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The Likelihood Encoder for Source Coding
Paul Cuff and Eva C. Song – Princeton University

Abstract—The likelihood encoder with a random codebook is
demonstrated as an effective tool for source coding. Coupled with
a soft covering lemma (associated with channel resolvability),
likelihood encoders yield simple achievability proofs forknown
results, such as rate-distortion theory. They also producea
tractable analysis for secure rate-distortion theory and strong
coordination.

Index Terms—Coordination, likelihood encoder, rate-distortion
theory, source coding.

I. I NTRODUCTION

Here we present the simple analysis that results from using
a likelihood encoder for source coding to replace, for example,
a joint-typicality encoder (see [1]). As with the joint-typicality
encoder, the likelihood encoder is defined with a specific joint
distribution in mindPX,Y . To encode a sequencex1, x2, ..., xn

(i.e. xn) using a codebook of sequencesyn(m), the encoder
stochastically chooses an indexm according to the likelihood
of yn(m) passed through the memoryless “test channel”PX|Y .
That is,

PM|Xn(m|xn) ∝

n
∏

t=1

PX|Y (xi|yi(m)). (1)

This encoder has been used by Cuff et. al. to achieve strong
coordination in [2], [3], [4], [5] and for secrecy systems in[6],
[7], [8], [9] because of the simplicity of the distribution that
it induces. In those scenarios, a precise understanding of the
induced distributions is requisite for analysis.

Here we demonstrate that the likelihood encoder can be
used in more traditional source coding problems, such as the
achievability proof for rate-distortion theory. An extension for
the proof of source coding with side information at the receiver
[10] is straightforward. Notice that the likelihood encoder
is stochastic. Unlike strong coordination or secrecy systems,
most traditional rate-distortion settings can be shown notto
benefit from a stochastic encoder. In fact, a stochastic encoder
is usually strictly suboptimal. But just as the joint-typicality
encoder is suboptimal, the motivation for using the likelihood
encoder in these settings is in the analysis.

As an added curiosity, the likelihooddecoder has recently
been proposed for channel coding in [11] because of its simple
analysis.

The technique for analyzing the likelihood encoder relies
on a soft covering lemma, analogous to the way that the
joint-typicality encoder relies on the asymptotic equipartition
principle.

Lemma 1.1 (Soft Covering - [4, Lemma IV.1]): Given
a joint distribution PX,Y , let C be a random collection
of sequencesY n(m), with m = 1, ..., 2nR, each drawn
independently and i.i.d. according toPY . Denote byPXn the

output distribution induced by selecting an indexm uniformly
at random and applyingY n(m) to the memoryless channel
specified byPX|Y . Then if R > I(X ;Y ),

EC

∥

∥

∥

∥

∥

PXn −
n
∏

t=1

PX

∥

∥

∥

∥

∥

TV

→ 0 (2)

asn goes to infinity, where‖ · ‖TV is total variation.
The concept of the soft covering lemma was introduced by

Wyner in [12], though with technical differences. Also, this
lemma plays a key role in the proof of the resolvability of a
channel in [13].

Armed with the soft covering lemma, we now give a simple
achievability proof for rate-distortion theory.

II. RATE-DISTORTION THEORY

This theory addresses the optimal lossy compression of an
i.i.d. source sequenceXn distributed according toXi ∼ PX

under the following rate and fidelity constraints:
Encoderfn : Xn 7→ M (possibly stochastic).
Decodergn : M 7→ Yn (possibly stochastic).
Compression rate:R, i.e. |M| = 2nR.
Fidelity requirement: E d(Xn, Y n) ≤ D, where

d(xn, yn) = 1
n

∑n

i=1 d(xi, yi).
Shannon’s well-known theorem states that the infimum of

achievable ratesR that can meet the distortion constraintD

—optimized overn, fn, andgn—is given by

R = min
PY |X :E[d(X,Y )]≤D

I(X ;Y ).

We give the achievability proof.

Proof:
SelectPX,Y = PXP Y |X such thatR > I(X ;Y ) and

E[d(Xn, Y n)] < D. Generate a random i.i.d. codebook
according toP Y and apply the likelihood encoder of (1) with
respect toPX,Y as fn. Let gn simply produce the sequence
yn(m) from the codebook.

Denote two distributions on the pair(Xn, Y n). One is the
distribution induced by the encoding and decoding,PXn,Y n ,
which we wish to analyze. The other is an idealized distribu-
tion QXn,Y n given by

QXn,Y n(xn, yn)

,

(

n
∏

t=1

PX|Y (xt|yt)

)

1

2nR

2nR

∑

m=1

1{Y n(m) = yn}.

The distributionQXn,Y n can be interpreted as a uniform
distribution over the codebook applied to the memoryless
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channel given byPX|Y . This is trivial to analyze. Notice that
when expectation is taken over the codebook,

EC QXn,Y n(xn, yn)

=

(

n
∏

t=1

PX|Y (xt|yt)

)

1

2nR

2nR

∑

m=1

PC{Y
n(m) = yn}

=
n
∏

t=1

PX,Y (xt, yt). (3)

The key step is to show thatPXn,Y n ≈ QXn,Y n in total
variation, and then use properties of total variation. First,

EC ‖PXn −QXn‖TV → 0,

due to the soft covering lemma, noting thatPXn =
∏n

t=1 PX .
Also, notice thatPY n|Xn = QY n|Xn by construction of the

likelihood encoder. Therefore,

EC ‖PXn,Y n −QXn,Y n‖
TV

→ 0. (4)

A well-known property of total variation gives:

EP d(Xn, Y n) ≤ EQ d(Xn, Y n) + 2dmax‖P −Q‖TV .

Finally, we average over codebooks to complete the exis-
tence argument:

EC EP d(Xn, Y n) ≤ EP d(X,Y ) + 2dmaxEC‖P −Q‖TV

< D

for n large enough, due to (3) and (4).

III. A CKNOWLEDGMENTS

This work is supported by the National Science Foundation
(grant CCF-1116013) and the Air Force Office of Scientific
Research (grant FA9550-12-1-0196).

REFERENCES

[1] T. Cover and J. Thomas, “Elements of Information Theory,” Wiley, second
edition, 2006.

[2] P. Cuff, “Communication Requirements for Generating Correlated Ran-
dom Variables,”ISIT, 2008.

[3] P. Cuff, H. Permuter, T. Cover, “Coordination Capacity,” IEEE Trans. on
Info. Theory, 56(9), 2010.

[4] P. Cuff, “Distributed Channel Synthesis,”to appear in IEEE Trans. on
Info. Theory, arXiv:1208.4415.

[5] S. Satpathy, P. Cuff, “Secure Cascade Channel Synthesis,” ISIT, 2013.
[6] P. Cuff, “A Framework for Partial Secrecy,”Globecom, 2010.
[7] P. Cuff, “Using a Secret Key to Foil an Eavesdropper,”Allerton, 2010.
[8] C. Schieler, P. Cuff, “Rate-distortion Theory for Secrecy Systems,”ISIT,

2013.
[9] P. Cuff, “Secrecy in Cascade Networks,”ITW, 2013.
[10] A. Wyner and J Ziv, “The Rate-distortion Function for Source Coding

with Side Information at the Decoder,”IEEE Trans. on Info. Theory,
22(1), 1976.

[11] M. Yassaee, M. Aref, and A. Gohari, “A Technique for Deriving One-
Shot Achievability Results in Network Information Theory,” ISIT, 2013.

[12] A. Wyner, “The Common Information of Two Dependent Random
Variables,” IEEE Trans. on Info. Theory, 21(2), 1997.
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