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Abstract—The likelihood encoder with a random codebook is output distribution induced by selecting an indexuniformly

demonstrated as an effective tool for source coding. Coupdewith gt random and applying™(m) to the memoryless channel
a soft covering lemma (associated with channel resolvahii), s i .
likelihood encoders yield simple achievability proofs forknown specified byPX|Y' Then if & > I(X;Y),

results, such as rate-distortion theory. They also producea
tractable analysis for secure rate-distortion theory and song Ec
coordination.

Index Terms—Coordination, likelihood encoder, rate-distortion

theory, source coding. asn goes to infinity, wherd| - ||y is total variation.
The concept of the soft covering lemma was introduced by
Wyner in [12], though with technical differences. Also, ghi
Here we present the simple analysis that results from usikgnma plays a key role in the proof of the resolvability of a
a likelihood encoder for source coding to replace, for edampchannel in [13].
a joint-typicality encoder (seel[1]). As with the joint-tiggality Armed with the soft covering lemma, we now give a simple
encoder, the likelihood encoder is defined with a specifiatjoiachievability proof for rate-distortion theory.
distribution in mindPx y . To encode a sequenge, xa, ..., Z,

Pxn — H Px
t=1

— 0 (2)

TV

I. INTRODUCTION

(i.e. z) using a codebook of sequencgd(m), the encoder II. RATE-DISTORTION THEORY
StOChaStica”y ChOOSES an indm(aCCOI’ding to the ||ke||h00d Th|5 theory addresses the Opt|ma| |Ossy Compression Of an
of y"(m) passed through the memoryless “test chanfglfy. j,i.d. source sequenc&™ distributed according toX; ~ Px
That is, under the following rate and fidelity constraints:
n Encoderf,, : X" — M (possibly stochastic).
Paixn(mla™) o< [ Py (@ilys(m)). (1)  Decoderg, : M — Y™ (possibly stochastic).
t=1 Compression rateR, i.e. |M| = 2"E,

This encoder has been used by Cuff et. al. to achieve strongridelity requirement: E  d(X™,Y") < D, where
coordination in[[2],[[8], [4], [5] and for secrecy systems[@), d(z",y") = %Z?:l d(xi, ;).

[7], [8], [@] because of the simplicity of the distributiohdt Shannon’s well-known theorem states that the infimum of
it induces. In those scenarios, a precise understandingeof aichievable rateRR that can meet the distortion constraibt

induced distributions is requisite for analysis. —optimized overm, f,, andg,—is given by
Here we demonstrate that the likelihood encoder can be .
used in more traditional source coding problems, such as the R = min I(X;Y).

. e . . ) Py | x:E[d(X,Y)]<D
achievability proof for rate-distortion theory. An extéms for

the proof of source coding with side information at the reeei ~ We give the achievability proof.

[10] is straightforward. Notice that the likelihood encode

is stochastic. Unlike strong coordination or secrecy syste Proof: o

most traditional rate-distortion settings can be showntoot SelectPxy = PxPyx such thatR > I(X;Y) and
benefit from a stochastic encoder. In fact, a stochasticdaicoE[d(X ", Y")] < D. Generate a random i.i.d. codebook
is usually strictly suboptimal. But just as the joint-tyglity ~according toPy and apply the likelihood encoder &fl (1) with
encoder is suboptimal, the motivation for using the liketid respect toPx y as f,. Let g, simply produce the sequence
encoder in these settings is in the analysis. y"(m) from the codebook.

As an added curiosity, the likelihoodkcoder has recently — Denote two distributions on the paix™,Y"). One is the
been proposed for channel coding(in/[11] because of its simglistribution induced by the encoding and decodifg. y~,
analysis. which we wish to analyze. The other is an idealized distribu-

The technique for analyzing the likelihood encoder relig#n Qx» y~ given by
on a soft covering lemma, analogous to the way that the

joint-typicality encoder relies on the asymptotic equijtemn Qxnyn (2", y")
principle. . no_ TR . .
Lemma 1.1 (Soft Covering - [4, Lemma 1V.1]): Given £ I Pxp (@ly) ok > 1{Y"(m) = y"}.
a joint distribution Pxy, let C be a random collection =1 m=1
of sequencesy™(m), with m = 1,...,2"% each drawn The distributionQx~ y~ can be interpreted as a uniform

independently and i.i.d. according 1&-. Denote byPx~ the distribution over the codebook applied to the memoryless
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channel given b}?x‘y. This is trivial to analyze. Notice that
when expectation is taken over the codebook,

]EC QXn,Yn (.’L‘n, yn)

2nR

- (HﬁXIY(%ﬁwt)) QnLR S Pe{Y"(m) =y}

= HﬁX,Y(xtvyt)' (3)
t=1

The key step is to show thaxn» y» ~ Qxn y~ in total
variation, and then use properties of total variation.tFirs

Ec |[Px» — Qxnllpy — 0,

due to the soft covering lemma, noting that. = H?Zlﬁx.
Also, notice thatPy» x» = Qyn|x» by construction of the
likelihood encoder. Therefore,

Ec ||Pxnyn — Qxnyn|lp, — 0. (4)
A well-known property of total variation gives:
Ep d(Xn,Yn) < EQ d(Xn,Yn) + 2dmamHP — Q”TV-

Finally, we average over codebooks to complete the exis-
tence argument:

EcEp d(X",Y") < EpdX,Y)+2dneEc||P - Q|rv
< D

for n large enough, due t¢1(3) and (4). [ |
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