arXiv:1202.0621v1 [cs.IT] 3 Feb 2012

1

New Geometrical Spectra of Linear Codes with

Applications to Performance Analysis

Xiao Ma*, Jia LiuT, and Qiutao Zhuarig
*Department of Electronics and Communication Engineer8yy) Yat-sen
University, Guangzhou 510006, GD, China
fCollege of Comp. Sci. and Eng., Zhongkai University of Agtiare and
Engineering, Guangzhou 510225, GD, China
Email: maxiao@mail.sysu.edu.cn, ljia2@mail2.sysu.edand

zhuangqgt@mail2.sysu.edu.cn

Abstract

In this paper, new enumerating functions for linear codesdafined, including the triangle enu-
merating function and the tetrahedron enumerating functimth of which can be computed using
a trellis-based algorithm over polynomial rings. The comational complexity is dominated by the
complexity of the trellis. In addition, we show that thesevnenumerating functions can be used to

improve existing performance bounds on the maximum likelih decoding.

I. INTRODUCTION

The weight enumerating function (WEF) [1] is a figure of mesfta linear code, which
plays a fundamental rule in the performance analysis of tAgimmum likelihood (ML) decoding
algorithm. The conventional union bound, which involvesyopair-wise error probabilities, is
simple but loose and even diverges in the low signhal-toenoédio (SNR) region. One general
methodology to improve the conventional union bound, asvehn [2], is invoking the Gallager’s
first bounding technique (GFBT)

Pr{E} < Pr{E,y € R} + Pr{y ¢ R}, (1)
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where £ denotes the error eventdenotes the received signal vector, ddlenotes an arbitrary
region around the transmitted signal vector which is uguallerpreted as the “good region”.
Most existing upper bounds within this framework, say, [3}-Tirst choose the regio® such
that the second term of (1) can be easily evaluated and thewedgpper bounds on the first
term of (1) by using (conditional) pair-wise error prob#ek and the whole (or truncated) WEF
of the code.

Yousefi and Khandani [9] derived an improved upper bound bywgua Bonferroni-type
inequality of the second degree instead of the union boumteShe resulting upper bound
cannot be calculated in terms of the distance spectrum otdle, the original codebook is
enlarged by alh-tuples of Hamming weighiv, resulting in a bound that is solely dependent on
the distance spectrum but becomes looser. Very similarlyeMal [11] proposed using triplet-
wise error probabilities instead of pair-wise error prabaés to improve the union bound. To
make the proposed bound computable in terms of the distgrextram of the code, an upper
bound on the triplet-wise error probability is derived irl[Lemma 4]. It has been shown that
the union bound based on the triplet-wise error probahsityghter than the conventional union
bound [11, Theorem 1].

This paper is concerned with further tightening the unionrbby alleviating the repeated
accumulations caused by the use of the pair-wise error piiiiees. The basic approach is to
explore more detailed geometrical structure (beyond tkstadce spectrum) of the code when
upper bounding the error probabilities. The main resultsvab as the structure of this paper

are summarized as follows.

1) In Sec. Il, we define two new enumerating functions fordineodes, the triangle spectrum
and the tetrahedron spectrum, both of which can be calculatea trellis-based algorithm.

2) In Sec. lll, we derive improved union bounds based thegla spectrum and the tetrahe-
dron spectrum of binary linear codes. A toy example is giweshiow that the improvement
is possible in the low-SNR region, as expected. The propasedn bound may be
combined with other upper bounding techniques based on GPBBientially resulting
in tighter upper bounds.

3) Sec. IV concludes this paper.
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[I. NEwW SPECTRA OFLINEAR BLOCK CODES

Let I, be the finite field of size. Let [F; denote then-dimensional vector space consisting
of n-tuples overl,. Givenuv 2 (vo,v1,- -+ ,vn_1) € Fy, the number of non-zero component of
v, denoted byWy(v), is called the Hamming weight of. The Hamming distance between two
vectorsy andw is defined adVy (w — v). A linear codeC,[n, k] is defined as &-dimensional
linear subspace df;. A vector inC,[n, k] is called a codeword. There ag& in total codewords
in C,[n, k], which are simply indexed by”, 0 < i < ¢*—1. Specifically, we usel®) to represent

the all-zero codeword.

A. Weight Enumerating Function
Definition 1: The weight enumerating function (WEY C,[n, k| is defined as [1]

AX) 23 A (2)
where X is a dummy variable and; denotes the number of codewords having Hamming weight
1.

The sequencéA;, 0 < i < n} is also calledveight spectrunof the code, which exhibits how

many codewords that arepositions far away from the reference codewaofd. By linearity,

we know that the weight spectrum is irrelevant to the refeeecodeword. Clearly, we have
Y Ai=¢" -1 (3)

For a binary code with the all-one codeword, we further hdye- A,,_; for 0 <i < n.

B. Triangle Enumerating Function

Definition 2: Let ¢© be the all-zero codeword and" be an arbitrarily given non-zero
codeword. Theriangle enumerating function (TrER)f C,[n, k| is defined as
B X,Y) £ Biy(dV) XYY, (4)
irj
where X, Y are two dummy variables anB; ;(c'!)) denotes the number codewordsatisfying
We(c— ) =i andWy(c — M) = 5.
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Generally, the TrEF depends on the choice of the referendeveardc). When the context is
clear, we may drop the reference codeword from the notafiba.sequencéB; ;,0 < i,j < n}
is also called thdriangle spectrunof the code. Clearly, we have

> Biy=q¢"-2 (5)
1<i,j<n

For binary codes with the all-one codeword, we have the fiotlg proposition.

Proposition 1: Suppose thaf,[n, k] has the WEFA(X) such thatA4, = 1. Let ¢ be the

codeword of weight.. Then
Bi,j = : (6)
0, i+j#n
Proof: It can be proved by noticing that'y (c—c) = i if and only if Wy (c—cV) = n—i.
]

C. Tetrahedron Enumerating Function

Definition 3: Let ¢ be the all-zero codeword. Lef!) and ¢® be two arbitrarily given

codewords. Theetrahedron enumerating function (TeE&) the codeC,[n, k| is defined as
(W, Xx,Y,2) 2 Z Ciin(cW, @) XYz, @)
i,5,h

where X, Y, Z are three dummy variables add; ,(cV), c?) denotes the number of codewords
c satistyingWy (¢ — ) =i, Wy(c— W) = j andWy(c — ¢?) = h.

Generally, the TeEF depends on the choice of the referendewardsc)) and ¢». When
the context is clear, we may drop the reference codewords tiee notation. The sequence
{Ci;n0<14,5,h <n} is also called theetrahedron spectrurof the code. Clearly, we have

Z Cz',j,h = qk - 3. (8)

1<i,j,h<n

D. An Example

We take the Hamming cod&,[7, 4] as an example to illustrate the introduced enumerating
functions.
The WEF is
AX)=1+7X3+7X* + X"
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Since the TrEF depends on the choice of the reference codeiWarwe distinguish following

three cases.
Case LiIf Wy(cW) =7,
B(X,)Y) =Y "+ 7X3Y* + 7XY? + X7
Case 2:If Wy(cM) = 4,
B(X,)Y)=Y*+ X" +6X%Y3 + X3V 4+ 6XY* + XTY3.
Case 3:If Wy (cM) =3,
B(X,Y)=Y3+ X?* 4+ 6X°Y* +6X'Y? + XY + XY

Similarly, the TeEF also depends on the choices of the neéereodewords™ andc?. We

have
Case 1:f Wy(cM) =3 and Wy (c?) = 3,
C(X,Y,Z) = Y323 + X3V + X374+
SX3YAZ4 4+ 5XAY3Z3 + XAY3 2T + XAY 23 + XY 74,
Case 2:If Wy (cV) =3, Wy(c?) =4, and Wy (c® — V) = 3,
C(X,Y,Z) =Y3Z4 + X32° + X1V3+
5X3YA7Z3 + X3YAZT 4 5XAY3 7 + XAY T2 + XTYA 73,
Case 2":If Wg(c) =3, Wy (c?) =4, and Wy (c® — V) =7,
C(X,)Y,Z)=Y32*+ X327+ XY+
6X3Y473 +6X4Y3 74 4+ XTY4 73,
Case 3:f Wy(cM) =3 andWy(c?) =7,
C(X,Y,Z)=Y3Z" + X374 + XY+
6X3Y4Z4 +6XY3 23 + XY 73,
Case 4:If Wy (cV) =4 and Wy (c?) = 4,
C(X,Y,Z) = Y1z + X174 + X1Vt

5X3Y373 + X3Y3ZT + X3YTZ3 + 5 XAV 74 + XTY3 78,
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Case 5:f Wy(cM) =4 and Wy () =7,
C(X,Y,2)=Y*Z"+ X473 + XTY3+

6X3Y3Z4 + X3Y" 74 + 6 XY 73,

E. Computing the Enumerating Functions Over a Trellis

It is well-known that any linear block code can be represgibtea trellis [12] [13]. Generally,
a trellis that represent,[n, k| can haveN stages. The trellis section at stagl) < ¢ < N —1),
denoted by3;, is a subset of; x 7 X S, 1, whereS; is the state space at timeA branchb € B,
is denoted by 2 (07 (b),£(b), 0™ (b)), starting from a state™(b) € S;, taking a label(b) € F;",
and ending into a state®(b) € S;.;. A path through a trellis is a sequence of branches
(bo, b1, -+ ,by_1) satisfying that, € B, ando~ (b,,1) = o (b;). A codeword is then represented
by a path in the sense that= (¢(by), £(b1),- -+, £(by—1)). Naturally, >, _, n; =n and the
number of paths ig*. Without loss of generality, we s&, = Sy = {0}.

Proposition 2: Given a trellis representation af,[n, k]. Let ¢© (the all-zero codeword),
¢V and ¢? be three reference codewords. The corresponding pathedeaded byb® =
B B0 By, b = o B B0 ) andb® = (P 6 -+ bC) ), respectively.
Then the enumerating function (WEF, TrEF or TeEF) is equal¢0), as calculated recursively
by the following trellis-based algorithm over a properlyfided polynomial ring.

« Initially, set ay(0) = 1.

e FOrt=0,1,--- ,N —1,

aals) = Y alo (0)nu(b) 9)
beBs,ot (b)=s
for each state € S;.1, where~,(b) is specified as follows.
Case 1:For computing WEF;y,(b) 2 X1, wherei = Wy (€(b)).
Case 2:For computing TrEFy,(b) 2 XY, wherei = Wy (b)) andj = W (£(b) —
().
Case 3:For computing TeEFy,(b) 2 X{Y7 2", wherei = Wi (6(b)), j = Wi (£(b) —
(%)) andh = Wi (€(b) — €(5)”)).
Proof: The algorithm is similar to the trellis algorithm over pobmial rings for computing

the weight enumerators of paths [12]. [ |
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Remark. It can be seen that the computational complexity of the &lgorgiven in Propo-
sition 2 is dominated by the complexity of the trellis [12}of this algorithm, we also know
that B(c"; X,Y) = C(cM,c?: X, Y, Z =1) and A(X) = B(cW; X,Y = 1).

[1l. 1 MPROVED UNION BOUNDS FORBINARY LINEAR CODESBASED ON GEOMETRICAL

SPECTRA

In this section, we focus on tightening the conventionabartbbound based on pair-wise error

probabilities by exploring further the geometrical stuuret of codes.

A. Geometrical Properties of Binary Codes

LetF, = {0,1} and A, = {—1, +1} be the binary field and the bipolar signal set, respectively.
Suppose that a codeword= (cy, ¢, - ,c,—1) € Co[n, k] is modulated by binary phase shift
keying (BPSK), resulting in a bipolar signal vectoe A7 with s, =1 —2¢, for0 <t <n—1.

We will not distinguish between a binary codewardand its bipolar image in the following,
except when we need to emphasize the difference between ahamiithg spacefy and the
Euclidean spac®™ > A7. The Euclidean distance between two codewards and s is

related to their Hamming distance Big® — sM|| = 2/Wy(c® — D). All codewords are

distributed on the surface of amdimensional sphere centered at the origin with radjts
This property is referred to as tlephericityof the bipolar code.

Assume that a codewordis transmitted over an AWGN channel, resulting in a receiector
y = s+z, wherez is a sample from a white Gaussian noise process with zero argdouble-
sided power spectral density*. The ML decoding is equivalent to finding a bipolar codeword
s that is the closest tg. Since the decoding metric is the Euclidean distance, tloeng&ical
structure of the code iiR" is supposed to be critical to analyze the ML decoding peréorre.
However, to the best knowledge of ours, with the exceptiohef distance spectrum and the
sphericity of the code, other figures of merits of the codeewarely employed to upper bound
the ML decoding error probability. To reveal more infornoatiabout the geometrical structure of
the code, we have the following two propositions, where Bstipn 3 was originally mentioned
in [14] without proofs.

Proposition 3: Any three codewords form a non-obtuse triangle. Furtheemibrsome three

codewords form a right angle, there must exist a fourth caddwompleting the rectangle.
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Proof: For a detailed proof of the first part, see [11].
To prove the second part, we may assume by linearitystHats() ands® form a right angle,
that is,m is orthogonal tos”) s, Noting that this holds if and only i#V (c") + c¢®) =
W (cW) + Wy (c?), implying that the two codewords® and¢® are not “overlapped” (no
common non-zero positions). Hence the binary additibn-c can be treated as a real addition.

Define the codeword® = ¢ + ¢, We can verify that

= = )

which means thajm falls inside the plane determined W and@ and hence©,

51, 5 ands® must form a rectangle. Otherwise, some three of them woult fan obtuse

triangle. [ ]
Proposition 4: Any four codewords form either a tetrahedron or a rectangle.

Proof: From Proposition 3, any three codewords form a non-obtuaedie, which deter-
mines a two-dimensional plane. If the fourth codeword fatiside the same plane, the four
codewords must form a rectangle; otherwise, some threeeaf thiould form an obtuse triangle.
If the fourth codeword falls outside that plane, then ther foadewords form a tetrahedron in a
three-dimensional space. [ |

With BPSK signalling, we also refer WEF, TrEF and TeEF toga®metrical spectraf a

code. Fig. 1 shows the geometrical spectra of the Hamming €¢d, 4].

B. Improved Union Bounds Based on Geometrical Spectra

Assume that(® is transmitted. For a codeword let

A
{8 = s} 2y lly — sl <y — s,

which is the event that is nearer thas® to y. We use{s®) - s} to denote the complementary
event.

To derive the upper bounds on the decoding error probalitity~'}, we take two arbitrary
but fixed codewordg") ands® as reference codewords. Lét = Wy (cV), dy = Wy (c?)
andd; » = Wy (M — ). For a codeword, leti = Wy (c — ), j = Wy(c—cV) andh =
Wi(c—c®). It is well-known that thepair-wise error probability (PEP)p, (i) 2 Pr{s© — s}
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Fig. 1. Geometrical spectra of the Hamming cat¢7, 4], wheres™, i = 0, 1, 2, are taken as the reference codewords and

each edge is labeled by the Hamming distance. (a) The wepglttreim. (b) A triangle spectrum. (c) A tetrahedron speutru

is given byQ(+/i/o) and depends solely on the Hamming weight. Going a step furtieecan
verify that thetriplet-wise error probability (TrEP) defined by

pali.) £ Pr{(=” - s = 5)},

depends solely on the triangle formed by the three codew@itsilarly, the quadruple-wise
error probability (QUEP) defined by

paliy g h) & pr{( s @ = s s - §)}7
depends solely on the tetrahedron (or rectangle) formetidjour codewords. For these reasons,
we have dropped the codewosdirom the notation and simply denoted these probabilities by
pa(1), p3(i,j) andpqy(i, 7, h) as shown above.

To compute the introduced error probabilities convenientle may use a new coordinate
system by choosing® as the originO and takingg@ as an axis, denoted lgy-coordinate.
We further choosé,-coordinate such that® falls into the first quadrant of the plargO&,.
Similarly, we choose&;-coordinate such that the fourth codewardalls in the first octant, as
shown in Fig. 2. Note that such an arrangement does not lgsgearerality. Let”Z,,, Z,, andZ,

be the three components obtained by projecting the ngismto the three axes, respectively.
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(a) (b)

Fig. 2. Geometrical interpretation of error probabilitiés) Triplet-wise error probability. (b) Quadruple-wisea probability.

s(D_4(0)

Specifically, Z¢, is the inner product Z, m>. These three component are independent

and identically distributed as a Gaussian random variabte & probability density function

f(z) = 2 exp{—%}. We have the following lemmas.

2no

Lemma 1: The TrEP can be calculated as

palinf) =1 - / / e (&) &y dés, (10)

whereQ = {&, < Vdy, &1 cosf + &sind < i} andcosf = (dy 41 — 5)/(2v/dqi).
Proof: It can be proved by verifying that, given the three codewpfdss exactly the
Voronoi region ofs¥). See Fig. 2 (a) for a reference. [ |

Lemma 2:The QUEP can be calculated as

,75,h) =1— d& déy dés. 11
piii) = 1= [ [ [feoserie) s ag dg )
The integration domain
& < dy, & cosl+Esind < \/dy,
& singcosa + Esingsina + & cos d < Vi

can be determined by computing the azimuth arfigtéf 52, the azimuth angler of s and the
colatitude angley of s. See Fig. 2 (b) for a reference.
Proof: It can be proved by verifying that, given the four codewofdss exactly the Voronoi

region of 50, |
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Remark. Note that the angles appeared in Lemma 2 are computable tiieeedge lengths
of the tetrahedron. For example,can be computed by the law of cosiness§ = (d; + dy —
d12)/(2v/d1d2). And the expressions fax and ¢ can be obtained by

\/(i +dy — )2 cos?f + dl(i+§l§_h)2 _ 2V cose(i%—jxwdz—h)

o = arctan
(i 4+dy —j)sinf
and
(H—dl —j)2 _ (i+d2—h)? 2 cos 0(i+d1—j)(i+da—h)
= redin \/ 4isin? @ — rrami o ds
2/isin 6 ’
respectively.

Also note that Lemma 2 is still valid in the case when the fauatewords form a rectangle. It
is worth pointing out the both TrEP and QUEP can be transfdrimi® repeated integrals easily.
Theorem 1:Let ¢ be any fixed reference codeword WWH( ) = d; > 1. Assume that
the corresponding triangle spectruf, ;} is available. The ML decoding error can be upper

bounded by

Pr{E} < — Q(\dy /o) + Z B; ;ps(i, j),

1<i,j<n
whereps(i, ) are given by (10).
Proof: From the second-order Bonferroni-type inequality, we have

Pr{E} = Pr{U o — 5)}

< Pr{s® — 50} + ' Pr{s® - 50,50 - 5}

=—(2" = 3)Pr{s® = sV} + 3 Pr {(s” = sV)U(s” = )},
where the summatiop " is over all{s : s # 5%, s # sV}, This completes the proof by noting
that the TrEP depends only on the types of the triangles. [ |

Theorem 2:Let ¢V andc® be any two fixed reference codewords with; (c) = d, > 1,

Wy () =dy > 1 and Wy (c® — V) = d;, > 1. Assume that the corresponding tetrahedron

spectrum{C; ;,} is available. The ML decoding error can be upper bounded by

Pr{E} < —( — 4)ps(da, di o) + Z nghp4 i,5,h),

1<4,5,h<n
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[7,4] Hamming code

,,,,, - - - - - - _-~‘-—~-~-~-~“"T--~“-~ -~ ‘[ --"“"“"JI- """ """ """ "~ "T_~——"7]

[T-2-722277r=7| — % Simulation 7

:::j;:::;i: —— — Original Union Bound 4

””” 4Tt Union Bound based on triangle spectrum 7

x”\f""f’ - Union Bound based on tetrahedron spectrum ||
J

i

Upper bounds on frame-error probability

et
o

E/N, [dB]

Fig. 3. Comparison between the upper bounds on the franse-probability under ML decoding of [7, 4] Hamming code.
The compared bounds are the original union bound, the urdond based otriangle spectrunand the union bound based on

tetrahedron spectrupwhich are also compared with the ML simulation results.

whereps(ds, di 2) andpq(i, j, h) are given by (10) and (11), respectively.
Proof: From the third-order Bonferroni-type inequality, we have
Pr{E} = Pr {Ugyég«n (s — §)}
< Pr{(s©® = s U(s? — s?)}+

E PI' {§(0) —> §(1)7§(0) —> §(2)7§(0) — §}
s#s(1) 1=0,1,2

= — (28 —4)Pr{(s© = sV)U(s® — s@)}

+ Y Pr{s® = sO)JsO = s)UsO - s)),
s#s(1) i=0,1,2

completing the proof. [ |

C. Numerical Results

From the proofs of Theorems 1 and 2, we know that the proposedds compute the higher-
order Bonferroni-type inequalities. Hence the proposeaahls are tighter than the conventional

union bound. To verify this numerically, we give an exampgt&y. 3 shows the comparisons
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between the original union bound and the bounds given in f#m® 1 and 2 on the frame-
error probability of the Hamming codé&,[7,4]. Also shown are the simulation results. The
TrEF and TeEF we choose af(X,Y) = Y + X3 + 6X3YV* + 6X*YV3 + X'Y" + X"Y* and
C(X,Y,2)=Y3 23+ X3V 4+ X324 4 5 X3Y A 24+ 5 XY3 23 + XAY3 2T+ XY 723+ XTY 4 74,
respectively. We can see that the bounds using higher-adaferroni-type inequalities are

tighter, as expected.

I[V. CONCLUSIONS

In this paper, we have presented the definition of TrEF andFTdieth of which can be
computed using a trellis-based algorithm over polynomiajs. We have also derived the upper
bounds based ofriangle spectrumand tetrahedron spectrunrespectively, which can be used
to improve the union bound by alleviating the repeated actdations caused by the use of the

pair-wise error probabilities.
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