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Abstract—An open-loop single-user multiple-input multiple- white Gaussian noise (AWGN) channel. In certain scenarios,

output communication scheme is considered where a transntér,  the natural choic€ = SNR - I is used, resulting in thevhite-
equipped with multiple antennas, encodes the data into indeen- input (WI) mutual information

dent streams all taken from the same linear code. The coded
streams are then linearly precoded using the encoding matxi log det (1 4 SNRHTH) .
of a perfect linear dispersion space-time code. At the receér

side, integer-forcing equalization is applied, followed g standard We may define the set

single-stream decoding. It is shown that this communicatio

architecture achieves the capacity of any Gaussian multigrinput H(Cwi, SNR) = {H c CNxM
multiple-output channel up to a gap that depends only on the

number of transmit antennas.
logdet (I +SNRH'H) = ch}, ()

|. INTRODUCTION of all channel matrices with the same white-input mutual
The Gaussian Multiple-Input Multiple-Output (MIMO) ?nformationCW|.The correspondingompound channehodel

channel has been the focus of extensive research effors sif$ defined by [(L) with the channel matrikl arbitrarily
the pioneering works of Foschinil[1], Foschini and Gand0sen from the sei(Cwi, SNR), and fixed throughout the
[2], and Telatar([3]. Mathematically, the single-user cdenp whole transmission period. The matril that was chosen

MIMO channel with M transmit andN receive antennas is by the channel is revealed to the receiver, but not to the
modeled as transmitter. Clearly, the capacity of this compound chaie

Cwi, and is achieved with a white Gaussian input. This paper
y=Hx+z (1) is concerned with approaching the compound capacity using
a low-complexity scheme.

The compound MIMO channel model appears in several
important communication scenarios. Wireless systemanofte
operate inopen-loopmode, where the receiver knows the

E(x'x) < M - SNR, channel matrixH but the transmitter only knows the cor-
responding white-input mutual information. This scenaso
andz is an additive noise vector of i.i.d. circularly symmetrigyell captured by the compound model, and will be the focus
complex Gaussian entries with zero mean and unit variancgf this paper. One may be even more conservative in the

The mutual information of this channel is maximized by assumptions on the channel state information availablaeat t
circularly symmetric complex Gaussian input [3] with cavar transmitter (CSIT), and assume that evéw is unknown.
ance matrixQ satisfyingtrace(Q) < M - SNR, and is given |n this case, a reasonable approach is to transmit codewords
b)E from an ii.d. white Gaussian codebook with target rate

_ R, such that the receiver will be able to correctly decode
¢= Rlog det (I+QH'H).  (2) the transmitted message i < logdet (I+SNRH'H). It

The choice ofQ that maximizes[(2) is determined by thefollows that from the transmitter's perspective, the cagdin
task for this scenario is identical to that of coding for a

water-filling solution. When the matriHl is known at both :

transmission ends, i.e., in a closed-loop scenario, thisiahu pompound channell withCwi — E. It may be argued that
information is the capacity of the channel and may close] the channel matrixH remains constant_ for a Iong peno_d,
be approached using the singular-value decompositionrin cdhe receiver can communicate (& quantized version of) it to

junction with standard scalar codes designed for an a@ditiU1e trans_m|t'§er with a negligible qverhead, which reduées t.
communication problem to the simpler closed-loop scenario
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whereH € CV*M js the channel matrixy € CV*! is the
channel outputx € CM*! is the input vector that is subject
to the power constraift

max
Q>0 : trace Q<M -SN
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lacking when it comes to practical schemes that are abledistribution, may exhibit terrible performance over chaisn
approach these limits. In general, the notion of practigaliwith dimensionsl x 2. Thus, the DMT framework is inade-

is rather vague and can be understood in different ways. doate for analyzing communication scenarios with degofes-
this paper, we use it in the following sense: a scheme fieedom mismatch, i.e., when the transmitter does not know
deemed practical if idlecoupleghe signal-processing task ofin advance the number of receive antennas, or alternatively
channel equalization from the coding task. In other words,has to simultaneously transmit (the same message) to severa
practical scheme applies simple signal processing opeisatd  users, equipped with a different number of receive antennas
transform the MIMO channel to a set of scalar channels, ovehe compound channel model, on the other hand, does not
which standard “off-the-shelf” codes for an AWGN channdlistinguish between channel matrices with the same WI nhutua
may be used. This notion of practicality is motivated by thimformation, and is therefore more suitable for such sdesar
fact that in the past decades, coding for AWGN channelsin [6], Tavildar and Vishwanath introduced the notion of
has reached an advanced state, and low-complexity codagpproximately universal space-time codesd derived a nec-
schemes (e.g., turbo and LDPC codes) operating near capaegsary and sufficient criterion for a code to be approxirgatel
are known. It is thus desirable to combine AWGN coding anghiversal. This criterion is closely related to the nongairg
decoding techniques with equalization in a modular wayhwideterminant criterion and is met by several known coding
the aim of approaching the capacity of the MIMO channeschemes[[7]£[9]. Roughly speaking, approximate-unidiysa
For the closed-loop scenario, this can be achieved using thearantees that a scheme is DMT optimal for any statistical
singular-value decomposition. However, for the compourgthannel model. The criterion derived in| [6] ensures that the
MIMO channel, practical capacity-approaching schemes arénimum distance at the receiver scales appropriately with
not known in general. Cw regardless of the exact realization Hf, which, in turn,

Such a modular scheme is known for the 2 MISO chan- guarantees DMT optimality. Thus, the problem of finding
nel where Alamouti modulation offers an optimal solutioncoding schemes that are DMT optimal regardless of the
More generally, modulation via orthogonal space-time blochannel statistics is now solved.

“codes” allows one to approach the WI mutual information Approximately universal schemes still suffer, howevesnir
using scalar AWGN coding and decoding in the limit of smathe asymptotic nature of the DMT criterion. Essentiallye th
rate [4]. approximate universality of a scheme guarantees that if the

Beyond the low rate regime, the multiple degrees of freg¢hite-input mutual information of the MIMO channel @Sy,
dom offered by the channel need to be utilized in orddéihe scheme’s error probability at a certain rafe scales
to approach capacity. For this reason, despite consideratdughly af Q(V2¢w—R) for large Cyw,. This is the same
work and progress, the problem of designing a practicairor probability behavior as that of uncoded transmission
scheme that approaches the capacity of the compound MINM&er a single-input single-output (SISO) AWGN channel with
channel remains unsolved. As a consequence, less demandapgacityCw,. This may suffice whe, is large enough and
benchmarks became widely accepted in the literature., Firgtoderate error probabilities are required, but does notigeo
since statistical modeling of a wireless communicatiork linperformance guarantees for finite valuesyy. In particular,
is often available, one may be content with guaranteeiige approximate universality criterion was designed faticg
good performance only for channel realizations that havesahemes with short block lengths, and does not attempt to
“high” probability. Further, to simplify analysis and dgsei exploit the opportunity of reducing the error probability b
the asymptotic criterion of the diversity-multiplexingtteoff increasing the block length when the channel remains consta
(DMT) [B] has broadly been adopted. for a long period of time.

Unfortunately, statistical characterizations, and the DM While designing a practical communication scheme that
criterion in particular, offer only a coarse figure of meriapproaches the compound MIMO capacity is still out of
for assessing schemes. Specifically, assuming an i.i.thgadreach, in the present work we take a step in this direction.
model with a continuous distribution on the channel coeffNamely, a practical communication architecture that acse
cients precludes the possibility of having an entire row ithe compound MIMO capacity up to eonstant gap that
the channel matrix nulled out. For example, if the channel @&epends only on the number of transmit antennas, is studied.
assumed to hav® = 2 receive antennas and = 2 transmit Such a traditional information-theoretic performancergatee
antennas with i.i.d. Rayleigh fading, the class of matriogs is substantially stronger than approximate universalitythe

the form considered scheme, which we refer to @ecoded integer-
by ho forcing, the transmitter encodes the data into independent
H= { 0 0 } (4) streams, as in the standard V-BLAST [4] architecture. How-

ever, in contrast to standard V-BLAST where each one of the
whereh; and h, satisfylog(1 + SNR(|h1|? + |h2]?)) = Cwi, streams can be encoded by a different code, in the considered
has zero probability. Thus, the DMT optimality of a schemscheme it is crucial that all streams are encoded usingaimee
w.r.t. a2 x 2 i.i.d. Rayleigh fading distribution, tells us nothinglinear code. The coded streams are then linearly precoded
about its performance over channels of the fdrin (4). Thesclassing the generating matrix of a space-time code from thescla
of channels described blyl(4) corresponds to receivers tkat af perfect codes [8]=[11], which are approximately uniegrs
equipped with a single antenna, rather than two. It folldwveg,t )

a scheme that is DMT optimal forzax 2 i.i.d. Rayleigh fading  The Q-function is defined ag)(z) £ ;- [*° e~ T dt.
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Fig. 1. An illustrative comparison between linear dispansspace-time coding and precoded integer-forcing. Limkspersion space-time coding consists
of precoding uncoded QAM symbols, and detecting these sigrditothe receiver. The detector’'s performance is dictatedlfy, which is the minimum
distance at the received constellation. In precoded infflegeing, coded streams are precoded and transmittedtbeechannel. The receiver first applies an
integer-forcing equalizer and then decodes linear contibima of the streams. The performance is dictatedSMRes. In this paper we show thaiy,, and
SNRe¢s are closely related.

At the receiver side, integer-forcing (IF) equalizatior2][is the cardinality of the transmitted constellation [[18] tooye
applied. Lemmal3 which establishes that the IF receiver achieves the
An |IF receiver [12] attempts to decode a full-rank set adptimal number of degrees-of-freedom (DoF) for almost all

linear combinations of the transmitted streams with intege € RV* | regardless ofV and M. While this result is not
valued coefficients. Once these equations are decoded, thesprising for the cas&/ > M, where standard zero-forcing
can be solved for the transmitted streams. The receiverd fr or MMSE receivers suffice to achieve the maximal number
end consists of a linear equalization matrix that transfotine  of DoF, it is quite remarkable for channels withh < N,
MIMO channel into a set of SISO sub-channels, each cornehere standard linear receivers are practically uselesben
sponding to a different linear combination, with an effeeti high-SNR regime.
SNR that depends on the integer coefficients of this linearAlthough LemmaB provides strong motivation for using
combination. The performance of the scheme is dictated the IF receiver, it suffers from two shortcomings. First, it
the worst effective SNR, over all sub-channels. characterizes the performance of the IF receiver only in the
asymptotic high-SNR regime. Second, it only holds for almos
al H € RV*XM wrt. Lebesgue measure di™¥>*M  put
provides no guarantees for specific channel realizations. T
The integer-forcing receiver architecture was introducerrcumvent these weaknesses, we employ space-time precod-
in [12] and has since received considerable attention in they at the transmitter, resulting in@ecoded IFscheme.
literature (see e.g.| [13]-[16]). While numerical expegitts Precoded IF may be viewed as an extension of linear dis-
revealed that in many cases its performance is quite closep&rsion space-time “codes”. In such “codes”, uncoded QAM
that of the optimal maximume-likelihood decodér [12], [16]symbols are linearly modulated over space and time. This
[17], the analytic performance guarantees available in tie done by linearly precoding the QAM symbols using a
literature prior to this work were quite weak. In particyldre precoding matrixP. For precoded IF, the same precoding
strongest result was that fdf < N the IF receiver achieves matrix P is applied tocodewordstaken from a linear code,
the optimal DMT for Rayleigh fading MIMO channels wherrather than uncoded QAM symbols. See Figure 1. The per-
the transmit antennas are restricted to transmitting ieddent formance of linear dispersion space-time “codes” is dextat
streams[[12]. The main contribution of the current work iby dmin, the minimum distance in the received constellation,
in providing solid analytic performance guarantees for thghereas the performance of precoded IF is determined by the
integer-forcing receiver. effective signal-to-noise ratiBNRey. By Lemmd2, minimum
The key step in our analysis is Lemm& 2 which lowedistance guarantees for precoded QAM symbols translate to
bounds the effective SNR seen by the integer-forcing recei\guarantees on the effective SNR for precoded IF, when the
in terms ofdmin - the minimum distance seen at the receivesame precoding matrix is used.
when all antennas transmit QAM symbols. When the numberThe design of precoding matrices for uncoded QAM, that
of transmit antennad/ is larger than the number of receiveguarantee an appropriate growth @éf,;, as a function of
antennasV, the minimum distance typically decreases as th&y,, has been extensively studied over the last decade. A
cardinality of the QAM constellation increases. Our resultemarkable family of such matrices are the generating ma-
takes this phenomena into account and is therefore usdfites ofperfectlinear dispersion space-time codes, which are
for any number of transmit and receive antennas. We thapproximately universal [8].[9]. We apply the tight contien
apply LemmalR together with a recent result from numbéetweendni, and SNRex to show that when such precoding
theory that concerns the typical rate of decreasé.gf with matrices are used for precoded #fRex also grows appro-

A. Our Contribution



priately with Cy,. Consequently, we are able to prove thanany of these lattice-based coding schemes is that, from the
precoded IF achieves rates within a constant gap from tperspective of each receiver, they induce effective miekip
compound MIMO capacity. access (MAC) channels with a reduced number of users, all
of which employ the same lattice codebook. The achievable
rates for a MAC channel where all users use the same lattice
B. Related Work codebook is difficult to analyze, but can be lower bounded by
Integer-forcing equalization essentially reduces toideit the rates attained via the IF receiver. In][30] this techaiqu
reduction (LR) in the case of uncoded transmission. Latticawas successfully applied for approximating the sum-capaci
reduction aided receivers for perfect space-time moddlatir the symmetric GaussiaR -user interference channel. Our
QAM constellations were considered in the literature, arsbunds on the rate-loss incurred by the IF receiver w.rd. th
were shown to be DMT optimal [19]. The key difference isnutual information may lead to closed form inner bounds
that while the latter approach involves uncoded transwmission the performance of lattice-based coding schemes for othe
and symbol-by-symbol detection, the architecture progosgetworks.
here uses linearlycoded streams and the detection phase
is replaced with equalization and decoding. This in tur

) ! Paper Outline
leads to performance guarantees that are valid at any (f|xed)|_ ) _
transmission rate. he rest of the paper is outlined as follows. Sectidn Il

In [20], E-Gamal et al. proposed a lattice space-timegives an oyerview of IF_ equalization_ and analyzgs its per-
(LAST) coding scheme, and showed that it can achie\;grmgnce Wlthogt precoding under various assumptionslewhi
the compound MIMO capacity. Although the LAST codingsecuonm] con_3|ders the pre_coded _”: scheme. In Sgn vV
scheme uses lattice encoding and decoding, its complesxity’sfweral properties of perfect linear d'SP‘?rS'O” space-Um_je_s
in general very high. The reason for this is that the latticd © recall_ed an_d a lower bound on their worst-case minimurm
decoding performed by the receiver is w.r.t. a lattice iretlic @/Stance is derived. The proof that precoded IF achieves the
by both the transmitted constellation and the channel matffomPound MIMO capacity to within a constant gap is given in
H. In other words, the LAST coding scheme does notdecourﬁ@c“o@' As an exam?'e of the adYa”tageS of the proposed
the equalization and decoding tasks. In particular, even qpp.roach, Iow-compllexny constructions of MIiM@ateless .

a lattice with low decoding complexity is transmitted, :jlfte_COdIng schemes, which are based on precoded IF, are derived

passing through the channel its structure is changed and fhectionM. Concluding remarks appear in Secfion VII.

decoding complexity of the obtained lattice may (and is most

likely to) no longer be low. This is not the case for precoded!!- PERFORMANCE OF THEINTEGER-FORCING SCHEME

IF. In the scheme considered here, the receiver decodg®inte Integer-Forcing equalization is a low-complexity archite

linear combinations of the transmitted streams. Sinceethaare for the MIMO channel, which was proposed by Zhan

streams are taken from the same linear code, their integeral [12]. The key idea underlying IF is to first decode

linear combinations are also members of the linear code. #egral linear combinations of the signals transmitted by

a result, the task of decoding these linear combinationsalh antennas, and then, after the noise is removed, invert

identical to the task of decoding a single stream over a scafhose linear combinations to recover the individual traitisah

AWGN channel. If the linear/lattice code that was used tsignals. This is made possible by transmitting codeworais fr

encode the streams can be decoded with low complexity, th@ samelinear/lattice code from allM transmit antennas,

can the integer linear combinations. The channel mdfiis leveraging the property that linear codes are closed under

handled in the equalization procedure, and has no effedten {modulo) linear combinations with integer-valued coeféfits.

decoding task, just as in standard linear receiver ardhites. In this section we review and extend some of the results
Finding the exact capacity region of many network inforef [12] and [17] in a way that is suitable for our purposes.

mation theoretic problems may be very difficult. Nevertss|e

a recent Ii_ne of \_/vork has_ d_emonstrated that characteriz_iﬂg Nested Lattice Codes

the capacity region to within a constant number of bits . , , ,

is often a manageable challenge (see elg.] [21]-[24] and-©t AF = /}f be a pair ofn-dimensional nested Iatucgs

references therein). The constant gap result presentes _e_[_3.L], [3P] for a more thorough treatment of lattice

is of different spirit. The capacity of the compound MIMO efinitions and_ properties). The !atncltec is referred to as

channel considered here is known and may be achieved udifg coarse lattice andf. as .the fine Iattlce..Denote b

random coding and maximum-likelihood decoding. Our reasul fundamental Voronoi region df., and define the second

only show that the rate achieved by the sub-optimal scheff@ment ofA. as

precoded IF, is a constant number of bits from the capacity. o2(A,) & 1 1 / lu|2du

Nevertheless, the results derived in this paper may be Lisefu c n Vol(Ve) Juev, ’

the future for obtaining approximate capacny_charac_mms whereVol(V,) is the volume of/.. A nested lattice codebook

for several network problems. More specifically, it is NoW, _ » "~y with rate

recognized that lattice codes play a key role in charadteyiz Fiive

the fundamental limits of certain communication netwodes R— 1 log |As N V| bits

e.g. [25]H30] and[[31, Chapter 12]. A common feature of n 77 7el Channel use



is associated with the nested lattice pair. The codebookAssimilar procedure is used to construct the sigrg| . The

scaled such that?(A.) = SNR/2. mth antenna transmits the signal, = x,,,, + Xy, € C1*"

) . overn consecutive channel uses. Thus, the total transmission

Example 1:We give three examples of common structures,” . bits/ch |

of nested lattice codebooks. See Figure 2 for an iIIuslmatiorate 'S Fup = 2M It bits/channel use. : . .
' Let X £ [xT ... xT,]T € CM*", The received signal is

More examples can be found in_|33].

« Uncoded transmissionThe simplest nested lattice code- Y =HX+7Z,
book is an uncoded one, where the fine latticeis the
integer latticeZ whereas the coarse lattice ds. = ¢Z
for some integer; > 1. The Voronoi region in this case
isV. = [—q/2, ¢q/2) and the obtained nested lattice cod
bookC consists of all integers in the intervatg/2, ¢/2).
The rate of this codebook iB = log q bits/channel use. { Yre } _ [ Hr. —Hj, } { Xre } N { Zre } 5)

« g-ary linear code without shaping A more sophisti- Yim H, Hge Xim Zim |’
cated, yet reasonable to implement, nested lattice code-. . .
book can be obtained by lifting @ary linear code with %mh will be written as
block lengthn to Euclidean space using Construction Y=HX+7Z
A [B4], [35], and taking the resulting lattice aAy.
The coarse lattice is taken aks. = ¢Z™, as in the

whereZ € CN*" is a vector with i.i.d. circularly symmetric
complex Gaussian entries. Letting the subscripésand Im
denote the real and imaginary parts of a matrix, respegtivel
She channel can be expressed by its real-valued repreisentat

for notational compactness. Let

uncoded case. The obtained nested lattice codelook T & R TR T T

. . . . 1Re Mge “1im Mim

is therefore simply theg-ary linear code coupled with a

PAM constellation. be a2M x n real-valued matrix whose rows consist of the

« “Good” nested lattice pair of high dimension A third lattice points corresponding to ti¥\/ bit streams, and
option is to use a pair of lattices of high dimension DA @’ ...d7_dl ...d?, |”
where the fine lattice is “good” for coding over an T ke Mge =lim Mim
AWGN channel, whereas the coarse lattice is “goodSe a2 x n real-valued matrix whose rows correspond to the
for mean-squared-error quantization (seel [31],] [32] fards different dither vectors.
precise definitions of “goodness”). The obtained nested The IF receiver chooses an equalizing maBix R2M*2N
lattice codebook admits a relatively simple performancgnd a full-rank target integer-valued matéxe Z>*>*2M and
analysis, that yields closed-form rate expressions. Hogemputes
ever, implementing such a codebook is more complicated _ _ _
(although progress in this direction was madelin [36]).  Yeff = {BY + AD} mod A,
The performance improvement obtained by using such
a codebook w.r.t. g-ary linear code without shaping

—

AX +AD + (BH - A)X + BZ} mod A,

is bounded from above by/2log(27e/12) bits per real _ {AT +(BH- A)X + BZ} mod A
dimension, provided that the¢-ary linear code performs ¢
well over an AWGN channel. = [V + Zef] mod A, (6)
where
B. Description of the IF scheme V2 {AT} mod A, 7)

In the IF scheme, the information bits to be L .
transmitted are partitioned into2M streams, labeled Is a2 M xn real-valued matrix with each row being a codeword
{1Re, Lim, - - -, Mre, Mim}. Each of the 2M streams is in C owing to the linearity of the code,
encoded by the nested lattice code producing2M row Zew 2 (BH — A)X + BZ
vectors, each i C R'*™. In particular, the streamnge, N _ o _ -
consisting ofn R information bits, is mapped to a lattice pointS additive noise statistically independentéf(as X, as well
tme. € C. Then, a random dithed,,, € R!*" uniformly as Z are statistically independent d@F), and the notation
distributed overV,. and statistically independent df,,,, mod Ac is to be understood as reduciregch row of the
known to both the transmitter and the receiver, is used @tained matrix modulo the coarse lattice. Each rowyaf

produce the signal is the modulo sum of a codeword and effective noise. Thus,
the IF receiver transforms the original MIMO channel into a
Ximpe = [bmge — Ameg.] mod Ac. set of 2M point-to-point modulo-additive sub-channels
The signal x,,,,, is uniformly distributed over), and is Vet k = [V + Zet ] mod Ae, k=1,...,2M. (8)
statistically independent df,,,. due to the Crypto Lemma[32, " : -
y P e, yp * " The additive noise vectorses 1, ..., Zeff2ns are not statisti-
Lemma 1]. It follows that i e ? .
cally independent. Therefore, strictly speaking, 2id effec-
1 2 9 ~ SNR tive channelSyes 1, . . . , Yeft.2as are not parallel. However, the
—E||Xme ||© = 0°(Ae) = —. oer ’ ) .
n 2 IF decoder ignores the correlation between the noise \&ctor
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Fig. 2. An illustration of the three different types of nektattice codebooks given in Examflé 1. In all three casesbtaek points correspond to the
fine lattice points, the blue circles to the coarse latticentsp and the blue polygon corresponds to the shaping red¢io(a) the constellation for uncoded
transmission withy = 11 is illustrated. In (b) ag-ary linear code without shaping is shown, with= 11. In (c) a “good” nested lattice pair in two-dimensions

is illustrated.
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Fig. 3. A schematic overview of the integer-forcing transeni and receiver. For simplicity, the dithers are not diguicin the figure, and a real-valued
channel is assumed. At the transmitter, the informatioa &ie split toM streams. Each stream is encoded by the same linear codehddkaasmitted by
one of the transmit antennas. The receiver first appliesdhaleing matrixB whose role is to equalize the chand&lto an equivalent channel with transfer
matrix approximately equal t&.. The equalizer produce®! outputs, each of which is an integer-valued linear commmnabf the transmitted codewords plus
effective noise. Each one of these outputs is decoded selyarand finally the outputs of the/ decoders are multiplied bA ~! to produce the transmitted
codewords. The codewords are then mapped to informatien(thils step is not depicted in the figure).

Zeff,1
ec B
o N KR N T
A :
Zeff, M
ec ~
bee—|  PECd T s

Fig. 4. An illustration of the effective channel obtained emhinteger-
forcing equalization is used. The effective channel cdssi$ M parallel
sub-channels. The output of each sub-channel is an intedeed linear
combination of lattice points, which is itself a lattice pbiplus effective
noise, modulo the coarse lattice..

and decodes the output of each sub-channel sepeﬁaﬂely.
decoding is successful over @M/ sub-channels, the receiver
has access t&, from which it can recover the matrif by
solving the (modulo) s&of equationsl{7). See Figurlgs 3 dnd 4.

Let al andb{ be thekth rows of A andB, respectively,
and define the effective variance afi ;, as

1
Ugff,k £ EE Hzeff,kH2

1 . . 2
- E H(b{H —al)X + b;{zH
n
SNR

~ 1
= 2SI 0P E - al) | + 5B P,

A natural criterion for choosing the equalizing matix and

4Some improvement can be obtained by exploiting these etioat [37],
[38]. Yet, we do not pursue this possibility in the presenpgra

5In [39] it is shown that it suffices thaA is invertible overR in order to
recoverT from V.



the target integer-valued matriX is to minimize the effective all sub-channelsk = 1,...,2M can decode their linear
noise variances. It turns out [12] that for a given matix combinationsv, without error, and therefore IF equalization

the optimal choice oB under this criterion is can achieve any rate satisfying
- 1 o\t 1
B = AHT (SN—RI + HHT) . 9 R < 2M5 log (SNRef)
= M log (SNRef) . (13)

The matrix in [9) can be interpreted as first applying the
linear MMSE estimator ofX form Y, and then multiplying
the result by the integer-valued matrix. In general, the

estimation errors after linear MMSE estimation may be high , . . .

. alternative may be to usecaary linear code without shaping.
correlated, and have different powers. The rdleplays here . : ; -
o . . . In this case, the effective noisgy ; at each sub-channel is
is in decreasing these correlations and balancing the pofver_" . - : .

o T a linear combination of an AWGN an2lM random dithers
the remaining estimation errors. The freedom to choose aWiformly distributed over the Voronoi region ofiaD integer
full-rank A € Z*M*2M and not justA = I comes from y g 9

the fact that any integer-linear combination of codewords llattlce. This effective noise is i.i.d. (in contrast to thase

. ) . . "~ where a higher-dimensional coarse lattice is used whgie
a codeword itself. Settin@® as in [9) results in the effective has memory). It was shown i [40, Remark 3] that, for a prime

As mentioned in ExamplgE] 1, good nested lattice codebooks
an be difficult to implement in practice. A more appealing

variances ; . . .
SNR . q large enoughg-ary linear codes without shaping can achieve
o2 = > al (I n SNRﬁTfI) a, any rate satisfying
_ 1 1 2
fork=1,....2M. _ _ R<_1Og(SNReﬁ)__1Og(L€)
Define the effective signal-to-noise ratio (SNR) at fth 2 2 12

sub-channel as . e . .
over a modulo channel with additive i.i.d. effective noige .

SNRefr j 2 o*(Ac) Therefore, IF equalization usingrary linear codes without
7 Ugff,k shaping can achieve any rate satisfying
SNR
- ° -1 Rieqary < M log (SNRe) — M log 22 (14)
N7 (1+ SNRATH)  ay Fapary < 4708 (S Ret e\ )

~ e\ 1 -1 When a specifig-ary linear code (such as an LDPC code or
_ (a7 T
o (ak (I +SNRH H) a’“) ’ (10) a turbo code) is used, the achievable rate is further dedrade
by 2M times the code’s gap-to-capacity at the target error
and let .
probability.
SNRett £ k_min SNReff ;- (11) Finally, consider the case of uncoded transmission. In this
=he2M case, Ay =~Z and A. = vgZ, wherey = /12SNR/q? is

For IF equalization to be successful, decoding over2all chosen so as to meet the power constraint, and 1 is
sub-channels should be correct. Therefore, the worst sigr integer (see Exampl@ 1). The performance of uncoded
channel constitutes a bottleneck. For this reason, the tof@nsmission with IF equalization followed by a simple stic

performance of the receiver is dictated SMRefr. is characterized by the following lemma.
_ Lemma 1:The error probability of the IF receiver with
C. Achievable rates for IF uncoded transmission rafgr is upper bounded by

When the codebooK is constructed from a good pair of
nested lattices (see Example 1), the distribution of thectiffe P, jF-uncoded< 4 M exp {_gﬁ,(M log(SNReﬁ)_R|F)} . (15)
noise at each sub-chanriglwhich is a linear combination of
an AWGN and®2 M dither vectors, approaches (with the code’s )
block length) that of an AWGN with zero mean and variance ~ F1oof: See AppendiX A u
agm & [27]. Good nested lattice codebooks can achieve any ratdRemark 1:Integer-forcing equalization with uncoded trans-
satisfying mission is quite similar to the extensively studied lattice

1 reduction-aided linear decoders framework][19],![41],][42

R < 5log (SNRef 1) (12) However, two subtle differences should be pointed out.tFirs

nder the framework of LR-aided linear decoding, the target
over amod-A. AWGN channel with signal-to-noise ratio-u W I ! "9 9

. ) nteger matrixA has to be unimodular, i.e., it has to satis
SNRes 1, [27], [32]. Sincevy, is a codeword from a good neste4 g fy

It q & h AWGN in distributi det(A)| = 1, whereas in IF equalizatioA is only required
attice code ane gpprqac es an I distribution, i, e f1-rank. Second, the use of the dithers in IF equttina
vi, can be decoded [12], [27] fromer . as long as the rate

= results in statistical independence betwegmndzef . at each
of the codebook’ safisfies[(IP). It follows that as long as of the 2M sub-channels. This allows for an exact rigorous

1 analysis of the error probability, which is seemingly diiiic
R < 5 log (SNRe) , under the LR framework.



D. Bounding the Effective SNR for an optimal choiceAof Definition 2 (Dual lattice): For a latticeA(G) with a gen-

; _ ; 2M x2M ; ;
In this subsection, we derive a lower bound BNRef, erating full-rank matrixG € R the dual lattice is

which will subsequently be used to lower bound the achievatf{€fined by
rate of IF. Since the IF scheme i;sﬁ;:OQr]rcfpatible with any choice A (G) 2 A ((GT)—l)
- i 1 A X / -
of full-rank integer matrixA < Z , we would like to (@) : ac MY,

choose A so as to maximizeéSNRe¢. We denote the rate-
maximizing target integer-valued matrix bj°". For the

remainder of the pape$NRes refers to the effective SNR Theorem 1 (Banaszczyk [43, Theorem 2.1t A(G) be

; inA . AOpt
corresponding to the choica = A% L a lattice with a full-rank generating matrig € RX*X and
Using [10) and[{1]1), this maximization criterion transtate A*(G) = A ((GT)~1) be its dual lattice. The successive

to minima of A(G) and A*(G) satisfy the following inequality
o~ \ —1
APt argmin max ag (I + SNRHTH) ag. M (G) A _pi1 ((GT)A) <K, Vk=102 ... K
e72M x2M k=1....2M
det(A)5£0
Proof: See [43] ]

~ ~\ —1
The matrix (I+SNRHTH is symmetric and positive i )
definite, and therefore it admits a Cholesky decomposition The following theorem gives a lower bound fNRef.
1 Theorem 2:Consider the complex MIMO channel
(I+SNRﬁTﬁ) =LLT, (16) y=Hx+z with M transmit antennas andV receive
antennas, power constraii{xx) < M - SNR, and additive
where L is a lower triangular matrix with strictly positive noise z with i.i.d. circularly symmetric complex Gaussian
diagonal entries. With this notation the optimizationeribn entries with zero mean and unit variance. The effective
becomes signal-to-noise ratio when integer-forcing equalizatits

applied is lower bounded by

A°P' = argmin max ||LTa.|%
Acz2Mx2M k=1...2M S 1 . § S § 8
det(A)£0 NReit > T2 acztur 02 (I+SNRH'H)a. (18)
Denote EVA(LT) the 2M dimensional lattice spanned by the  proof: Let FI be the real-valued representation of the
matrix L", 1.e., channeH, as in [5), and leL. andL” be as in[(1B). Froni{17)
A(LT) 2 {LTa Cac ZQM}' we have
1
It follows that A°P* should consist of the set &M linearly SNRert = A2, (LT
independent integer-valued vectors that result in thetskor . . _ .
set of linearly independent lattice vectorsAfLT). The dual lattice ofA(LT) is A(L~!). Thus, Theoreril1 gives
_ . . . 1 1
Definition 1 (Successive minimalet A(G) be a lattice > )@(L—l)7
spanned by the full-rank matrixG € RE*K. For Aar(LT) © (2M)?
k=1,..., K, we define thekth successive minimum as and therefore
. . 1 2 -1
\e(G) £ inf {T : dim (span (A(G) ﬂB(O,r))) > k} SNReff > —(2M)2 ALY

1
_ . L—la 2
AM?Z acziino I I

whereB(0,r) = {x € RX : |x|| <r} is the closed ball of
radiusr aroundO. In words, thekth successive minimum of

a lattice is the minimal radius of a ball centered aroorttiat _ S min a” (LLT) 'a
containsk linearly independent lattice points. AM? acz2M\0
With the above definition of successive minima, the effectiv = % min a’ (I + SN RfITﬁ) a. (19)
signal-to-noise ratio, when the optimal integer-valuedrira AM? aez22\0
A°Plis used, can be written as where [I9) follows from [{(16). Since the matrix
1 (I+SNRfITﬁ) € R?Mx2M g the real-valued representa-
PNRet = Ao (LT) (17) tion of the complex matrix(I + SNRHIH) € CM*M | (19)
can be written in complex form ag{18). [ ]

Bounding the value of the&Mth successive minimum of

a lattice is seemingly difficult. Fortunately, a transfaren ~Remark 2:1t is worth mentioning that the bound_{(18) is
theorem by BanaszczyK [43] relates tRé/th successive tight up to a multiplicative factor o M*. Namely, it can be
minimum of a lattice to the first successive minimum oasily shown([44, VIII.5, Theorem VI] that for a full-rank
its dual lattice. Following the derivation from [12, Proof o matrix G € RKXK

Theorem 5], we proceed to bouSéNRes using this relation. Ak (G) Ay ((GT)—l) > 1.



Now, repeating the same derivation as in the proof of Thebe., p(a) is the maximum absolute value of all real and imag-

rem2 withG = LT gives inary components of. With this notation, [(2R) is equivalent
to
SNRes < A}[ninM\ af (I + SNRHTH) a. 1
acZM4-iZM\0 : : 2 2
SNReft > e in aezf‘?}:ir%M\o |lall® + SNR||Hal||

E. Relation between the effective SNR and the minimum pla)=L

. 1
distance for uncoded QAM > o in (L? + SNRdzin(H, L)) ,

A basic communication scheme for the MIMO channel is ]
transmitting independent uncoded QAM symbols from ead@% desired.
antenna. In this case, the error probability strongly dépen Remark 3:In the transmission scheme described above
on theminimum distancat the receiver. For a positive integeleach antenna transmits an independent stream. Therefere, t
L, we define bounds from Theoreil 2 and Lemmh 2 continue to hold true

doin (L, L) 2 min |Hal, (20) fo.r muItipIe access (MAC) channels with/ users equipped .
acQAMM (L)\0 with a single transmit antenna and a receiver equipped with
N receive antennas, where the gains from theh transmit
antenna to the receiver are given by théh column ofH and
QAM(L) 4 {-L,-L+1,...,L—1,L} each user is subject to the power constréirftzy|?) < SNR.

+i{-L,—L+1,...,.L—1,L}, (21)

where

and QAMM (L) is an M-dimensional vector whose compo- Remark 4:For real-valued N x 1~ MIMO. channels

e . y = Hx + z with power constrainE(x?x) < M - SNR, and
nents all belong to QANL). Note that ifL is an even integer, 7 ~ A(0,T) the bound from Theorefdl 2 becomes

dmin(H, L) is the minimum distance at the receiver when eac

antenna trangmits symbols from a QAM/2) constellation. SNReft > % min a” (I+ SNRH"H) a,
This is true since M? aczM\0
min |Hx, - Hxo| = min  |Hx|. and the bound from Lemnid 2 becomes
x1,%x2€QAMM (L /2) xEQAMM (L)\0 1 . _
il SNRer > 75, min (12 + SNRd;n(H, L) ),

In the IF scheméhere is no assumptiothat QAM symbols where
are transmitted. Rather, each antenna transmits codewords ~ N .
taken from a linear codebook. Nevertheless, we show that ~ @min(H.L) = aepAﬁlAl}l(L)\O||Ha|"
the performance of the IF receiver over the chanHetan a
be tightly related to those of hypotheticaluncoded QAM PAM(L) = {-L,=L+1,....L =1, L}
system over the same channel. See Figlire 1. NarGhlRq
is closely related taimin(H, L). This relation is formalized The bound from LemmA]2 and its real-valued counterpart
in the next key lemma, which is a simple consequence fitbm Remark[# exhibit a Diophantine tradeoff, i.e., they
Theoren 2. depend on how small the noriiHal|? can be made as
a function of the largest component in the integer-valued

the complex MIMO channey — Hx + z with M transmit vec@ora. The typical behgwor of th!s minimal norm, is the
. . §ubject of several results in the metrical theory of Diophemn
antennas and N receive antennas, power constrain

E(x'x) < M-SNR, and additve noisez with iid. apProximation,see e.g.[18].[45]. [46]. Using these ressuie

circularly symmetric complex Gaussian entries with zer%l)enve the following lemma, which is proved in Appendik B

mean and unit variance. The effective signal-to-noiseorati Lemma 3 (DoF of Integer-Forcing)For almost all real-
when integer-forcing equalization is applied is lower boded valued MIMO channels (w.r.t. Lebesgue measure), IF equal-
by ization achieves the optimal number of degrees-of-freedom

1 , , (DoF), i.e.,
SNRes > e Lillllél (L + SNRdqin(H, L)) , . Ri(SNR) . 1/21og(SNRef)

1m — = = 1im
whered?, (H, L) is defined in [(2D). SR 1/210g(SNR) .S':;;OJ;) /21og(SNR)
= min(M, .
Proof: The bound from Theoref 2 can be written as

Lemma 2 (Relation betwe&NRgs and dmn): Consider

1 .
SNRe > AM?2 aezkil}fi%mo lall* + SNR[Hal[*.  (22) Standard linear equalizers, such as the zero-forcing equal
izer, or the MMSE equalizer, fail to achieve the optimal
Let number of DoF whenV < M (In fact, whenN < M, they
p(a) 2 max  max (|amel, |am,.|) achieve zero DoF). In light of this fact, our result that IF

m=L,...M equalization achieves the full DoF is notable. As discussed
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in Remark[3, this result is also applicable for the MIMO- A remaining major challenge is how to choose the precoding
MAC channel. Thus, for almost every real-valued MIMOmatrix P (recall that a compound channel is considered, and
MAC channel with M users equipped with a single transmihence, the choice d® cannot depend oll). As observed in
antenna and a receiver equipped witreceive antennas, eachSection[1I-C, the performance of the IF equalizer is dictate
user can achievenin(M, N)/M DoF using IF equalization. by SNReg. Thus, in order to obtain achievable rates that
This extends[[30, Corollary 6], which only covered the casere comparable to the WI mutual informatid®lNRes must
of N =1. scale appropriately witl\y,;. The precoding matri¥ should
therefore be chosen so as to guarantee this property for all
lIl. PRECODEDINTEGERFORCING channel matrices with the same WI mutual information.
Lemmal2 indicates that for the aggregate chasiRes is

The performance of IF equalization over Rayleigh fading .« hounded byning (L2 + SNRdmin(EL L))/4M?2, where
channels was studied in_[12] and it was shown that when ’ '

N > M the IF equalizer achieves the optimal receive DMT dmin(H, L) = min |HPa||. (25)
(corresponding to transmission of independent streams fro a€QAMMT(L)\0

each antenna). However, in order to approach the compoufil;s, the precoding matri could be chosen so as to
MIMO cgpacity, tra_n_smitting independent streams from ea‘@ﬁjarantee thatmin(H, L) scales appropriately witfiy. This
antenna is not sufficient. boils down to the problem of designing precoding matrices fo
Clearly, there are instances of MIMO channels fofransmitting QAM symbols over an unknown MIMO channel
which the lower bound[(18) orSNR.r does not increase yjth the aim of maximizing the received minimum distance.
with the WI mutual information. For example, considefrhe |atter problem was extensively studied during the past
a channelH where one of theNM entries equalsh decade, under the framework of linear dispersion space-tim
whereas all other gains are zero. For such a chanpgling, and unitary precoding matrices that satisfy theeafo
Cwi = log(1 + |h[?SNR), yetSNRe = 1 (and the bound(18) mentioned criterion were found. Therefore, the same mesric
only gives SNReit > 1/(4M?)). Thus, it is evident that IF that proved so useful for space-time coding are also useful
equalization alone can perform arbitrarily far fratfy, . for precoded integer-forcing. A major difference, however
This problem can be overcome by transmitting lineajetween the two is that while for linear dispersion spageeti
combinations of multiple streams from each antenna. Moggding the precoding matri® is applied to uncoded QAM
precisely, instead of transmitting)/ linearly coded streams, symbols, in precoded integer-forcing it is applied doded
one from the in-phase component and one from the quadratgf@ams This in turn, yields an achievable rate characterization
component of each antenna, over channel uses2MT  for the compound MIMO channel which is not available
linearly coded streams are precoded by a unitary matrix ag§ing linear dispersion space-time coding. In particulary
transmitted oven1' channel uses. different asymptotics can be analyzed. Rather than fixieg th
Domanovitzet al. [17] proposed to combine IF equalizatiorplock length and takingNR to infinity, as usually done in the
with linear precoding. The idea is to transform thex M  space-time coding literature, here, we fix the channel akel ta
complex MIMO channel[(1) into an aggregatéT’ x MT the block lengthto infinity, as in the traditional information-
complex MIMO channel and then apply IF equalization tgheoretic framework.
the aggregate channel. The transformation is done usingnp [17] the performance of IF equalization with the Golden
a unitary precoding matri® € CM**M*. Specifically, let code’s [11] precoding matrix was numerically evaluated in
x € CMT>! pe the input vector to the aggregate chany2 x 2 MIMO Rayleigh fading environment. The scheme’s
nel. This vector is multiplied byP to form the vector gutage probability was found to be relatively close to that
x = Px € CM"*! which is transmitted over the channBl (L}achieved by white i.i.d. Gaussian codebooks. Here, we prove

during 7' consecutive channel uses. Let that, in fact, precoded IF equalization, where the preapdin
H o --- 0 matrix generates a perfect linear dispersion space-tinde,co
o H --- 0 achieves rates within @onstant gapfrom the compound
H=IrH = . . ) , (23) MIMO capacity. )
oo I The aim of the next section is to lower bourdg,(H, L)
0 0 - H as a function ofCyw, for precoding matrice® that generate

nerfect linear dispersion space-time codes. This lowentou

will be instrumental in proving that precoded IF univergall

@ﬁains the compound MIMO capacity to within a constant
a

where @ denotes the Kronecker product. The output of t
aggregate channel is obtained by stackifigconsecutive
outputs of the channel](1) one below the other and is giv

by
y = HPx +Z
= Hx + z, (24)

IV. LINEAR DISPERSIONSPACE-TIME CODES

Before deriving the lower bound odyn(H, L) some nec-
whereH £ HP = (I; ® H)P € CNT*MT js the aggregate essary background on space-time codes is given.
channel matrix, andg € CV7*! is a vector of i.i.d. circularly ~ An M xT space-time (ST) codg®" for the channe[{1) with
symmetric complex Gaussian entries. See Fi@lire 5. rate R is a set ofiCST| = 277 complex matrices of dimensions
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Fig. 5. A schematic overview of precoded integer-forcingr Eimplicity, the dithers are not depicted in the figure, anckal-valued channel is assumed.
At the transmitter, the information bits are split Ta\/ streams, each of which is encoded by the same linear code, @M x T'M precoding matrix
“mixes” the T'M codewords intdl’M linear combinations. The channH is usedT" times, where in each channel use each of the antennas ttarmmi of
the precoded linear combinations. The receiver tr@atonsecutive channel outputs as the output of an aggrégdtex MT channel with transfer matrix
H = (Ir ® H)P, and applies integer-forcing equalization to the aggeegaannel.

M x T. The codebook’ST has to satisfy the average powedispersion ST codes over a QANM) constellation, defined
constrairli in @21), will play a key role. The linear dispersion ST code
1 obtained by using the infinite constellation QAM) = Z+iZ
9RT Z X[l < MT - SNR. is referred to asC3!, and, after vectorization, is in fact a
Xecst complex lattice with generating matrRR. Since the QAML)
When the ST cod€ST is used, a code matriX € CST is constellation is a subset @+ iZ it follows that for any finite
transmitted column by column oveéF consecutive channel L the QAM(L) based cod€ST is a subset of’ST.
uses, such that th& channel outputs can be expressed as  An important class of linear dispersion ST codes With=

M is that of perfect codeg8], [9], which is defined next.
Y =HX+7Z,
_ Definition 3: An M x M linear dispersion ST code over a
where each column of the matrica§ Z € CV*7 represents QAM constellation is callegerfectif

the channel output and additive noise, respectively, ataine 1) It is full-rate:
the T' channel uses. i
An ST codeCST is said to be alinear dispersionST S ,
code [47] over the constellatiols if every code matrix dmin(Cx) = inf |det(X)[® > 0;
ST . 0#£XeCST
X € C>' can be uniquely decomposed as

2) It satisfies the nonvanishing determinant criterion

K 3) The code’s generating matrix is unitary, i.PIP = 1.
X — ZSka’ sp €8, Note that this defin?tion is slightly _d_iﬁere_nt_ than t_he one
1 used in[[8], [9], where instead of conditibh 3 it is requiredt
the energy of the codeword corresponding to the information
symbolss will have the same energy ds||?, and that all the
coded symbols in all” time slots will have the same average

whereS is some constellation and the matrid@s € CM*T
are fixed and independent of the constellation symbglPe-

noting byvec(X) the vector obtained by stacking the columngnergy
; T :
of X one below the other, and letting= [s1 --- sx]" gives In [8], perfect linear dispersion ST codes were found for
vec(X) = Ps, M = 2,3,4 and 6, whereas in[[9] perfect linear dispersion
ST codes were obtained for any positive integer The
where constructions in[[8],/[9] are based on cyclic division alggh
P = [vec(Fy) vec(Fy) --- vec(Fg)] and result in unitary generating matrices. Thus, for anytipes

integer M, there exist codes that satisfy the requirements of
is the code’'sMT x K generating matrixA linear dispersion pefinition[3.

ST code isfull-rate if K = MT. In the sequel, linear ) ) )
The approximate universality of an ST code over the MIMO

The Frobenius norm of a matriX is denoted by||X||%.. channel was studied iri[6]. This property refers to an ST
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code being optimal in terms of DMT regardless of the fading Theorem 4:Consider the aggregate MIMO channel
statistics ofH. A sufficient and necessary condition for an ST
code to be approximately universal was derived[in [6]. This
condition is closely related to the nonvanishing determinayhere 4y = 1, ® H € CNMxM? gnd P e CM*xM*

criterion and is satisfied by perfect linear dispersion Sdes0 js 5 generating matrix of a perfect M x M
The next Theorem is an extension Of [6, Theorem 3.1]. TR§AM based linear dispersion ST cod&ST with

notation[z]* £ max(z,0) is used. Smin(CST) = infoxcest |det(X)|2 > 0. Then, applying
Theorem 3:Let CST be anM x M perfect linear dispersion |F €qualization to the aggregate channel yields

ST code over a QANbo) constellation withdmin(CST) = ST

infoxeest|det(X)[? > 0, and let CST be its sub- SNRefr > 8M66m'n(c 2

code over a QAML) constellation. Then, for all chan-tor a| channel matriced with corresponding Wi mutual

nel matricesH with corresponding WI mutual '“format'on|nformat|onCW| log det(I + SNRH'H), M transmit anten-
Ciw = logdet(I+ SNRHH), M transmit antennas and anas and an arbitrary number of receive antennas

arbitrary number of receive antennas andoat X < CST
Proof: Applying Lemmal2 to the aggregaf€é M x M?
SNR|HX |2 > [min(CSTy 325 — anzr?] channel matrixfl = HP gives

y=HPXx+2z

1 2 2 ]
Proof: The proof closely follows that of [6, Theorem 3.1], SNReft > AMA 1 mm (L + SNRdpn(FL, L)) . (26)
and is given in AppendikC. Using Corollar)D. thls is bounded by
Let H = I, ® H, as in [28). The next simple corollary of
TheoreniB will be used in Sectigd V to prove the main resuiNRcs > (

+
6m.n ST) 793 —2M2L2} )
of this paper.

+
Corollary 1: Let P € CM**M” pe a generating matrix min | L2 + Smin(C) Ao Ny
of a perfectM x M QAM based linear dispersion ST code - 4M4 L=1,2, 2M?
C3T with 6min(CS)) = infoexecst | det(X)]? > 0. Then, for all o
channel matriced with corresponding WI mutual informa- > 8Mﬁ ——min(C3)) 2730
tion Cw, = log det(I + SNRH'H), M transmit antennas and )
as desired. ]

an arbitrary number of receive antennas
The next theorem shows that precoded IF attains the com-

+
ST
SNRd} i, (HP, L) > [5mln(c yir2 i a2 pound MIMO capacity to within a constant gap.

min

Proof: Consider the subcodeST of CST, defined over a  Theorem 5:Let P € CM**M’ pe a generating matrix of
QAM(L) constellation. Then, for any € QAMM (L) there a perfectM x M QAM based linear dispersion ST codg’

exist a code matriXX € CST such that With min(CS]) = infoxeest | det(X)|* > 0. For all channel
matricesH with M transmit antennas and an arbitrary number

vee(X) = Pa. of receive antennas, precoded integer-forcing with thequte
Now, ing matrix P achieves any rate satisfying
SNR||HPa||* = SNR|H vec(X)||? Rpar < Cwi — T (6min(CS), M),
= SNR|HX % whereCy = log det(I + SNRE'H), and
Omi (CST)ﬁ2% —2M?L? ! ST a 1 2
min\® oo , T (6min(C), M) £ log Fr) +3Mlog(2M*=). (27)
where the last inequality follows from Theorémh 3. It follows e
that Proof: In precoded IF, the matriP is used as a precoding
SNRdZ,(HP, L) = min SNR||HPal? matrix that transforms the origin&l x M MIMO channel [1)
a€QAMM” (L)\0 to the aggregat&’ M x M? MIMO channel
STy 95w 22|
> [5mm(coo)mz D) Vo) 2l ¥ = HPX + 2

n = Hx + 7, (28)

as described in Sectidnllll, and then IF equalization is iegpl

to the aggregate channel. Assuming a “good” nested lattice
The next theorem lower bounds the effective signal-to@oigsodebook is used to encode all/2 streams transmitted over

ratio of precoded IF equalization, where the precoding matithe aggregate channel, by {13), IF equalization can achieve

generates a perfect linear dispersion ST code. The obtairgg rate satisfying

bound depends on the channel matkk only through its

corresponding WI mutual information.

V. MAIN RESULT

R|F’aggregate< M2 10g(SN Reff)
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Using Theoreni 4, it follows that any rate satisfying

1 C
RIF,a1ggregate< M? log —66min (CEJ) 4 2#
8M 10"
1
= MCwi — M log ——== — M*log(8M°) 8
Smin(CS) s
is achievable over the aggregate channel. .%10
Since each channel use of the aggregate chamnél ( 3
corresponds ta\/ channel uses of the original channgl (1) £ 107}
the communication rate should be normalized by a factor g
1/M. Thus,Rp.r = RiFaggregad M, and the theorem follows. =
10
[ |
Example 2: The Golden-code [11] is a QAM-based perfec . I
2 x 2 linear dispersion space time code, With (CST) = 1/5. 107, . . . . : é\ . .
Thus, for a MIMO channel with\/ = 2 transmit antennas, Gap-to-Capacity [bits]

its generating matrixP € C*** can be used for precoded
integer-forcing. Theorerh] 5 implies that with this choice ofig. 6. The probability density function of the gap-to-ceiba achieved

P, precoded integer-forcing achievédy, to within a gap by prgcoded II_: with _“good" nested Iattices_ 0ve_r2(_:1>< 2 MIMO chan-
nel with Rayleigh fading, where after drawinHl it is scaled such that

Of I'(1/5,2) :_20-32_bit31 which tr§n5|ates. to a gap 6f08 |, gy |T+ SNRHTH| = 30bits. The precoded matrix that was used is
bits per real dimension. In fact, using a slightly more calrefthe generating matrix of the Golden code. The probabiliat tirecoded IF

analysiﬂ it can be shown that, with this choice Bf precoded achieves less tha®0% of capacity is smaller thaf.0015 in this scenario.
integer-forcing achieveSy, to within 15.24 bits, i.e.,3.81 bits

per real dimension.
antenna w.r.t. the former. Moreover, Theorei 4 can also be

While the constants from Examglé 2 may seem quite larggsed to obtain an upper bound on the error probability of
one has to keep in mind that this is a worst-case bounstecoded IF with uncoded transmission.
whereas for the typical case, under common statisticahagsu Proposition 1: For all channel matriceH with correspond-

tions such as ngleigh _fading, the gap-to-capacity obminﬁj WI mutual informationCiw = log det(I + SNRHTH), M
by precoded IF is considerably smaller, as demonStratEdtrlgnsmit antennas and an arbitrary number of receive aasggnn

Figurel®. , the error probability of precoded IF with uncoded transioiss
Moreover, the recent work of Fischlet al. [49] demon- is bounded by

strates that for channels with a special structure, the gap

can be much smaller when precoded IF-SIC| [37] is used. }_m < AM2 _§2ﬁ(cW|7Rp,|pfr(5mm(c§g)_,1\4))
particular, [49] studies the compoupdrallel MIMO channe| ~ ©FFunceded= xp

and finds that for channels of dimensiofis< 2 and 3 x 3
precoded IF-SIC achieves at leddbs and82%, respectively, perfect linear dispersion ST codg' with minimum determi-
of the compound capacitfor any value of capacityTheo- NaNtmin(CST) = inf or | det(X)|2 > 0

remi3 provides an additive bound on the gap-to-capacity, an% Pn;:of'wUsing (%fietcho; error probabi'lity of uncoded IF

therefore guarantees that the fraction of the compound MIMO ' ™% X
capacity achieved by precoded IF approaches% as the equalization over the aggregate chanhel (28) is bounded by

compound capacity increases. It does not, however, provide < AP exp {_§2Ml2(Mz 1og(SNReff)—MRp..F)}
— 2 )

)

provided that the precoding matriR generates ad/ x M

useful efficiency guarantees, i.e. multiplicative bounfis, Pe,p-IF-uncoded

small capacities. The results [n ]49] indicate that withigrgly .
more complex scheme that also incorporates successive"ﬁﬁ‘-ere we have used the fact that the transmission rate over

terference cancelation, and a more limited channel modBf aggregate channel i3/ times Iarger than th? aptual
(parallel MIMO channel instead of the general MIMO chann&0Mmunication rateftp.e. Now, replacingSNReq with its
studied here), excellent performance can be guarantezébals bound from Theorerll4 establishes the proposition.  ®

low capacities.
V1. APPLICATION: RATELESS CODING FORMIMO

Note that although the proof of Theordrh 5 assumed that CHANNELS VIA PRECODED INTEGERFORCING

a “good” nested lattice code was used, a similar result holds )
when ag-ary linear code without shaping is used. This follows A notable feature of precoded IF is that the scheme, as
from the fact that the performance of the latter is only ddgca Well @s its performance guarantees, do not depend on the

by no more than the shaping loss big(2re/12) bits per number of antennas at the receiver side. In this section, we
exploit this property for developing efficient rateless esdior
“Namely, the product of successive minima of a lattice andlis! latice the MIMO channel. The rateless coding problem is another

in TheorenLl can be bounded using Proposition 3.3 fiom [48pad of the jnstance of a DoF-mismatch scenario, where the transmitter
result from [43]. The bound from _[48] involves Hermite's atant and gives

better results than those obtained using [43] only when semgll values of has to S'.mu“aneousw transmit t.O different (virtual) usexach
M are of interest. with a different number of receive antennas.
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PMX PMX
. P2M X P3M X Short code (rateR)
[ x Multiply by A Reorder groups of M >
X9 P P3i. X |[linear combinationg
X3
X= X4 P X P, X
Long code (rateR/2
P§%+1X > g ( /3
L XaM2 |
2
P X )

Fig. 7. An illustration of the proposed rateless code cowsin. Plf“ denotes the matrix obtained by taking tfte up to kth rows of the matrixP.

In an open-loop scenario, in addition to not knowing thm-phase components). Each complex stream is of lemgth
channel gains, the transmitter may also not know the capadind carriesnR/2M bits. These streams are then precoded
of its link to the receiver. A reasonable approach, in thisega using the matrixP € C*M**4M* \which generates a perfect
is to transmit a long codeword describing the informationd! x 2M linear dispersion ST code. This results in a set
bits, such that if the channel is “good”, the receiver cam stmf 4112 linear combinations of the coded streams. The linear
listening after a short while, whereas if it is “bad” a longecombinations are then split inté)/ groups each containing
fraction of the codeword is needed to ensure correct degodii/ linear combinations, such that the first group consists®f th
Since the code’s rate is not predefined, and depends on fingt M linear combinations, the next group contains the next
channel condition, such an approach is referred teatdess M linear combinations, and so on. The short code consists of
coding the odd groups of linear combinations, whereas the long code

A rateless code is defined as a family of codes that has #@nsists of both odd and even groups of linear combinations.
property that codewords of the higher rate codes are prajixesSee Figuré]7 for an illustration of the code construction.
those of the lower rate ones. A family of such codes is calledThe long code is transmitted duringMn consecutive
perfect(not to be confused with perfect linear dispersion Sthannel uses. At the receiver side, integer-forcing egatdin
codes) if each of the codes in the family is capacity-achigvi is applied. The receiver, which knows the channel capac-

In this section, we show how precoded IF can be used fioy, can decide whether the fir&M? linear combinations,
constructing a rateless code for the MIMO channel which isarresponding to the firseMn channel uses, suffice for
constant number of bits from perfect, i.e., each of its sdieso correct decoding of thé)M? coded streams, or allM/2 linear
achieves the compound MIMO capacity to within a constagbmbinations, corresponding to allM/n channel uses, are
number of bits. For sake of brevity, we only illustrate th@eeded. Theorefd 5 implies that if the capacity is greater tha
scheme through an example rather than give a full desaniptid? + I (6min(CST), 2M ) the short code can be decoded reliably,

Assume the channel model is the one fréin (1), and the geaid if it is greater thanR?/2 + I (6min(CST),2M) the long
is to design two codes with ratég andR/2, where the higher code can be decoded reliably.
rate code is a prefix of the lower rate one. It is further regglir  Note that although we have only described the construction
that for some predefined > 0 if the channel's capacity’ of a code that is compatible with two different rates, the
satisfiesC' > R+ ¢ the high-rate (short) code can be decodesforementioned construction can be easily extended to any
reliably, and if C > R/2 + ¢ the low-rate (long) code cannumber of rates.
be decoded reliably. This problem can be viewed as that of
designing a code which is simultaneously good for the two VIl. DISCUSSION ANDSUMMARY

channel matrices B ] ] )
The additive Gaussian noise MIMO channel in an open-

H, = [ I(—)I g ] and H, = { I(_)I 31 ] , loop scenario, where the receiver has complete channel stat
information whereas the transmitter only knows the white-
since the effective chann#l; is obtained from twice as manyinput mutual information was considered in this paper. It
channel uses akl;, which corresponds to a code twice asvas shown that using linear precoding at the transmitter in
long. If H € CNY*M thenH,, H, € C2V*2M |nthe previous conjunction with integer-forcing equalization at the rigee
section, it was shown that precoded IF can simultaneouslyffices to approach the capacity of this compound channel
achieve the capacity of any MIMO channel to within a constat within a constant gap, depending only on the number of
gap. In particular, it can simultaneously achieve the ciépactransmit antennas. To the best of our knowledge, this is the
of H; andH,, to within a constant gap. first practical scheme that guarantees an additive loss w.r.
The rateless code is therefore constructed feiavi? com- the compound capacity. Such a performance guarantee is much
plex streams of linear codewords (each consisting of os&onger than DMT optimality, which is at present the common
linear codeword in its quadrature component and one in kenchmark for evaluating schemes. In particular, althcugh
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results are free from any statistical assumptions, they C\mhere{zz}f:1 are i.i.d. Gaussian random variables with zero
be interpreted to obtain performance guarantees in a MIM@ean and some variane€ and {dk}?: are i.i.d. random
fading environment. Specifically, a scheme that achievesvgriables, statistically independent £f,},_ ,, uniformly dis-
constant gap from capacity is DMT optimal under any fadlnmibuted over the interval—p/2,p/2) for somep > 0. Let
statistics, and achieves a constant gap from the outage|0ﬁpageﬁ £ E(22). Then
under any fading statistics. )
IF equalization uses coded streams, and is therefore ysuall  py(. ¢ > ) = Pr(ze < —7) < exp {_ 72 } .
less suitable for fast fading environments. Nevertheless, Oeff
have also developed new upper bounds on an uncoded version N _ _ _
of IF equalization, which is more adequate for fast fading. ~Proof: The probability density function ofe is symmet-
We note that while uncoded IF equalization is quite simitar tiC around zero and hence
lattice reduction aided decoding, to the best of our knogéed _ Pr(zer > 7) = Pr(zert < —7).
the performance of the latter was never analyzed at such a fine
scale. Applying Chernoff’s bound gives (fos > 0)
Another appealing feature of the described scheme, inher-

ited from the properties of its underlying perfect ST codes, Pr(zer > 7) < e "TE (")

is that it is independent of the number of receive antennas, - e*“]E( s(Tio eem+ 5, Bkdk))
and the performance guarantees obtained in this paper do not

depend on the number of receive antennas as well. Hence, the Cer L sz s (e"Pxiv)
scheme is not sensitive to a degrees-of-freedom mismatch. —¢ H E(e H

The compound channel studied in this paper includes all
channel matrices with the same white-input mutual infokJsing the well-known expressions for the moment generating
mation. In certain scenarios, such as multicasting the safti@ctions of Gaussian and uniform random variables gives
message to a finite set of users whose channel matrices
are known at the transmitter, it makes sense to consider

1.2,.2 2
szl _ o35 Qio
E (e )=e2 =,

compound channels with a relatively small number of users. E (esﬁkdk) _ sinh(sfxp/2) < e%*’iépz
Recent work([50] demonstrates that precoded IF-SIC pegorm sBrp/2 ’
remarkably well in such scenarios and achieves a largedract,here the last inequality follows from

of the compound capacity, even at small SNRs, under reasofin (z)/x < exp{z2/6} (which can be obtained by simple
able statistical assumptions on the distribution of thencleh Taylor expansion)[33]. It follows that

matrices.

Pr(zeﬁ > 7_) <e ST (Ze 10002+ 30 B 12)
ACKNOWLEDGMENT _ e,STJrlszgezﬁ (29)
Helpful discussions with Yair Yona, Elad Domanovitz,
Barak Weiss and Bobak Nazer are greatly acknowledged. Settings = /02 gives the desired result. ]
Now, using Lemma]4, the probability of detection error at
APPENDIXA the kth sub-channel can be bounded as
PROOF OFLEMMA [I] ~y
. . PekSPr(|Zeﬁk|Z—)
The output of thekth sub-channel with uncoded transmis- ' ' 2
sion is 72
< 2exp e
U = [vk + zefi,r] mod vqZ, Teff,k
wherewv, € vZ. The estimate), is generated by applying a = 2exp _ﬂ
simple slicer (nearest-neighbor quantizer wyZ) to gy, fol- 8q%og
lowed by mod ~¢Z reduction. The detection error probability 31
at thekth sub-channel is upper bounded by = 2exp {——q—ZSNReﬁyk} ,
P. i £ Pr (b, # vi) where the definition 06NRef ;. Was used in the last equality.

Y Using the fact thaty = 27 and thatSNRef 1, > SNRe for all
< Pr(|zefrr] > =) . . N
’ 2 k=1,...,2M, the detection error probability at each of the

In order to bound?, ;, a simple lemma, which is based 6n|[332M sub-channels can be further bounded as
Theorem 7] is needed. P < 20xp {_§22(5 log(SNReﬁ)—R)} .
Lemma 4:Consider the random variable 2

Since the IF equalizer makes an error only if a detection
Zeff = Zaezfz + Zﬂkdk error occurred in at least one of tl¥/ sub-channels, and
since the total transmission ratef = 2M R, the total error



probability of the IF equalizer with uncoded transmissiater
Re is bounded by
'}

= 4M exp {—g2ﬁ(M log(SNREﬁ)R”:)} )

BiE

2M

3
Pe,IF—uncodedS 4M exp {_522(% log(SNRer) =

APPENDIXB
PROOF OFLEMMA [3

Let ¢ : RT — R* be a real positive decreasing functio
with ¢(r) — 0 asr — oo, let IN*M £ [1/2 1/2)N>*M pe
the set of all matrices of dimensiod¢ x M with all entries
taken from the interval—1/2,1/2), and define the set

Wo(M, N, ) 2 {HeﬂN*M . ||Hall < ¢(lallo)
forim.a e ZM \ 0}, (30)

where||x||» £ max; |z;| is the infinity norm, and i.m. means

infinitely many. The next result froni [18, Corollary 2] showsSince L? is increasing inL and SNRL~2(
that Wo(M, N, ) has either zero Lebesgue measure or futireasing inL, the minimum in [(3B) is attained wheh?
Lebesgue measure, depending on the choice of the functgMRL 2

0.

Theorem 6: [18, Corollary 2] Lety) : R™ — R™ be a real
positive decreasing function witly(r) — 0 asr — co. For
M > N, if the series

Z wN(T)T‘M_N_l
r=1

converges then the s&lty (M, N, ) has zero Lebesgue mea-

sure, and if it diverges the s8t, (M, N, ) has full Lebesgue
measure.

For the choicey(r) = r—( , € > 0, the sum from
Theoren{® converges. This, implies that faf > N the set

M
~—1)

- _(M+te
m(MW)ﬁ{HeﬂNXM . || Halo < a2 ¥

fori.m. a ¢ ZM \O} (31)
has zero measure. Define the set

_o(Mte
80<M,N>ﬁ{H€“N*M | Ha|? < [Ja 7Y
fori.m. a € ZM\ O},

and note thaSo(M, N) € Wy (M, N), as|Ha||%, < ||Hal?.
The next Corollary is straightforward.

Corollary 2: For M > N and anye > 0, the set

Ho(M,N) £ {H eIVXM . @2 (H,L) < L2FD

forim. L € N}.

has zero Lebesgue measure.
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Proof: By the definition ofdmin(H, L), the setsSy(M, N)
andHy(M, N) are equal. The corollary then follows from the
fact thatW, (M, N) has zero measure and th&(M, N) C
Wo(M, N). [

Let Ho(M,N) = IN*M \ #,(M, N) be the complement
set of Ho (M, N), and note that{y(M, N) has full Lebesgue
measure. For anfl € H,(M, N) there exist a positive integer
L*(H) such that the inequality

M
~e—1)

dyin(H, L) > L™ (32)
"holds for any integet. > L*(H). It follows that
in (L2 + SNR(H, L )
L>HL1§(1H)( + SNRdmin(H, L)
> min (L2 +SNRL*2<MJ“1>)
L>L*(H)
> min max (LQ,SNRL_Q(%_U)
L>L*(H)
> min max (LQ, SNRL—2<MF—1>) . (33)
L>0
-1 s de-

M

+e .
~ 1 which occurs for

L? = SNR¥™+

This implies that

min_ L% + SNRd%;,(H, L) > SNR#
L>L*(H)

On the other hand, for an{d € Ho(M, N) we can find a
constantc(H) > 0 such that

min_ dmin(H, L) > ¢(H).
L<L*(H)

This follows from the fact that if there exist an integer
vectora € ZM \ 0 for which ||Ha||? = 0, then there are

infinitely many such vectors, which contradicts the factt tha
H < Ho(M, N). Thus, for anyH € Hy(M, N) we have

1
SNReff > W

1
BN

_min (L2 + SNRdZ,,(H, L))

min (
min
L>L*(H)

(c(H)SNR, SNR '+

min

L?>+d% (H, L
LSL*(H)( + mln( ) ))7

(L2 32 (H, L)) >

).

> % min (34)

Taking the limit of SNR — co we see that

1/21og(SNRef) N
11m
SNR—oo 1/21og(SNR) — M + €’

for any H € Ho(M, N) and M > N. Now, takinge — 0 we

see that for anyH € Ho(M, N) and M > N the IF scheme
achievesN degrees of freedom. Sindd € Hy(M, N) has
full Lebesgue measure, the IF scheme achiéVedegrees of
freedom for almost everHH € IV*M. To see why this is
also true for almost everfl € RY*M note that ifH ¢

IV*M " then we can scale it by a scalar < 1 such that

(35)
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pH € IN*M_ But sincedmin(H, L) > dmin(pH, L), this will  finding the worst channel matrifl w.r.t. the codewordX
only decreas&NRes. Thus, we conclude that the IF schemeeduces to the optimization problem
achievesN degrees of freedom for almost evddyc RV <M

which establishes the lemma fof > N. min  SNR Z [ 2| A |
The caseN > M is much easier. For any matrid < V1o Pmn m=1
RN*M we denote the smallest singular value by; (H). my
Standard linear algebra gives subject tOZ log(1 + [¢m|*SNR) = Cwi. (41)
m=1

2 2 2
[Hal|" > o, (H)[al|*. A lower bound on the solution of the minimization prob-

Since||al| > 1 for all a € PAMM (L) \ 0, we have Iem (I_l) can be obtained by replacimg, with M =z my,
) which increases (or does not change) the optimization space
— mi 2 72 and results in
SNRer > 775, min (L + SNRdm,n(H,L)) )
2
oy (H) in  SNR P
> ZILCZSNR, (36) i SNR Y (] A

m=1
M
subject to) _ log(1 + [hm[*SNR) = Cwi.  (42)

m=1

For N > M, the set of matriced € RY*M for which
o2,(H) > 0 has full Lebesgue measure. Applyingl(36) gives

im !/210g(SNRef) >1, (37) The solution to[(4R) is given by standard water-filling [6]
SNR— o0 1/2 log(SNR) M +
: 1

for almost everyH € RY*M when N > M. Combining [35) SNR|HX|% > Z [X — |)\m|2] , (43)

and [3T), we get that m=1

where )\ satisfies
im _Te(SNR) > min(M, N). (38) M N
SNR—00 1/210g(SNR) Z [1og< 1 )] . (44)
NEUED) = Lwi.
It is well-known (see e.g.[[4]) that for alH € RN*M, = AlAm [?

the number of DoF offered by the channel is not greatelih out
min(M, N), regardless of the coding scheme which is usegMQLQ
Combining this with [[3PB) gives

Rie(SNR)

loss of generalty we may assume that
gamm(cgg)m% as otherwise the theorem is
trivial. With this assumption, we next show that thé¢™t
operation in [(44) is not needed, and hence its solution is

S Ty Toa(SNR) min(M, N). (39 given by
for almost everyH € RV*M as desired. % =Ap-- AMI%2%. (45)
APPENDIXC To see this, one has to show that withA as above the
PROOF OFTHEOREMB inequality 1/X\ > |\,,|? holds for allm =1,---, M. First

recall thatX is a codeword from a perfect linear dispersion ST
code over an QANIL) constellation. LefP be the generating
H=U, 9V} andX = U,AV} matrix of the codeCST. Thus, vec(X) = Ps for some
vectors whose M? components all belong to the QAM)
be the singular value decompositions (SVD) Hf and X, constellation. This implies that
respectively. With this notation

Consider some arbitrar§ # X € CST and let

M
SNR|HX |2 = SNR||[ &V U, A|[2. (40) > Pl = IIXI1%
m=1
Suppose without loss of generality that the (absolute)uarg = || vec(X)]?
values are ordered by increasing valueAirand by decreasing = ||Ps|?
value in: 9
= |lsll (46)
A =diag{\1,..., \m}, < 2M2L2, 47)

W = diag{tr, - Ym0+, 0}, where [46) follows from the fact th@ is unitary. In partic-
wherem,, £ min{M, N}. In order to establish the desiredular, (47) implies that
result one has to find the chanrdl with corresponding WI A |2 < 9OM22
mutual informationCyy, that minimizes [(40). The rotation mho=
matrix V; that minimizes[(4D) isV, = U, which aligns the for all m =1,..., M. Since by definition
weaker singular values of the channel matrix with the steong ) ) ST
singular values of the code matrix |[51]. Thus, the problem of A= Au|” = | det(X)[* = dmin(C),



we

have forallm =1,..., M
Am)? < 2M2L2
< 6min(C§J)ﬁ2

|)\1...)\M|%2%

[17]

(18]

Cwi
M

< [19]
1
=3
Thus, [@5) indeed solveE (44). (20]
Substituting [(4b) into[{43) gives
- M Jr
C 21
SNRIEX |2 > |M[Ar-- Aar 23 = 37 7,2 1]
L m=1
r [22]
> [ Mmin(CST) 23 2M2L2}
> [Gmin(CSTy A 23 2M2L2} [23]
as desired. [24]
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