofA andt(ξk) is
the corresponding eigenvalue [21]. Sincet(ξ) is not a constant,
the eigenvectors form a linearly independent set andA is full
rank, vk is the zero vector for(n − a) instances ofk, i.e.,
(n− a) rows ofV1 are zero vectors. Then the four alignment
relations stated above imply that the corresponding(n − a)
rows of Vi, i = 2, 3, 4, are also zero vectors. One can check
that these precoding matrices satisfy dim(Ui ∩ Wi) > 0 for
all i, that makes recovery of desired messages impossible at
each destination. Therefore, the sources cannot achieve a rate
of 1

3 each witha = b, using PBNA. However, ifa < b and the
relations in (1) could be satisfied by some choice of precoding
matrices, the achievable rate per source would be at most

a
2a+b = 1

2+(b/a) . Hence, the only possibility for achieving rate
close to 1

3 per source is to choosea, b large enough such that
b
a is very close to one; this in turn introduces the requirement
that the number of transmissionsn should be large.

Thus, the presence of cycles in the interference graph can
result in PBNA requiring large number of transmissions for
each source to achieve a rate close to1L+1 and sum rate close to
K

L+1 . The reason for this, as observed in the network example
above, are restrictions arising on the choice of precoding
matrices. One way of tackling this problem is to allow the
destinations to decode some of the interference messages, i.e.,
Di agrees to decode messages from some sources inBi along
with those from sources inAi. This approach reduces the
number of relations in (1) to be satisfied, thereby effectively
removing edges from the interference graphH. For example,
if Di decodes messages fromSj ∈ Bi (Bi 6= ∅), the alignment
constraints involvingVj that need to be satisfied atDi get
eliminated; this is equivalent to removing(Sj ,Wi) ∈ F from
H. However, the tradeoff of this approach is decrease in the
transmission rate of sources since each destination has to
recover messages from potentially more thanL sources.

We define Ei ⊆ Bi as the set ofextra sources whose
messages are decoded byDi, so thatDi now recovers mes-
sages from sources in̄Ai = Ai ∪ Ei, and the new interfering
set of sources forDi is B̄i = Bi \ Ei. This corresponds
to removing the set of edges{(Sj,Wi) : Sj ∈ Ei} from
H to get a new interference graph̄H = (X ,Y, F̄), where
F̄ = {(Sj ,Wi) : Sj ∈ B̄i}. Our objective is to remove cycles
in H̄ – thereafter, we can use PBNA to achieve certain source

rates. In particular, we have the following achievability result:

Theorem III.3. SupposeH̄, generated from an interference
graph H as described above, has no cycles, and letd =
max{|Ei| : i = 1, 2, . . . ,M}. Then one can achieve a rate
of 1

L+d+1 per source using PBNA, provided the finite field
sizeq is chosen to be sufficiently large and certain constraints
(checkable in time that is polynomial inL, d, |F̄| and transfer
function degrees) are satisfied by the transfer functions.

Proof: Note that |Āi| = L + |Ei| ≤ L + min(d, |Bi|),
and |Āi| = L + d for at least oneDi. If |Āi| = L + d and
B̄i 6= ∅ for all i, sinceH̄ has no cycles, we can directly apply
Theorem III.1 to achieve a rate of 1

L+d+1 per source using
PBNA under certain constraints. The only other case is that
|Āi| < L + d and/or B̄i = ∅ for some values ofi (B̄i = ∅
implies Di chooses to decode messages from all sources in
Bi). Then we can introduce unique artificial transfer functions
and auxiliary sources to make|Āi| = L+d andB̄i 6= ∅ for each
suchi. For example, if|Āi| = L+d−2 andB̄i = ∅ for somei,
we construct three dummy sources, sayS′

1, S
′
2, S

′
3, and assume

that the corresponding transfer functions with respect toDi are
variablesηi1, ηi2 and γi3 respectively (that take values from
Fq). Thereafter, we make the updatesĀi ← Āi∪{S′

1, S
′
2} and

B̄i ← {S′
3}, so that|Āi| = L + d and |B̄i| = 1. Thus, this

procedure ensures|Āi| = L+ d, B̄i 6= ∅ for all i, and we can
use Theorem III.1 to complete the achievability proof.

If H has cycles, there can be multiple candidates for
subgraphH̄ that has no cycles. Since we want to maximize
the transmission rates for the sources, we are interested in
the smallest value thatd can take – we refer to this asd∗.
Therefore, we have the following graph-theoretic optimization
problem overH – what is the minimum value ofd so that if
we remove some set ofmin(d, |Bi|) edges from nodeWi ∈ Y
(|Bi| is the degree of nodeWi), the resulting graph̄H has no
cycles? We first assume thatH is a connected graph. Then
a modified optimization problem, that gives the same optimal
valued∗, is – what is the minimum value ofd so that if we
remove at mostd edges from each node inY, the resulting
graphK is a spanning tree ofH? We denote the optimal̄H
andK, obtained as solutions to these optimization problems, by
H̄∗ andK∗ respectively. Note that̄H∗ can obtained fromK∗

by removing edges fromK∗, if needed, such that the difference
between degrees ofWi in H andH̄∗ is min(d∗, |Bi|).

To obtain an algorithm for this, we make use of the concepts
from matroid theory; refer to [22] for details. Given thatH is
connected, we consider its graphic matroidM, i.e., the col-
lection of all acyclic edge-sets ofH (i.e. tree/forest subgraphs
of H) – the bases (maximal elements) of this matroid are the
spanning trees ofH. The dual ofM, denoted byM̄, is defined
as the collection of all edge-sets ofH whose complement graph
contains a spanning tree ofH (or, is connected) - from matroid
theory, we have that this is also a matroid (often called the
co-graphic or bond matroid). Finally, givend, we have the
partition matroidMd composed of all edge-sets ofH such
that at mostd edges are chosen from each node inY. As the



Algorithm 1 Finding d∗ andK∗ for connectedH

Require: H = (X ,Y,F), F = {e1, e2, . . . , e|F|}
for d = ⌈(|F| −K −M + 1)/M⌉ to ⌊|F|/M⌋ do
I ← ∅
for i = 1 to |F| do

if I ∪ {ei} ∈ M̄ ∩Md then
I ← I ∪ {ei}

end if
end for
if |I| = |F| −K −M + 1 then

break
end if

end for
return d∗ = d, K∗ = (X ,Y,F\I)

matroid property is closed under intersections,M̄∩Md is also
a matroid. We define an (arbitrary) labeling of edges ofH as
F = {e1, e2, . . . , e|F|}. Using these definitions, we make use
of Algorithm 1 to obtaind∗ andK∗ for connectedH.

Theorem III.4. Given any (connected) bipartite graphH,
Algorithm 1 findsd∗ and the optimal spanning treeK∗ for
H, with a computational complexity ofO(

(

1 + K
M

)

|F|2).

Proof: Note thatd∗ lies between⌈(|F|−K−M+1)/M⌉
and ⌊|F|/M⌋ sinceH is connected, number of edges in its
spanning tree isK+M−1, and at mostMd edges are removed
from H to obtainK∗. Also, the edge-set of the complement
of K∗ is a maximal independent set of̄M∩Md∗ . The inner
loop of the algorithm corresponds to the greedy approach for
generating a maximal independent set ofM̄ ∩Md for given
d. The outer loop of the algorithm checks if the complement
of the maximal independent set forms a spanning tree forH
by examining if the size of the obtained maximal independent
set is|F| −K −M + 1 or not. This, along with the fact that
all maximal independent sets of a matroid have the same size,
shows that the algorithm returnsd∗, K∗ as answers.

The membership ofI ∪ {ei} in M̄ ∪Md for eachi and
d can be checked using BFS (or DFS) algorithm inO(|F|)
time. The inner for-loop runs|F| times and the outer for-loop
runs at most

(

1 + K
M

)

times. Therefore, the algorithm has an
overall computational complexity ofO(

(

1 + K
M

)

|F|2).
In caseH is not a connected component, we can apply

Algorithm 1 on its disjoint components separately and obtain
their corresponding optimal values ofd and optimal spanning
trees. Thend∗ is the maximum of the optimal values ofd
obtained for the disjoint components, and̄H∗ can be obtained
using an edge removal process from the set of disjoint optimal
trees similar to the one used for the case of connectedH.
If number of components ofH is c, the time complexity for
running Algorithm 1 over them isO(c

(

1 + K
M

)

|F|2).

IV. CONCLUSION

The main goal of this paper is to provide a systematic
framework for presenting guarantees on achievable rates for

networks employing LNC with multiple groupcast sessions.

We use PBNA for designing codebooks based on finite number
of transmissions for networks with acyclic interference graphs.
For networks with cyclic interference graphs, we show this
may not be possible, and instead, present a graph sparsification
scheme with bounds on the resulting achievable source rates.
Some of the future directions related to this problem include
designing coding strategies that give higher throughput guar-
antees and generalization to arbitrary mincut values.
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