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Abstract—Associative memories are structures that store data
in such a way that it can later be retrieved given only a
part of its content—a sort-of error/erasure-resilience property.
They are used in applications ranging from caches and memory
management in CPUs to database engines. In this work we study
associative memories built on the maximum likelihood principle.
We derive minimum residual error rates when the data stored
comes from a uniform binary source. Second, we determine the
minimum amount of memory required to store the same data.
Finally, we bound the computational complexity for message
retrieval. We then compare these bounds with two existing
associative memory architectures: the celebrated Hopfield neural
networks and a neural network architecture introduced more
recently by Gripon and Berrou.

I. INTRODUCTION

In this work, we focus on a specific kind of memory termed

“associative”. Contrary to classical index-based memories, as-

sociative ones are able to retrieve a piece of information given

only a part of it. In that sense, they perform similarly to human

memories that are able, for instance, to remember that Claude

Shannon wrote “A Mathematical Theory of Communication”

without having to list or search through all authors with whom

they are familiar.

Associative memories are used in a variety of applica-

tions including caches for processing units [1], databases

engines [2], and intrusion prevention systems [3]. Associative

memories typically provide an attractive balance between

speed of lookup and memory cost, often at an increase in

retrieval error rate.

A trivial way to implement an associative memory is to use

a brute-force approach that tests each message in the stored

dataset to find a match. Because it is possible to evaluate these

tests concurrently, this strategy is often used in electronics [4],

at the cost of high power consumption.

Other approaches include neural network-based architec-

tures. A typical example is the Hopfield Neural Network that

was introduced by J.J. Hopfield in 1982 [5]. This work inspired

many scientists in communities from machine learning [6] to

statistical physics [7]. Other examples of associative memories

include Kohonen maps [8] and Boltzmann machines [9].

Recently, Gripon and Berrou introduced a novel archi-

tecture [10], [11] for associative memories based on neural

networks. Their architecture outperforms Hopfield networks

in terms of diversity (number of words stored) and capacity

(total number of bits stored) for the same memory used.

In this work, we study the performance of an associative

memory based on the maximum likelihood principle. We

present bounds on the error rate, memory complexity, and

computational complexity of this associative memory, and

then we compare these bounds with the models proposed by

Hopfield and by Gripon and Berrou, which can be viewed as

approximations to the ML associative memory.

The structure of the paper is as follows. Section II presents

previous work on the topic. Section III gives the definitions and

formally introduces the ML associative memory. Section IV

presents the models previously discussed. Section V gives

bounds on error rate when storing random sets of words. Sec-

tion VI and VII are dedicated respectively to the memory and

computational complexity, and we conclude in Section VIII.

II. PREVIOUS WORK

McEliece et al. [12] introduce bounds on Hopfield neural

networks. They use techniques from coding theory to obtain

the maximum number of messages a Hopfield network with

n neurons can store and correctly retrieve when the Hamming

distance between the initial codeword and that presented to

the device is less than n/2.

Yaakobi and Bruck [13] also study bounds for associative

memories. They consider a Hamming space, and search for

the minimum number of spheres one must intersect in order

to find an element in the space. They consider a definition of

associative memory, where associated elements are those with

small Hamming distance, which is fundamentally different

from the definition considered in this paper.

Karbasi, Salavati, and Shokrollahi [14], [15] study multi-

layer neural architectures which are capable of storing large

sets of messages under the assumption that the stored messages

satisfy a redundancy (low rank) condition.

Gripon, Rabbat, Skachek and Gross [16] study the efficient

storage of unordered sets and introduce minimum bounds on

memory size based on entropy. The results we present in

Section VI use similar arguments.

III. PROBLEM FORMULATION

Let A be a finite alphabet with |A| ≥ 2, and consider a

set S of m words in An. For a word w ∈ An of length n,

we denote by w(i) the i-th symbol of w. Provide S with a

probability measure µ, and consider a random function:

e :
S → A

n

w �→ e(w)



where A = A
⊔

{⊥} and ⊥ denotes an erased symbol.

Definition 1. An associative memory is an algorithm which,

given a set S ⊂ An, learns a retrieval rule f : A
n
→ S .

Associative memories clearly have similarities to coding for

the erasure channel. However, rather than jointly designing a

code and decoding rule, an associative memory must be able to

provide a decoder f for any given subset S ⊂ An of messages.

Let F(S) denote the set of all mappings from A
n

to S .

Definition 2. The success probability of an associative mem-

ory f ∈ F(S) is

PS(f) =
∑

w∈S

µ(w) · P
(

f(e(w)) = w
)

,

where P
(

f(e(w)) = w
)

is the probability that the image of

e(w) under f is w, under the distribution governing e.

It is well-known that the maximum likelihood decoding

principle minimizes the error rate.

Definition 3. A maximum likelihood associative memory (ML-

AM) is an algorithm which, given set of messages S , returns

a mapping f∗ which maximizes PS(f) over all f ∈ F(S).
The residual error rate of the ML-AM is

P ∗
err(S) = 1− PS(f

∗).

In general, an associative memory is designed to store

arbitrary sets S ⊂ An, and thus the ML-AM is unlikely to

have zero residual error. For instance, take S to be the set of

four-letter words in the English language, and consider the task

of retrieving a word given the input “hea⊥”. Possible solutions

include “head”, “heap", and “heat”, and thus P ∗
err(S) �= 0.

IV. HOPFIELD AND GRIPON-BERROU NEURAL NETWORKS

Hopfield neural networks (HNNs) [5] and Gripon-Berrou

neural networks (GBNNs) [10] are two architectures that

implement approximations to ML-AMs. Each architecture is

defined by three items: 1) the network structure, 2) a rule for

storing messages in the set S , and 3) a rule for retrieving a

message given an input in A
n

.

HNNs store length-n binary words over {−1, 1} using a n-

node complete graph. Information is encoded in integer-valued

edge weights (i.e., potentials) which are stored in a symmetric

matrix (Mij)1≤i,j≤n
. Given S , the weight on edge (i, j) is

Mij =
∑

w∈S

w(i) · w(j) .

Note that the weights can take up to m + 1 distinct values,

where m is the size of S .

When given an input w = e(w) with erased symbols, the

matrix M is used to try to retrieve the original word w. Denote

by vt the vector of values of nodes at time t, and initialize

v0 = wT , replacing all instances of ⊥ with 0. The algorithm

repeats the iterations

vt+1 = sign(Mijvt) ,

where the ith coordinate of sign(v) is 1 if v(i) ≥ 0 and −1
otherwise.

When the iterations above converge, the values at each

node are output as the estimate of the original word. The

problems of proof and speed of convergence of the algorithm

are complex and have been studied [17], [18], [19]. In the

remainder of this work, we use a lower bound of a finite

number of iterations in order to allow comparison with GBNN.

GBNNs also use a lossy encoding of the set of words, but

contrary to HNNs, this one is based on connection existence.

The alphabet here can be any, but for more simplicity we sup-

pose it to be the integers from 1 to l. In this model, the graph is

binary and sparse. It is characterized by a number of divisions

n, and a matrix
(

W(i1,j1)(i2,j2)

)

0≤i1,i2≤n−1,0≤j1,j2≤l−1
. After

storing S , the matrix is defined as follows:

W(i1,j1)(i2,j2) =

{

1 if ∃w ∈ S, w(i1) = j1 and w(i2) = j2
0 otherwise.

To retrieve the initial word w given an erased input w,

the algorithm also uses iterations to compute the value vt of

neurons at step t. The initialization is such that the (i, j)-th
coordinate of v0 is 1 if w(i) = j and 0 otherwise. Then:

vt+1 = s(Wvt + γvt) (1)

where the (i0, j)-th coordinate of s(v) is 1 if its value is

maximum among the coordinates (i0, j
′), 1 ≤ j′ ≤ l, and

it is 0 otherwise.

In practice, with γ ≥ nl, it has been observed that a few

iterations suffice to reach a fixed point. In particular, the error

equations derived in [20] hold after a single iteration. Thus we

suppose this number to be constant for the rest of this work.

Note that we do not compare with the memories of [14],

[15] since they use real-valued edge potentials and thus cannot

be exactly represented using a finite number of bits.

V. RESIDUAL ERROR ON RANDOM SETS

We now consider finding the maximum number of code-

words that can be stored in a ML-AM given a desired residual

error probability. Let us focus on a simple case where the set

S is drawn uniformly, and let us also assume that µ is the

uniform distribution on An.

Theorem 4. Assume that S is drawn uniformly from all sets

that contain m words in An, and suppose that e erases exactly

r symbols of its argument at positions drawn uniformly and

independently of S . Then for the ML-AM mapping f∗, we have

E [PS(f
∗)] =

|A|n−r

m

(

1−

(

|A|n−m

|A|r

)

(

|A|n

|A|r

)

)

, (2)

where the expectation is taken with respect to S .

Proof: First consider a particular realization of the set S
and let f∗ denote the corresponding ML-AM retrieval rule.



Let

d(w1, w2) =















0 if ∀i,
w1(i) = w2(i)

∨ w1(i) = ⊥

∨ w2(i) = ⊥

1 otherwise

, (3)

be the function which indicates whether w1 and w2 are

equal, up to erased symbols. Let A
n

r denote the set of

words w in A
n

that contain exactly r symbols ⊥, and

let Sr = {w ∈ A
n

r : ∃w ∈ S, d(w,w) = 0}. Also let

S(w) = {w′ ∈ S : d(w′, w) = 0}, and note that w ∈ S(e(w))
if w ∈ S . Without loss of generality, we restrict our analysis

to mappings that always output a value in S(w).
For the ML-AM retrieval rule, we have

m · PS(f
∗)

=
∑

w∈S

∑

w∈A
n

P (f∗(w) = w|w = e(w)) · P (w = e(w))

=

(

n

r

)−1
∑

w∈Sr

∑

w∈S(w)

P (f∗(w) = w|w = e(w))

=

(

n

r

)−1

|Sr| .

In other words, given a partially erased word w as input, the

best one can do is to choose any word in e−1(w). The selection

process has no impact on performance.

The arguments above are for a particular set S . To obtain

the expected residual error rate of a ML-AM, let us find the

expected value of |Sr| when the set of words to store is

obtained by sampling m words uniformly from An. We first

point out that there are |A|r words in An that are at distance

zero from a given word w in A
n

r . The probability that at least

one of them is in Sr is

P
(

w ∈ Sr|w ∈ A
n

r

)

= 1−

(

|A|n−m

|A|r

)

(

|A|n

|A|r

)
,

since this event follows a hypergeometric law. We obtain that

E
[

|Sr|
]

= |A|n−r

(

n

r

)

P (w ∈ Sr|w ∈ A
n

r ) ,

and thus

E[PS(f
∗)] =

|A|n−r

m
P (w ∈ Sr|w ∈ A

n

r ) .

Remark 5. If m = o(|A|n − |A|r), then using Stirling’s

approximation we obtain that

1−

(

|A|n−m

|A|r

)

(

|A|n

|A|r

)
= 1−

(|A|n −m)! (|A|n − |A|r)!

(|A|n)! (|A|n − |A|r −m)!

∼
n→∞

1−

(

|A|n − |A|r

|A|n

)m

∼
n→∞

1− exp
(

−m|A|r−n
)

,
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Fig. 1. Evolution of the ML-AM residual error rate as a function of m = |S|,
with alphabet size 256 and 4 symbols, and for various values of r.

and thus

E [PS(f
∗)] ∼

n→∞

|A|n−r

m

(

1− exp(−m|A|r−n)
)

. (4)

If, in addition, r = o(n), then

E [PS(f
∗)] ≈

n→∞
1 .

From Equation (4), one can estimate the number of words

m which can be stored while achieving a desired residual error

probability P0:

m ≈ 2P0|A|n−r .

We note that if r = Θ(n), then the number of words grows

exponentially with n and polynomially with |A|.

McEliece et al. [12] show that, under similar conditions, the

number of words one can store in a HNN grows sub-linearly

with n. For GBNNs, it is shown in [21] that the number of

words grows quadratically with n.

Figure 1 depicts the evolution of the residual error rate

P ∗
err(S) as a function of the size m of S and for various values

of r when |A| = 256 and n = 4.

HNNs and GBNNs are not ML-AMs and they may have a

larger error probability. Figure 2 shows the evolution of the

word retrieval error rate as a function of the number of erasures

in input, together with the corresponding residual error.

VI. MEMORY NEEDED

A ML-AM needs to record information about the stored

set of words. Thus, the number of bits needed to represent

a ML-AM is at least that required to losslessly encode the

(unordered) set S . In this section we estimate the number

of bits that are required to implement a ML-AM. Similar

developments for multisets have been proposed in [16].

Let us consider a set S as described in the previous section.

The Kraft inequality [22] tells us that one cannot expect to
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Fig. 2. Evolution of the word error rate when using HNN, GBNN (as
described in [20] and with random decision on ambiguity) and a ML-AM, as
a function of m = |S| and for |A| = 256, r = 2 and n = 4.

use fewer than H bits to represent the source, where H is the

entropy of the source generating these sets:

H = log2

((

|A|n

m

))

.

Using Stirling’s approximation to estimate H gives

H ∼
n,m→∞

|A|n log2(|A|n)−m log2(m)

−(|A|n −m) log2(|A|n −m) .

Suppose that m = o(|A|n). Then

H ∼
n,m→∞

m log2(|A|n) ,

which implies that if the number of words is small, it is

equivalent (in terms of the number of bits) to store an ordered

list of messages or the corresponding unordered set.

Let us consider another case where we denote by c the ratio

|A|n/m, and suppose that c is constant as m,n → ∞. Then

H ∼
n,m→∞

m (c log2(c)− c log2(c− 1) + log2(c− 1)) .

In this regime, the ratio of the expected number of bits

to represent the unordered set to that of the corresponding

ordered list of words is (c log2(c)− c log2(c− 1) + log2(c−
1))/(n log2(|A|)). Note that this ratio tends to zero when n
tends to infinity.

Figure 3 depicts both the number of bits required to repre-

sent an unordered set S and that of a corresponding ordered

list of elements as a function of m.

HNNs and GBNNs can only be reasonably used in the case

of m = o(|A|n). In this case, Table I compares the memory

needed for both systems when targeting a residual error

probability of 1/100. Note that for both HNNs and GBNNs

the amount of memory needed could be reduced via standard

compression techniques since the distribution of connection

weights for HNNs and the distribution of connections for

GBNN are not uniform. This reduction would nevertheless

imply a larger computational complexity.
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Fig. 3. Evolution of the number of bits required when representing random set
of words of size m and a corresponding ordered list of elements as functions
of m and for various alphabet size and number of symbols.

TABLE I
RATIO OF THE MEMORY NEEDED BY HNN AND GBNN TO THE ENTROPY

H FOR TARGET ERROR RATE P0 = 0.01 AND FOR VARIOUS VALUES OF

|A|, r, AND n. THESE NUMBERS WERE OBTAINED THROUGH SIMULATION.

|A| n r HNN GBNN

256 4 1 1619% 684%

64 10 1 3760% 186%

256 12 1 11108% 131%

VII. COMPUTATIONAL COMPLEXITY

We now consider the generic problem P of designing a

universal ML-AM, which is solved by an algorithm alg if

and only if given fixed m and n, and for any set S of m
elements over An as input, alg[S] is a ML-AM for S .

We are interested in the complexity Φret of the retrieval

process. Denote by Φ(alg[S], w) the complexity of the op-

eration of retrieving the unique w ∈ S , if it is well defined,

such that d(w,w) = 0. Then

Φret = min
alg solving P

[

max
S:|S|=m

[

max
w:|S(w)|=1

Φ(alg[S], w)

]]

.

Theorem 6. The retrieval complexity scales as

Φret = ω(n) operations .

Proof: We obtain the lower bound by constructing an

appropriate set S . Specifically, consider sets of the form S =
{akban−k−1, a, b ∈ A}. Given a single erasure in the input

w that happens to be the unique b in the initial word, it is

clear that S(w) is a singleton. To find the correct answer, the

algorithm must read at least the erased symbol. It follows that

the algorithm must read at least all symbols in the input and

thus has complexity at least n. This reasoning can be extended

to any set that contains S and not {an}, and thus to any size

of set n ≤ m < |A|n.

Reciprocally one can achieve this complexity on random

sets, at the cost of a large amount of memory. Consider the



following algorithm TBA (for Trie-Based Algorithm), based

on tries [23], [24]:

Receiving a set S: begin
for each permutation σ of [1;n] do

Create the trie Tσ of Sσ = {σ(w), w ∈ S}.
end

end

Retrieving a word from its partially erased version w: begin
Set j to 1
Set σ to [1; 2; 3; . . . ;n]
for i from 1 to n do

if w(j) = ⊥ then
Swap σ(j) and σ(i)
Increment i

end
end
Use T

σ(w) up to the first ⊥ symbol
Choose any path in T

σ(w) from there to the end
end

Algorithm 1: Universal ML-AM algorithm that reaches the

minimum complexity for retrieving: Θ(n).

Table II compares the complexities of HNN, GBNN and

TBA. Note that, to be fair, the complexity of the storing

process has also been added to the table.

VIII. CONCLUSION

We derive bounds on performance, memory, and computa-

tional complexity of maximum likelihood associative memo-

ries. When the number of messages m in the dataset is small

compared to the number of possible messages, a brute force

approach has the best performance and optimal memory usage.

In similar conditions, TBA offers the best performance and

best computational complexity. However, brute force has a

dramatic computational complexity and TBA has space com-

plexity which is exponentially larger than the other methods.

When all three dimensions must be considered jointly,

approaches based on neural networks offer an interesting

tradeoff.
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