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Abstract—We present deviation bounds for self-normalized 2) Context Tree EstimationContext tree models, intro-
averages and applications to estimation with a random numbe  duced by Jorma Rissanen inl [6] as efficient tools in Infor-
of observations. The results rely on a peeling argument in \ation Theory, have been successfully studied and used sinc

exponential martingale techniques that represents an alteative . . S o . .
to IOthe method of gmixture. Tk?e motivating examples of bandit then in many fields of Probability and Statistics, including

pr0b|ems and context tree estimation are detailed. BiOinfOI’matiCS, Universal Coding, Mathematical StatiStiOI‘
Linguistics. Sometimes also called Variable Length Markov
|. INTRODUCTION Chain, a context tree process is informally defined as a Marko

Contrary to a very usual assumption in statistics, songdain whose memory length depends on past symbols. This
situations require parameter estimation based on samplegwperty makes it possible to represent the set of memory
random size Let us first briefly present two probabilisticsequences as a tree, called dumtext treeof the process.
models of that kind which motivated the derivation of the A remarkable tradeoff between flexibility and parsimony

results presented below. explains this success: no more difficult to handle than Marko
o chains, they include memory only where necessary. Not only
A. Motivating examples do they provide more efficient models for fitting the data:

1) Bandit Problems:Estimation is sometimes used as & appears also that, in many applications, the shape of the
intermediate step in a decision process, and the results camtext tree has a natural and informative interpretatian.
influence the presence of further observations. Paradigmfat Bioinformatics, they have been used to test the relevance of
this situation areébandit problemsnamed in reference to theprotein families databases|[7] and in Linguistics, treenest
archetypal situation of a gambler facing a row of slot-maeki tion highlights structural discrepancies between Braailand
and sequentially deciding which one to choose in order European Portuguese! [8].
maximize her gains. The basic model is the following: an &gen Of course, practical use of context tree models requires the
sequentially chooses actions in a finite set of possibleoopti possibility of constructing efficient estimators of the rnebd
Each action leads to an independent stochastic reward whgeeerating the data. Despite the multiplicity of candideees,
distribution is unknown. What dynamic allocation rule shibu several procedures have been proposed and proved to be
she choose so as to maximize her cumulated reward? Orighnsistent, including pruning algorithmis| [6], afdnalized
nally motivated by medical trials, this simple model dataslb Maximum Likelihoocestimators (see [9]/_[10] and references
to the 1930s ; it has recently raised a renewed interest becatherein, see alsd [11]). These apparently different ideas a
of computer-driven applications, from computer experitaenin fact closely related [12], the key point being an efficient
to recommender systems and Big Data, and numerous variagggmation of the conditional transition probabilitiesitBor a
have been considered (séé [1] for a recent survey,land [2] fgven sample size, the number of transitions observed from a
a related model). given context is random, and depends on the values of these

One possible solution consists in constructing, at time transitions. Hence, again, sharp deviation bounds foraamd
a confidence interval based on all past observations for thiged averages are required in order to obtain efficient mgmo
expected reward associated to each action, then choosngdbtimators.
action with highest upper confidence bounds (UCB). Thisrule )
popularized by[[3], was recently improved and shown to haf Self-Normalized Process
some optimality properties [4].[5]. Obviously, the numioér  Several approaches have been proposed to address this
observations used to construct the confidence intervaigyo problem. The most obvious is to use a simple union bound
depends on the value of these observations, and standamdall the possible values of the sample size (as for instance
formulas for fixed-size samples do not apply directly. Thim [3]), but this appears to be most often overly pessimstid
key element in the recent improvements of this algorithm waggnificantly sub-optimal. A more refined treatment corssist
the introduction of the informational self-normalized @gion when possible, in first lower-bounding the size of the sample
inequalities presented below. thus upper-bounding the variance of the estimator, and then
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in using this upper-bound of the variance, for example withe expectation:, the following Cramer-type inequality with
Bernstein’s maximal inequality for martingales (see €l@][ rate function/(-, u) is satisfied:

for an example on the consistency of a Stochastic Block Model
estimator, or[[14] on prediction with expert advice).

The most satisfying approach, however, is to consider tggr a concrete example, one may think about i.i.d. Bernoulli
associatedelf-normalized proces§rom the estimator's point variables with I(z; ) = kl(z,pu) = zlog(a/p) + (1 —

of view, as the size of the sample grows, something chang@qog((l —2)/(1 — p)). As the function(-; ;1) increases

only when a new observation appears. At those (randog) [, +00[, this bound can be rewrittelP(I(Xy;p) >
times, the internal clock of the estimator increases byhen I(wgp), Xy > p) < exp(—tI(zy;p)) or, definingd =

the nth observation has been reached, the internal clock hﬁi%:vt;u), P(tI(Xy;p) > 6, X, > p) < exp(—0); proceeding
a random value which is at most equaltp and on which simijlarly on the other side ofi, one obtains
the variance of the estimator depends. The confidence aiterv

must be constructed accordingly, by taking into account the P (t1(Xy;p) > 6) < 2exp(—0) .
maximal deviations of the self-normalized deviation psxe Consequently, one is tempted to choose, as a confidence

This paper focuses on the case where a sequence of NARsyya| of risk , a neighborhood ofX, in the sense of the
asymptotic confidence intervalg:,b;] is required for the pseudo-distancé:

common expectation, of independent, real-valued random

Vay = p, P(Xy > ) < exp(—t1(ze; 1)) -

variables(X;);>1, and where all the confidence intervals are [ag, b)) = {M : tI(Xt'u) < 1Og2} _

required to be jointly valid over an epoche {1,...,n}. ’ ’ o

In other words, for all positiven, the goal is to construct Observe thaf € [az, b;] if and only if ¢ I(Xs; ) < log 2

o(Xi, ..., X:)-measurable random variables and b, S0 85 £or 3 sequential confidence intervals of this kind, where

to ensure that the evef,_,, {© € [a¢, b¢]} has probability at .

least] — o, S P{Nicnir € [at,bt]}) needs to be controlled, one is thus
In order to obtain sub-gaussian deviation bounds, tIJ'l%d to study _

method of mixture(see [15], [16] and references therein) supt I (X¢; 1) - 1)

<n
provides a powerful and elegant tool, recently used_in [17] ) ) t_
for bandit problems. The results presented below follow a !N Sectionl, deviation bounds fofl(1) are presented. The

different path. Rather than a mixture, they rely opeeling generic result of Theorefd 1 is refined, under some additional
device: the possible numbers of observations are divided iflyPotheses, in Theoreril 2 and Equatién (2). Theofém 3
exponentially growing slices, which are treated indepetigle cONtains a variant that does not require an upper-bound on
On each slice, a Cramer-type bound is obtained by a maxinf3 Sample size. A subgaussian inequality is given for the
inequality for martingales. discounted case in Equatidd (4). In Secfioh Ill, these tssuk
These results can be considered. in some sense. as rgRlied to estimation in various models: one-parametenican
asymptotic counterparts of the Law of the Iterated Loganithic@! €xponential famillies, bounded variables, and moftiel
for martingales. They are presented so as to clearly emgehad]istributions.
the c_ost _of the randomness of the sample size: namely, & || SeLE-NORMALIZED DEVIATION INEQUALITIES
logarithmic factor ofn in front of the exponential Cramer . . _— o
bound (instead of a factor for the union bound). The proof FO @n increasing filtratior(;),>, on some probability
method is generic enough to apply to a large variety §pace, consider an adapted, real-valued discrete timegsoc

situations, and in particular not only to the sub-gaussasec (St)e>0 such thatSy = 0. Further assume that the Incre-
ments X; = S; — S;_1 are bounded as follows: there exist

C. Informational Confidence Bounds A1 € [—00,0[, A2 €]0,400], and a functiong :JA;, Ao[— R

If the bounds of these confidence intervals are classicaﬁyl/mh that for allA €]s, X[ and for allt > 1.

c_hosen to be syn_1metric around the empirical m&anso that E [exp(AX:) [Fi—1] < exp (4(N)) .
X —a; = by — X; = ¢/+/t for a given constant, then the ] . . ]
above discussion shows that one needs to control the faigpwi" Other words, the function) dominates the logarithmic

supremum of the self-normalized process: moment-generating function (Imgf) of the. incremer@fst)t
- that are assumed to share the same finite expectatidh
sup vVt ]Xt — u\ . the incrementsX; are identically distributed can be chosen
t<n

as the common Imgf, but it proves useful to consider more
This choice, however, is often sub-optimal and was not suffieneral cases. Neverthelegswill be supposed to satisfy all
cient in the applications mentioned above. The approactt usesual properties of a Imgf (sele [18], Chapter 2) is convex
below is somewhat different: the deviations &f are not and smooth ovefA;, X[, ¢(u) = 0; its Legendre transform
measured in absolute value, but using a information dewiati/(-; 2),defined orR as

measure, leading to possibly asymmetric confidence bounds.

Let us recall it briefly: suppose that, for all possible valoé L(w; p) = ilelﬁ{/\w — oV}



is a convex rate function whose domain is includedRih U Wt’C > exp (%) This entails that

{+o0}; it is finite and smooth on an open intenvB; C R

containing0, such that/ (u, 1) = 0. For allz such that/ (z) <

oo, there exists a unique real numbér) €]\, Ao[ such that P (
t=tp_1+1

Ltj {t (Xisp) =6} 0 {Xe > u}>

¢'(A(z)) == andI(z;p) = A(z)z — ¢(A\(z)) -

tr 5
I(xz; 1) tends to infinity withz, and can be equal te-co <P ( U {Wtk > exp <m) })
outside of some intervalz_, z, ) where it is finite: it holds t=te-1tl
thatP(X; € [z_,24]) = 1, and the limit of/ (-, ) when tends < exp <_L>
to = is denoted/;.. Under those assumptions, the following h 1+n) "’
result holds:

The caseX; < u can be treated similarly, and the first claim
of the theorem follows. The second claim is a consequence
- of the inequalitylog(1 + 1/(6 — 1)) > 1/, applied with the
P(3te{l,...,n}: tI(Xy;pn) >96) approximately optirgal ché(ice :?/(5 —/1).
< 2e [dlog(n)] exp(—9) . Remark that the simple bound of TheorEm 1 highlights the
cost of time uniformity: a factoe[dlog(n)], instead as the
A. Short Proof of Theorefd 1 factor n given by the union bound. The fact that this cost is

The proof of this result, short enough to be sketchegtib-polynomial inn appears (especially inl[4], [20], [12].1[5])
here, is inspired by the proof of the Law of the IteratetP be crucial in the analysis of some algorithms and estirsato
Logarithm for mgrtm_g_ales _that can be found [n[[19]. The Improvements and Variants
epoch{1,...,n} is divided into “slides”{¢x_1 + 1,...,tx} } o ) _
of exponentially increasing sizes: leg = 0, letn > 0 and, This result can be significantly improved under some addi-
for every positive integek;, let ¢, = |(1+7)*|. Denoting tional assumptions on the functiaif-; 1): .

D = [log(n)/log(1+n)] the smallest integer such that Theorem 2:Let 6 > 0. If the function I(-;u) is log-
tp > n, the union bound yields : concave, then for every > 0

Theorem 1:For every§ > 0,

P(3te{l,...,n}: tI(Xy;pu) >6)

P(Q{tI(Xt;M)>5}><ZP(Ak), <2{L"Jexp(—(1—”—2)5>.

k=1 log (147

. _
where Ay, = ULy, 4, {tI (Xi;1) > 0}. Denote bys the |n particular, forp = 2/v/3, one obtains:
smallest integer such thaf (s+1) < I : fort < s, obviously

PtI(Xe;p) =0, X, > p) =0andthusP(Ay) = 0if t < s. P(3te{l,...,n}: tI(Xy;pu) >6)

Let k& be such that; > s, and#,_; = max{t;_1,s}. For Vi
everyt € {ty_1 +1,...,tx}, there existsr; € [u,z] such < 2v/e {— log(n)—‘ exp(—9) .
that ¢ I(xy;n) = 6. Let Ay = A(zy,), SO thatl(zy,;p) = 2
Arzy, — ¢(Ax), and consider the super-martingal®’/); The law of the Iterated Logarithm suggests that such a ressult
defined by Wy = 1 and, for everyt > 1, Wf = nardly improvable: in a sub-gaussian setting whEge, ;) >
exp (A S — té(Ax)) - A maximal inequality ensures that, for(; — ;)2 /(202), it implies indeed that for alt > 1:
all positive reale,

St — t/L
" 1 Flow 202t loglog(n) - e
<n
Pl U wsa)<t an VarogTogln)
=ttt <P <sup tI (Xusp) > ¢ 1oglog(n)) -0
Let us deduce an upper-bound B Ay). As ¢t I(x; p) =6, ] t%”_ ]
it holds that when n tends to infinity. Observe that the log-concavity
of I(-,u), although not always satisfied (even for bounded
(s ) < I(xesp) < Iy p) (L+m) . variables), is reasonable at least locally aropritione thinks
o _ _ _ to the gaussian regime.
As I(-; p1) is increasing on the right side of, z; > x, and Let us mention that in the quadratic (gaussian) case
I(we: 1) I(z;p) = 2(x — p)?/ K2, the bound can be slightly improved:
At — ¢(Ak) 2 My, — d(Ai) = Iy, 1 1) 2 17 : B
+7 P(3te{l,...,n}:tI(Xyp) >96)
. _ _ _ 2
Hence, ift] (Xt;u)6> 0 and X; > pu, then/\ng — (M) = <2 [k’iw exp <_ (1 _ 77_> 5) )
Mewe — o) = 1ty andALS; — té(Ar) > 12, and thus log (1 +n) 16



Finally, the method can be adapted in order to obtain nowith v, (n) = >/ 7" " = (1 —+")/(1 — v) < min{(1 —
asymptotic that hold for alt > 1 in the spirit of the Law of ~)~!,n}. This results permits to analyze tBéscounted-UCB
the lterated Logarithm: algorithm [20] earlier proposed by Kocsis Szepesvari [21]

Theorem 3:For all§ > 1 and allc > 1,
I1l. APPLICATION TOESTIMATION

p (Et S (K p) > oc loglog  + 5> . Letus now show briefly how tr_lese inegualities may be_z l_Jsed
0—1 in the analysis of some stochastic algorithms. The key psint
< 2eco” exp(—0) that Theoreni]1 allows the construction of a sequence of con-
] p ) fidence intervalg[a, b:])1<:<n for p that are simultaneously
valid with high probability. The interval

lag, be) = {p € [x—,xy] : tI (X45 ) < 6}

In particular, forc = 1+ 1/1log(d), one obtains:

' . 5(1 +logd)
P (3t Z1:tI( X p) > (6 —1)logs loglogt +9 contains all the values in a neighborhood.%f in the sense
< 2¢25 exp(—0) . of the pseudo-distance defined byBy Theoreni1L,
C. Self-Normalized Form P <ﬂ {pe [at,bt]}> > 1 — 2¢[§log(n)] exp(—9) .
In the applications mentioned above, the necessity to guar- t=1

antee the joint validity of the confidence intervals over thgimilarly, one obtains obtains confidence intervals fordase
entire epoch comes from the fact that the variablésare presented in Equatiofil(3). This framework applies as well in
observed only episodically in a predictable way: theretexispandit problems, where only the reward of the chosen arm

for eacht € {1,...,n}, a {0,1}-valued, 7;_;-measurable s observed, that the estimation of Markovian models where,

random variable:; € {0,1} such that the current estimate at each time, only the estimates relative to the current past

time n 1S - observations are updated. Of course, in these examples, the
X(n) =5(n)/N(n) (3) identity of the variable(s) observed at tinteis absolutely

whereS(n) = S~ X, and N(n) = 5" Theore not independent of the past observations. By chooéiagch
Vods (n) = i e Xe (n) =2 ot ML hat 26 [61og(n)] exp(—38) < «, one obtains the confidence

5 interval {2 : I (X(n); ) <6/N(n)} of risk at mosta.
P (I (X (n);p) = —> < 2e [dlog(n)] exp(—6) . A. One-Parameter Exponential Model and Bounded Variables

N(n)
L . . . In this section, we assume that the variab(gs,); are
In the definition [[8), S(n) is written as a martingale independent and identically distributed, and that thestrdi

transform or, equivalently, a discrete stochastic integra .. bel cal ial del of th
Continuous-time variants of Theordrh 1 can be obtained f?ﬂmon P, belongs to a canonica expo_nentla model of the
f6rm {Py : 6§ € ©}, where® is an real interval and where

lowing t_he_ same lines (using the same peeling trick) f%; has, with respect to some reference measure, the density
stochastic integrals. ‘R - R defined by:
Furthermore, this approach can be adapted to non-sta]ion%er ' y:

contexts: assume for simplicity that the variablg$;); are po(x) = exp (zf — b(0) + ¢(x)) .
independent, of expectation; respectively, and that their
absolute value is almost-surely boundedBylf p; does not
change too fast (or too often) with one may consider the
discounted estimatak.,(n) of u,, defined by

Here, ¢ is a real function and the log-partition functidnis
supposed to be twice differentiable. It is well-known tHaf,
denotingu(#) = b(9) the expectation oPy, one defines a one-
to-one, differentiable mapping In this case, one easily shows

T () — Sy (n) that the rate function’ is directly related to the Kullback-
Ny(n)’ Leibler divergence (which is here a Bregman divergence for

where v €]0,1], S,(n) = Y, 7" e, X, and N, (n) = b) as follows: for everys, 0 € O, |

>or_1 7" 'er. The difference betweerX,(n) and p, can  KL(Pg; Py) = I(u(B); u(8)) = b(0) — b(B) — b(B)(6 — B) .

be decomposed into a term of bias (which is not discuss&%nce a sequencéR,) of confidence intervals for
H 3 _ ’ t)t>1

here) and a fluctuation teril, (n) — M, (n)/Ny(n), where the parameterd, jointly valid with probability 1 —

M,(n) = Y1, v" 'eyuy. This fluctuation term can be : . o
controlled by the adapting the martingale techniques abO\?ee [01og(n)] exp(—0) is obtained by choosing:

one obtains that

Rt = {9 : KL (Plufl(j(t);Pg) < §}
p<w >5>

t
- {9 T (X pu(0)) < g} .

< {Mw exp <_2_52 <1 _ 77_2)) . (4) This applies in particular to usual families of distributtlike
log(1 +n) Poisson, Exponential, Gamma (with fixed shape parameter)..

N2 (n)



In [4], an example concerning exponential variable dedailelt follows that if X1, ..., X, arei.i.d. variables of law?, € S,
in that case/(z,y) = z/y — 1 — log(z/y). and if P,(k) = 30, 1{X, = k}/t, then
But the case of Bernoulli variables deserves to be high- A 5
lighted, as it easily extends to genebmlundedvariables. In- P(3t e {1,...,n}: KL (Pt;Po) 2 ;)
deed, as observed by Hoeffding [22], the exponential moment

- 0
of a [0, 1]-valued variableX with expectationu are upper- < Z P (Et e{l,...,n}:kl (Pt(a);Po(a)) > m)
bounded by those of a Bernoulli variable, and for alE R acA Al
it holds that < 2e (0log(n) + |A]) exp <_|67|) ) @)

Elexp(AX)] < 1=+ pexp(A) The fact that this bound involves directly the Kullback-

. - . Leibler divergence between the empirical measure and tiee tr
with equality if and only ift.X' ~ B(u). Recall thatkl denotes yiqyiption allows, in context tree estimation (seel[129

the b|nary".entrppb); func::on, .e. the Irdatehfun?non gsstmia suppress unnecessary assumptions that resulted, in psevio
to Bernoulii variables. Theoref 1 yields that, for indepemd 205 from the use of Bernstein's inequality. Moreover,

variablesX; bounded in[0, 1], the Equation [{[7) permits to construct a sequef®).<,
5 of “Sanov-type” confidence regions fdf, that are simulta-
P <sup kl (X, 1) > ¥> < 2e[6log(n)] exp(—d) . (5) neously valid with probability at least — «, by choosing

t<n Kullback-Leibler neighborhoods of the maximum likelihood
) ) ) ) _estimator:
Of course, this result together with Pinsker's inequality
kl(p,q) > 2(p — q)?, yields a self-normalized version of R, = {Q €S:KL(P:;Q) < §} 7
Hoeffding’s inequality on the epoche {1,...,n}: t

with & such that2e (6log(n) + |A]) exp (=d/|A|) = . These
P (Sup | Xe — | > i) < 4e [82 log(n)] exp(—262) . (6) regionsR; of the simplex have nice geometric properties that
t<n Vit are exploited in[[23] for reinforcement learning in MarkoeD

. . . cision Process, improving on former results usiigregions.
This bound may seem simpler and easier to use than the
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