
Exact-Regenerating Codes between MBR and MSR
Points

Toni Ernvall
Turku Center for Computer Science

& Department of Mathematics and Statistics
FI-20014 University of Turku

Finland
Email: tmernv@utu.fi.

Abstract—In this paper we study distributed storage systems
with exact repair. We give a construction for regenerating codes
between the minimum storage regenerating (MSR) and the
minimum bandwidth regenerating (MBR) points and show that
in the case that the parameters n, k, and d are close to each
other our constructions are close to optimal when comparing to
the known capacity when only functional repair is required. We
do this by showing that when the distances of the parameters n,
k, and d are fixed but the actual values approach to infinity, the
fraction of the performance of our codes with exact repair and
the known capacity of codes with functional repair approaches
to one.

I. INTRODUCTION

A. Regenerating Codes

In a distributed storage system a file is dispersed across n
nodes in a network such that given any k (< n) of these nodes
one can reconstruct the original file. We also want to have such
a redundancy in our network that if we lose a node then any
d (< n) of the remaining nodes can repair the lost node. We
assume that each node stores the amount α of information, e.g.,
α symbols over a finite field, and in the repair process each
repairing node transmits the amount β to the new replacing
node (called a newcomer) and hence the total repair bandwidth
is γ = dβ. We also assume that k ≤ d.

The repair process can be either functional or exact. By
functional repair we mean that the nodes may change over
time, i.e., if a node vold

i is lost and in the repair process we get
a new node vnew

i instead, then we may have vold
i 6= vnew

i . If only
functional repair is assumed then the capacity of the system,
denoted by Ck,d(α, γ), is known. Namely, it was proved in the
pioneering work by Dimakis et al. [1] that

Ck,d(α, γ) =

k−1∑
j=0

min

{
α,
d− j
d

γ

}
.

If the size of the stored file is fixed to be B then the above
expression for the capacity defines a tradeoff between the node
size α and the total repair bandwidth γ. The two extreme points
are called the minimum storage regeneration (MSR) point and
the minimum bandwidth regeneration (MBR) point. The MSR
point is achieved by first minimizing α and then minimizing
γ to obtain {

α = B
k

γ = dB
k(d−k+1) .

(1)

By first minimizing γ and then minimizing α leads to the MBR
point {

α = 2dB
k(2d−k+1)

γ = 2dB
k(2d−k+1) .

(2)

In this paper we are interested in codes that have exact
repair. The concepts of exact regeneration and exact repair
were introduced independently in [2], [3], and [4]. Exact repair
means that the network of nodes does not vary over time, i.e.,
if a node vold

i is lost and in the repair process we get a new
node vnew

i , then vold
i = vnew

i . We denote by

Cexact
n,k,d(α, γ)

the capacity of codes with exact repair with n nodes each of
size α, with total repair bandwidth γ, and for which each set
of k nodes can recover the stored file and each set of d nodes
can repair a lost node.

We have by definition that

Cexact
n,k,d(α, γ) ≤ Ck,d(α, γ).

It was proved in [5], [7], and [8] that the codes with exact
repair achieve the MSR point and in [5] that the codes with
exact repair achieve the MBR point. The impossibility of
constructing codes with exact repair at essentially all interior
points on the storage-bandwidth tradeoff curve was shown in
[6].

B. Contributions and Organization

In Section II we give a construction for codes between
MSR and MBR points with exact repair. In Section III we
derive some inequalities from our construction. Section IV
provides an example showing that, in the special case of
n = k+ 1 = d+ 1, our construction is close to optimal when
comparing to the known capacity when only functional repair
is required. In Section V we show that when the distances
of the parameters n, k, and d are fixed but the actual values
approach to infinity, the fraction of performance of our codes
with exact repair and the known capacity of functional-repair
codes approaches to one.

ar
X

iv
:1

30
4.

53
57

v1
 [

cs
.D

C
]

 1
9

A
pr

 2
01

3

II. CONSTRUCTION

Assume we have a storage system DSS1 with exact repair
for parameters

(n, k, d)

with a node size α and the total repair bandwidth γ = dβ. In
this section we propose a construction that gives a new storage
system for parameters

(n′ = n+ 1, k′ = k + 1, d′ = d+ 1).

Let DSS1 consist of nodes v1, . . . , vn, and let the stored file
F be of maximal size Cexact

n,k,d(α, γ).

Let then DSS1+ denote a new system consisting of the
original storage system DSS1 and one extra node vn+1 storing
nothing. It is clear that DSS1+ is a storage system for
parameters

(n+ 1, k + 1, d+ 1)

and can store the original file F .

Let σj be the permutations of the set {1, . . . , n+1} for j =
1, . . . , (n+ 1)! . Assume that DSSnew

j is a storage system for
j = 1, . . . , (n+ 1)! corresponding to the permutation σj such
that DSSnew

j is exactly the same as DSS1+ except that the
order of the nodes is changed corresponding to the permutation
σj , i.e., the ith node in DSS1+ is the σj(i)th node in DSSnew

j .

Using these (n + 1)! new systems as building blocks we
construct a new system DSS2 such that its jth node for j =
1, . . . , n+1 stores the jth node from each system DSSnew

i for
i = 1, . . . , (n+ 1)! .

It is clear that this new system DSS2 works for parameters
(n+1, k+1, d+1), has exact repair property, stores a file of
size (n+ 1)!Cexact

n,k,d(α, γ) and has a node size

α2 = ((n+ 1)!− n!)α = n · n!α

and total repair bandwidth

γ2 = ((n+ 1)!− n!)γ = n · n!γ .

Moreover, because of the symmetry of the construction we
have β2 = n · n!β .

This construction implies the inequality

Cexact
n+1,k+1,d+1(n · n!α, n · n!γ) ≥ (n+ 1)!Cexact

n,k,d(α, γ),

that is,

Cexact
n+1,k+1,d+1(α, γ) ≥

n+ 1

n
Cexact
n,k,d(α, γ). (3)

Example 2.1: If we relax on the typical requirement of a
DSS to be homogeneous, meaning that each node is transmit-
ting the same amount β of information in the repair process,
and instead only require that the total repair bandwidth γ is
constant (i.e., β may take different values depending on the
node), then we can build our construction a little easier. Let
(n, k, d) = (3, 2, 2) and DSS1 be a distributed storage system
with exact repair. Let DSSnew

j be a storage system with 4
nodes for j = 1, . . . , 4 where the jth node stores nothing, the
ith node for i < j stores as the ith node in the original system
DSS1, and the ith node for i > j stores as the (i− 1)th node
in the original system DSS1. That is, in the jth subsystem

DSSnew
j the jth node stores nothing while the other nodes are

as those in the original system DSS1.

Using these four new systems as building blocks we
construct a new system DSS2 such that its jth node for
j = 1, . . . , 4 stores the jth node from each system DSSnew

i for
i = 1, . . . , 4. Hence each node in DSS2 stores (4−1)α = 3α
and the total repair bandwidth is (4− 1)γ = 3γ.

For example, if the original system DSS1 consists of nodes
v1 storing x, v2 storing y, and v3 storing x+ y then DSSnew

1
consists of nodes u11 storing nothing, u12 storing x1, u13
storing y1, and u14 storing x1+y1. Similarly DSSnew

2 consists
of nodes u21 storing x2, u22 storing nothing, u23 storing y2,
and u24 storing x2+y2 and so on. Then in the resulting system
the first node w1 consists of nodes u11 (storing nothing), u21
(storing x2), u31 (storing x3), and u41 (storing x4). The stored
file is (x1, x2, x3, x4, y1, y2, y3, y4).

x1

y1

x1+y1

y2

x2+y2

x2

y3

x3+y3

x3

y4

x4+y4

x4
w1 :

w2 :

w3 :

w4 :

Fig. 1. The figure illustrates the DSS built in Example 2.1. It consists of
nodes w1, w2, w3, and w4.

III. INEQUALITIES FROM THE CONSTRUCTION

Next we will derive some inequalities for the capacity in
the case of exact repair. Using Equation 3 inductively we get

Theorem 3.1: For an integer j ∈ [0, k − 1] we have

Cexact
n,k,d (α, γ) ≥

n

n− j
Cexact
n−j,k−j,d−j(α, γ).

It is proved in [5], [7], and [8] that the MSR point can be
achieved if exact repair is assumed. As a consequence of this
and Theorem 3 we get the following bound.

Theorem 3.2: For integers 1 ≤ i ≤ k we have

Cexact
n,k,d

(
α,

(d− k + i)α

d− k + 1

)
≥ niα

n− k + i
.

Proof: Write n′ = n− j, k′ = k − j, d′ = d− j, α = B
k′ ,

and γ = d′B
k′(d′−k′+1) . It is proved in [5], [7], and [8] that

Cexact
n′,k′,d′(α, γ) = B,

i.e.,

Cexact
n−j,k−j,d−j

(
α,

(d− j)α
d− k + 1

)
= (k − j)α.

Hence by Theorem 3.1 we have

Cexact
n,k,d

(
α,

(d− j)α
d− k + 1

)
≥ n(k − j)α

n− j
.

Now a change of variables by setting i = k − j gives us
the result.

IV. EXAMPLE: CASE n = k + 1 = d+ 1

In this section we study the special case n = k+1 = d+1
and compare it to the known capacity with the assumption of
functional repair,

Cn−1,n−1(α, γ) =

n−2∑
j=0

min

{
α,
n− 1− j
n− 1

γ

}
.

Now our bound gives

Cexact
n,n−1,n−1(α, iα) ≥

niα

1 + i

so we can write

fn(i) =
niα

1 + i

for integers i = 1, . . . , k.

Notice that now in the extreme points our lower bound
achieves the known capacity, i.e.,

Cexact
n,n−1,n−1(α, α) = fn(1) =

nα

2

for the MBR point and

Cexact
n,n−1,n−1(α, kα) = fn(k) = (n− 1)α

for the MSR point.

As an example we study the fraction

fn(i)

Cn−1,n−1(α, iα)
=

niα
1+i∑n−2

j=0 min
{
α, n−1−jn−1 iα

}
for integers i ∈ [1, k]. Writing it out we see that

fn(i)

Cn−1,n−1(α, iα)

=
ni
1+i∑T

j=0 1 +
∑n−2
j=T+1

n−1−j
n−1 i

=
ni
1+i

T + 1 + i
2(n−1) · (n− T − 1)(n− T − 2)

,

(4)

where T = b(n− 1)(1− 1
i)c

For large values of n this is approximately

2i2

2i2 + i− 1
≥ 8

9

for all i = 1, . . . , k.

0 10 20 30 40 50
Γ

25

30

35

40

45

50

M

Fig. 2. The figure shows the performance M of our construction (dotted
curve) between the capacity of functionally repairing codes (uppermost curve)
and the trivial lower bound given by interpolation of the known MSR and MBR
points when (n, k, d) = (51, 50, 50), α = 1, and γ ∈ [1, 50].

V. THE CASE WHEN n, k AND d ARE CLOSE TO EACH
OTHER

Next we will study the special case where n, k and d are
close to each other. We will do this by setting nM = n+M ,
kM = k+M and dM = d+M and letting M →∞, and then
examine how the capacity curve asymptotically behaves. The
example in the previous section showed us that in that special
case our bound is quite close to the capacity of functionally
regenerating codes. However, in the previous section we fixed
i to be an integer and then assumed that n is large. In this
section we tie up the values i and M together to arrive at
a situation where the total repair bandwidth stays on a fixed
point between its minimal possible value given by the MBR
point and its maximal possible value given by the MSR point.

For each M the bound from Theorem 3.2 gives

Cexact
nM ,kM ,dM

(
α,

(dM − kM + i)α

dM − kM + 1

)
≥ nM iα

n− k + i

for i = 1, . . . , kM , hence in this section we write

gM (i) =
nM iα

n− k + i

for integers i = 1, . . . , k and extend this definition for x ∈
[1, k] such that gM (x) is the piecewise linear curve defined by
gM (i).

Let s ∈ (0, 1] be a fixed number and i = 1 + s(kM − 1).
We will study how the fraction

gM (i)

CkM ,dM (α, (dM−kM+i)α
dM−kM+1)

behaves as we let M →∞. Informally this tells how close our
lower bound curve and the known capacity curve are to each
other when M is large, i.e., values nM , kM , dM are close to
each other.

Remark 5.1: In the MSR point we have

γMSR =
dMα

dM − kM + 1

and in the MBR point

γMBR = α.

Hence

α · dM − kM + i

dM − kM + 1
= sγMSR + (1− s)γMBR.

Theorem 5.1: Let s ∈ (0, 1] be a fixed number and i =
1 + s(kM − 1). Then

lim
M→∞

gM (i)

CkM ,dM (α, (dM−kM+i)α
dM−kM+1)

= 1.

Proof: Let i = 1+ s(kM − 1). We study the behavior of
the fraction for large M , so we have bici ≈ 1. Thus, to simplify
the notation, we may assume that i acts as an integer. We also
use the notation

t =
dMs(kM − 1)

d− k + 1 + s(kM − 1)
.

We have

gM (1 + s(kM − 1)) =
nM (1 + s(kM − 1))α

n− k + i

and

CkM ,dM (α,
(dM − kM + i)α

dM − kM + 1
)

=α

 t∑
j=0

1 +

kM−1∑
j=t+1

dM − j
dM

· d− k + i

d− k + 1

=α

(
t+ 1 +

(kM − t− 1)(2d+M − k − t)(d− k + i)

2dM (d− k + 1)

)
,

(5)

whence
gM (i)

CkM ,dM (α, (dM−kM+i)α
dM−kM+1)

=
h1(M)

h2(M)(h3(M) + h4(M))
,

(6)

where

h1(M) = 2nM (1 + s(kM − 1))dM (d− k + 1),

h2(M) = n− k + 1 + s(kM − 1),

h3(M) = 2(t+ 1)dM (d− k + 1),

and

h4(M) = (kM−t−1)(2d−k+M−t)(d−k+1+s(kM−1)).

Now it is easy to check that

h1(M)

M3
→ 2s(d− k + 1),

h2(M)

M
→ s,

and
h3(M)

M2
→ 2(d− k + 1)

as M →∞.

Note that
M − t ≈ d− k + 1− ds

s

when M is large and hence

h4(M)

M2

=
(kM − t− 1)(2d− k +M − t)

M
· d− k + 1 + s(kM − 1)

M
→0 · s = 0

(7)

as M →∞.

Finally,

gM (i)

CkM ,dM (α, (dM−kM+i)α
dM−kM+1)

=
h1(M)
M3

h2(M)
M · h3(M)+h4(M)

M2

→ 2s(d− k + 1)

s(2(d− k + 1) + 0)
= 1

(8)

as M →∞, proving the claim.

As a straightforward corollary to Theorem 5.2 we have

Theorem 5.2: Let s ∈ [0, 1] be a fixed number and let
γMSR = dMα

dM−kM+1 and γMBR = α. Then

lim
M→∞

Cexact
nM ,kM ,dM

(α, sγMSR + (1− s)γMBR)

CkM ,dM (α, sγMSR + (1− s)γMBR)
= 1.

VI. CONCLUSIONS

We have shown in this paper that when n, k, and d are
close to each other, the capacity of a distributed storage system
when exact repair is assumed is essentially the same as when
only functional repair is required. This was proved by using
a specific code construction exploiting some already known
codes achieving the MSR point on the tradeoff curve and by
studying the asymptotic behavior of the capacity curve.

However, when n, k, and d are not close to each other then
the bound our construction gives is not good. So as a future
work it is still left to find the precise expression of the capacity
of a distributed storage system when exact repair is assumed,
and especially to study the behavior of the capacity when n,
k, and d are not close to each other.

VII. ACKNOWLEDGMENTS

This research was partly supported by the Academy of
Finland (grant #131745) and by the Emil Aaltonen Foundation,
Finland, through grants to Camilla Hollanti.

Dr. Salim El Rouayheb at the Princeton University is
gratefully acknowledged for useful discussions. Dr. Camilla
Hollanti at the Aalto University is gratefully acknowledged
for useful comments on the first draft of this paper.

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K.
Ramchandran, “Network coding for distributed storage systems,” IEEE
Transactions on Information Theory, vol. 56, no. 9, pp. 4539-4551,
September 2010.

[2] K. V. Rashmi, Nihar B. Shah, P. Vijay Kumar, and K. Ramchandran,
“Explicit Construction of Optimal Exact Regenerating Codes for Dis-
tributed Storage.” Available: arXiv:0906.4913v2 [cs.IT]

[3] Y. Wu and A. G. Dimakis, “Reducing Repair Traffic for Erasure Coding-
Based Storage via Interference Alignment,” in Proc. IEEE International
Symposium on Information Theory (ISIT), Seoul, July 2009, pp. 2276-
2280.

[4] D. Cullina, A. G. Dimakis, and T. Ho, “Searching for Minimum Storage
Regenerating Codes,” in Proc. 47th Annual Allerton Conference on
Communication, Control, and Computing, Urbana-Champaign, Septem-
ber 2009.

[5] K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar, “Optimal Exact-
Regenerating Codes for Distributed Storage at the MSR and MBR
Points via a Product-Matrix Construction,” IEEE Transactions on In-
formation Theory, vol. 57, no. 8, pp. 5227-5239, August 2011.

[6] Nihar B. Shah, K. V. Rashmi, P. Vijay Kumar, and K. Ramchandran,
“Distributed Storage Codes With Repair-by-Transfer and Nonachiev-
ability of Interior Points on the Storage-Bandwidth Tradeoff,” IEEE
Transactions on Information Theory, vol. 58, no. 3, pp. 1837-1852,
March 2012.

[7] V. R. Cadambe, S. A. Jafar, and H. Maleki, “Distributed Data
Storage with Minimum Storage Regenerating Codes - Exact and
Functional Repair are Asymptotically Equally Efficient.” Available:
arXiv:1004.4299v1 [cs.IT]

[8] C. Suh and K. Ramchandran: “On the Existence of Opti-
mal Exact-Repair MDS Codes for Distributed Storage.” Available:
arXiv:1004.4663v1 [cs.IT]

http://arxiv.org/abs/0906.4913
http://arxiv.org/abs/1004.4299
http://arxiv.org/abs/1004.4663

	I Introduction
	I-A Regenerating Codes
	I-B Contributions and Organization

	II Construction
	III Inequalities from the Construction
	IV Example: Case n=k+1=d+1
	V The case when n, k and d are close to each other
	VI Conclusions
	VII Acknowledgments
	References

