
ar
X

iv
:1

30
9.

33
76

v1
  [

m
at

h.
S

T
]  

13
 S

ep
 2

01
3

Informational Confidence Bounds for
Self-Normalized Averages and Applications
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Abstract—We present deviation bounds for self-normalized
averages and applications to estimation with a random number
of observations. The results rely on a peeling argument in
exponential martingale techniques that represents an alternative
to the method of mixture. The motivating examples of bandit
problems and context tree estimation are detailed.

I. I NTRODUCTION

Contrary to a very usual assumption in statistics, some
situations require parameter estimation based on samples of
random size. Let us first briefly present two probabilistic
models of that kind which motivated the derivation of the
results presented below.

A. Motivating examples

1) Bandit Problems:Estimation is sometimes used as a
intermediate step in a decision process, and the results can
influence the presence of further observations. Paradigmatic of
this situation arebandit problems, named in reference to the
archetypal situation of a gambler facing a row of slot-machines
and sequentially deciding which one to choose in order to
maximize her gains. The basic model is the following: an agent
sequentially chooses actions in a finite set of possible options.
Each action leads to an independent stochastic reward whose
distribution is unknown. What dynamic allocation rule should
she choose so as to maximize her cumulated reward? Origi-
nally motivated by medical trials, this simple model dates back
to the 1930s ; it has recently raised a renewed interest because
of computer-driven applications, from computer experiments
to recommender systems and Big Data, and numerous variants
have been considered (see [1] for a recent survey, and [2] for
a related model).

One possible solution consists in constructing, at timet,
a confidence interval based on all past observations for the
expected reward associated to each action, then choosing the
action with highest upper confidence bounds (UCB). This rule,
popularized by [3], was recently improved and shown to have
some optimality properties [4], [5]. Obviously, the numberof
observations used to construct the confidence interval strongly
depends on the value of these observations, and standard
formulas for fixed-size samples do not apply directly. The
key element in the recent improvements of this algorithm was
the introduction of the informational self-normalized deviation
inequalities presented below.

2) Context Tree Estimation:Context tree models, intro-
duced by Jorma Rissanen in [6] as efficient tools in Infor-
mation Theory, have been successfully studied and used since
then in many fields of Probability and Statistics, including
Bioinformatics, Universal Coding, Mathematical Statistics or
Linguistics. Sometimes also called Variable Length Markov
Chain, a context tree process is informally defined as a Markov
chain whose memory length depends on past symbols. This
property makes it possible to represent the set of memory
sequences as a tree, called thecontext treeof the process.

A remarkable tradeoff between flexibility and parsimony
explains this success: no more difficult to handle than Markov
chains, they include memory only where necessary. Not only
do they provide more efficient models for fitting the data:
it appears also that, in many applications, the shape of the
context tree has a natural and informative interpretation.In
Bioinformatics, they have been used to test the relevance of
protein families databases [7] and in Linguistics, tree estima-
tion highlights structural discrepancies between Brazilian and
European Portuguese [8].

Of course, practical use of context tree models requires the
possibility of constructing efficient estimators of the model
generating the data. Despite the multiplicity of candidatetrees,
several procedures have been proposed and proved to be
consistent, including pruning algorithms [6], andPenalized
Maximum Likelihoodestimators (see [9], [10] and references
therein, see also [11]). These apparently different ideas are
in fact closely related [12], the key point being an efficient
estimation of the conditional transition probabilities. But for a
given sample size, the number of transitions observed from a
given context is random, and depends on the values of these
transitions. Hence, again, sharp deviation bounds for random-
sized averages are required in order to obtain efficient memory
estimators.

B. Self-Normalized Process

Several approaches have been proposed to address this
problem. The most obvious is to use a simple union bound
on all the possible values of the sample size (as for instance
in [3]), but this appears to be most often overly pessimisticand
significantly sub-optimal. A more refined treatment consists,
when possible, in first lower-bounding the size of the sample,
thus upper-bounding the variance of the estimator, and then
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in using this upper-bound of the variance, for example with
Bernstein’s maximal inequality for martingales (see e.g. [13]
for an example on the consistency of a Stochastic Block Model
estimator, or [14] on prediction with expert advice).

The most satisfying approach, however, is to consider the
associatedself-normalized process. From the estimator’s point
of view, as the size of the sample grows, something changes
only when a new observation appears. At those (random)
times, the internal clock of the estimator increases by1. When
the nth observation has been reached, the internal clock has
a random value which is at most equal ton, and on which
the variance of the estimator depends. The confidence interval
must be constructed accordingly, by taking into account the
maximal deviations of the self-normalized deviation process.

This paper focuses on the case where a sequence of non-
asymptotic confidence intervals[at, bt] is required for the
common expectationµ of independent, real-valued random
variables(Xt)t>1, and where all the confidence intervals are
required to be jointly valid over an epocht ∈ {1, . . . , n}.
In other words, for all positiveα, the goal is to construct
σ(X1, . . . , Xt)-measurable random variablesat and bt so as
to ensure that the event

⋂

t6n {µ ∈ [at, bt]} has probability at
least1− α.

In order to obtain sub-gaussian deviation bounds, the
method of mixture(see [15], [16] and references therein)
provides a powerful and elegant tool, recently used in [17]
for bandit problems. The results presented below follow a
different path. Rather than a mixture, they rely on apeeling
device: the possible numbers of observations are divided into
exponentially growing slices, which are treated independently.
On each slice, a Cramer-type bound is obtained by a maximal
inequality for martingales.

These results can be considered, in some sense, as non-
asymptotic counterparts of the Law of the Iterated Logarithm
for martingales. They are presented so as to clearly emphasize
the cost of the randomness of the sample size: namely, a
logarithmic factor ofn in front of the exponential Cramer
bound (instead of a factorn for the union bound). The proof
method is generic enough to apply to a large variety of
situations, and in particular not only to the sub-gaussian case.

C. Informational Confidence Bounds

If the bounds of these confidence intervals are classically
chosen to be symmetric around the empirical meanX̄t, so that
X̄t − at = bt − X̄t = c/

√
t for a given constantc, then the

above discussion shows that one needs to control the following
supremum of the self-normalized process:

sup
t6n

√
t
∣

∣X̄t − µ
∣

∣ .

This choice, however, is often sub-optimal and was not suffi-
cient in the applications mentioned above. The approach used
below is somewhat different: the deviations of̄Xt are not
measured in absolute value, but using a information deviation
measure, leading to possibly asymmetric confidence bounds.
Let us recall it briefly: suppose that, for all possible values of

the expectationµ, the following Cramer-type inequality with
rate functionI(·, µ) is satisfied:

∀xt > µ, P (X̄t > xt) 6 exp(−tI(xt;µ)) .

For a concrete example, one may think about i.i.d. Bernoulli
variables with I(x;µ) = kl(x, µ) = x log(x/µ) + (1 −
x) log((1 − x)/(1 − µ)). As the functionI(·;µ) increases
on [µ,+∞[, this bound can be rewrittenP (I(X̄t;µ) >

I(xt;µ), X̄t > µ) 6 exp(−t I(xt;µ)) or, defining δ =
tI(xt;µ), P (t I(X̄t;µ) > δ, X̄t > µ) 6 exp(−δ); proceeding
similarly on the other side ofµ, one obtains

P
(

t I(X̄t;µ) > δ
)

6 2 exp(−δ) .

Consequently, one is tempted to choose, as a confidence
interval of riskα, a neighborhood ofX̄t in the sense of the
pseudo-distanceI:

[at, bt] =

{

µ : t I(X̄t;µ) 6 log
2

α

}

.

Observe thatµ ∈ [at, bt] if and only if t I(X̄t;µ) 6 log 2
α

.
For a sequentialconfidence intervals of this kind, where
P
(

⋂

t6n {µ ∈ [at, bt]}
)

needs to be controlled, one is thus
led to study

sup
t6n

t I
(

X̄t;µ
)

. (1)

In Section II, deviation bounds for (1) are presented. The
generic result of Theorem 1 is refined, under some additional
hypotheses, in Theorem 2 and Equation (2). Theorem 3
contains a variant that does not require an upper-bound on
the sample size. A subgaussian inequality is given for the
discounted case in Equation (4). In Section III, these results are
applied to estimation in various models: one-parameter canon-
ical exponential famillies, bounded variables, and multinomial
distributions.

II. SELF-NORMALIZED DEVIATION INEQUALITIES

For an increasing filtration(Ft)t>0 on some probability
space, consider an adapted, real-valued discrete time process
(St)t>0 such thatS0 = 0. Further assume that the incre-
mentsXt = St − St−1 are bounded as follows: there exist
λ1 ∈ [−∞, 0[, λ2 ∈]0,+∞], and a functionφ :]λ1, λ2[→ R

such that for allλ ∈]λ1, λ2[ and for all t > 1:

E [exp(λXt) |Ft−1 ] 6 exp (φ(λ)) .

In other words, the functionφ dominates the logarithmic
moment-generating function (lmgf) of the increments(Xt)t
that are assumed to share the same finite expectationµ. If
the incrementsXt are identically distributed,φ can be chosen
as the common lmgf, but it proves useful to consider more
general cases. Nevertheless,φ will be supposed to satisfy all
usual properties of a lmgf (see [18], Chapter 2) :φ is convex
and smooth over]λ1, λ2[, φ(µ) = 0; its Legendre transform
I(·;µ),defined onR as

I(x;µ) = sup
λ∈R

{λx− φ(λ)} ,



is a convex rate function whose domain is included inR
+ ∪

{+∞}; it is finite and smooth on an open intervalDI ⊂ R

containing0, such thatI(µ, µ) = 0. For allx such thatI(x) <
∞, there exists a unique real numberλ(x) ∈]λ1, λ2[ such that

φ′(λ(x)) = x andI(x;µ) = λ(x)x − φ(λ(x)) .

I(x;µ) tends to infinity withx, and can be equal to+∞
outside of some interval(x−, x+) where it is finite: it holds
thatP (Xt ∈ [x−, x+]) = 1, and the limit ofI(·, µ) when tends
to x+ is denotedI+. Under those assumptions, the following
result holds:

Theorem 1:For everyδ > 0,

P
(

∃t ∈ {1, . . . , n} : t I(X̄t;µ) > δ
)

6 2e ⌈δ log(n)⌉ exp(−δ) .

A. Short Proof of Theorem 1

The proof of this result, short enough to be sketched
here, is inspired by the proof of the Law of the Iterated
Logarithm for martingales that can be found in [19]. The
epoch{1, . . . , n} is divided into “slides”{tk−1 + 1, . . . , tk}
of exponentially increasing sizes: lett0 = 0, let η > 0 and,
for every positive integerk, let tk =

⌊

(1 + η)k
⌋

. Denoting
D = ⌈log(n)/ log(1 + η)⌉ the smallest integer such that
tD > n, the union bound yields :

P

(

n
⋃

t=1

{

tI
(

X̄t;µ
)

> δ
}

)

6

D
∑

k=1

P (Ak) ,

whereAk =
⋃tk

t=tk−1+1

{

tI
(

X̄t;µ
)

> δ
}

. Denote bys the
smallest integer such thatδ/(s+1) 6 I+ : for t 6 s, obviously
P (t I(X̄t;µ) > δ, X̄t > µ) = 0 and thusP (Ak) = 0 if tk 6 s.

Let k be such thattk > s, and t̃k−1 = max{tk−1, s}. For
every t ∈ {t̃k−1 + 1, . . . , tk}, there existsxt ∈ [µ, x+] such
that t I(xt;µ) = δ. Let λk = λ(xtk ), so thatI(xtk ;µ) =
λkxtk − φ(λk), and consider the super-martingale(W k

t )t
defined by W k

0 = 1 and, for every t > 1, W k
t =

exp (λkSt − tφ(λk)) . A maximal inequality ensures that, for
all positive realc,

P





tk
⋃

t=tk−1+1

{

W k
t > c

}



 6
1

c
.

Let us deduce an upper-bound forP (Ak). As t I(xt;µ) = δ,
it holds that

I(xtk ;µ) 6 I(xt;µ) < I(xtk ;µ) (1 + η) .

As I(·;µ) is increasing on the right side ofµ, xt > xtk and

λkxt − φ(λk) > λkxtk − φ(λk) = I(xtk ;µ) >
I(xt;µ)

1 + η
.

Hence, iftI
(

X̄t;µ
)

> δ andX̄t > µ, thenλkX̄t − φ(λk) >
λkxt − φ(λk) >

δ
t(1+η) andλkSt − tφ(λk) >

δ
1+η

, and thus

W k
t > exp

(

δ
1+η

)

. This entails that

P





tk
⋃

t=tk−1+1

{

tI
(

X̄t;µ
)

> δ
}

∩
{

X̄t > µ
}





6 P





tk
⋃

t=tk−1+1

{

W k
t > exp

(

δ

1 + η

)}





6 exp

(

− δ

1 + η

)

.

The caseX̄t < µ can be treated similarly, and the first claim
of the theorem follows. The second claim is a consequence
of the inequalitylog(1 + 1/(δ − 1)) > 1/δ, applied with the
approximately optimal choiceη = δ/(δ − 1).

Remark that the simple bound of Theorem 1 highlights the
cost of time uniformity: a factor2e⌈δ log(n)⌉, instead as the
factor n given by the union bound. The fact that this cost is
sub-polynomial inn appears (especially in [4], [20], [12], [5])
to be crucial in the analysis of some algorithms and estimators.

B. Improvements and Variants

This result can be significantly improved under some addi-
tional assumptions on the functionI(·;µ):

Theorem 2:Let δ > 0. If the function I(·;µ) is log-
concave, then for everyη > 0

P
(

∃t ∈ {1, . . . , n} : t I(X̄t;µ) > δ
)

6 2

⌈

logn

log (1 + η)

⌉

exp

(

−
(

1− η2

8

)

δ

)

.

In particular, forη = 2/
√
δ, one obtains:

P
(

∃t ∈ {1, . . . , n} : t I(X̄t;µ) > δ
)

6 2
√
e

⌈√
δ

2
log(n)

⌉

exp(−δ) .

The law of the Iterated Logarithm suggests that such a resultis
hardly improvable: in a sub-gaussian setting whereI(x;µ) >
(x− µ)2/(2σ2), it implies indeed that for allc > 1:

P

(

sup
t6n

St − tµ
√

2σ2t log log(n)
> c

)

6 P

(

sup
t6n

tI
(

X̄t;µ
)

> c2 log log(n)

)

→ 0

when n tends to infinity. Observe that the log-concavity
of I(·, µ), although not always satisfied (even for bounded
variables), is reasonable at least locally aroundµ if one thinks
to the gaussian regime.

Let us mention that in the quadratic (gaussian) case
I(x;µ) = 2(x−µ)2/K2, the bound can be slightly improved:

P
(

∃t ∈ {1, . . . , n} : t I(X̄t;µ) > δ
)

6 2

⌈

logn

log (1 + η)

⌉

exp

(

−
(

1− η2

16

)

δ

)

. (2)



Finally, the method can be adapted in order to obtain non-
asymptotic that hold for allt > 1 in the spirit of the Law of
the Iterated Logarithm:

Theorem 3:For all δ > 1 and allc > 1,

P

(

∃t > 1 : t I(X̄t;µ) >
δc

δ − 1
log log t+ δ

)

6
2 e cδc

c− 1
exp(−δ) .

In particular, forc = 1 + 1/ log(δ), one obtains:

P

(

∃t > 1 : t I(X̄t;µ) >
δ(1 + log δ)

(δ − 1) log δ
log log t+ δ

)

6 2e2δ exp(−δ) .

C. Self-Normalized Form

In the applications mentioned above, the necessity to guar-
antee the joint validity of the confidence intervals over the
entire epoch comes from the fact that the variablesXt are
observed only episodically in a predictable way: there exists,
for each t ∈ {1, . . . , n}, a {0, 1}-valued,Ft−1-measurable
random variableεt ∈ {0, 1} such that the current estimate at
time n is

X̄(n) = S(n)/N(n) (3)

whereS(n) =
∑n

t=1 εtXt andN(n) =
∑n

t=1 εt. Theorem 1
yields:

P

(

I
(

X̄(n);µ
)

>
δ

N(n)

)

6 2e ⌈δ log(n)⌉ exp(−δ) .

In the definition (3), S(n) is written as a martingale
transform or, equivalently, a discrete stochastic integral.
Continuous-time variants of Theorem 1 can be obtained fol-
lowing the same lines (using the same peeling trick) for
stochastic integrals.

Furthermore, this approach can be adapted to non-stationary
contexts: assume for simplicity that the variables(Xt)t are
independent, of expectationµt respectively, and that their
absolute value is almost-surely bounded byB. If µt does not
change too fast (or too often) witht, one may consider the
discounted estimator̄Xγ(n) of µn defined by

X̄γ(n) =
Sγ(n)

Nγ(n)
,

where γ ∈]0, 1[, Sγ(n) =
∑n

t=1 γ
n−tεtXt and Nγ(n) =

∑n
t=1 γ

n−tεt. The difference between̄Xγ(n) and µn can
be decomposed into a term of bias (which is not discussed
here) and a fluctuation term̄Xγ(n) − Mγ(n)/Nγ(n), where
Mγ(n) =

∑n
t=1 γ

n−tεtµt. This fluctuation term can be
controlled by the adapting the martingale techniques above:
one obtains that

P

(

Sγ(n)−Mγ(n)
√

Nγ2(n)
> δ

)

6

⌈

log νγ(n)

log(1 + η)

⌉

exp

(

−2δ2

B2

(

1− η2

16

))

, (4)

with νγ(n) =
∑n

t=1 γ
n−t = (1 − γn)/(1 − γ) < min{(1 −

γ)−1, n}. This results permits to analyze theDiscounted-UCB
algorithm [20] earlier proposed by Kocsis Szepesvári [21].

III. A PPLICATION TO ESTIMATION

Let us now show briefly how these inequalities may be used
in the analysis of some stochastic algorithms. The key pointis
that Theorem 1 allows the construction of a sequence of con-
fidence intervals([at, bt])16t6n for µ that are simultaneously
valid with high probability. The interval

[at, bt] =
{

µ ∈ [x−, x+] : tI
(

X̄t;µ
)

6 δ
}

contains all the values in a neighborhood ofX̄t in the sense
of the pseudo-distance defined byI. By Theorem 1,

P

(

n
⋂

t=1

{µ ∈ [at, bt]}
)

> 1− 2e ⌈δ log(n)⌉ exp(−δ) .

Similarly, one obtains obtains confidence intervals for thecase
presented in Equation (3). This framework applies as well in
bandit problems, where only the reward of the chosen arm
is observed, that the estimation of Markovian models where,
at each time, only the estimates relative to the current past
observations are updated. Of course, in these examples, the
identity of the variable(s) observed at timet is absolutely
not independent of the past observations. By choosingδ such
that 2e ⌈δ log(n)⌉ exp(−δ) 6 α, one obtains the confidence
interval

{

µ : I
(

X̄(n);µ
)

6 δ/N(n)
}

of risk at mostα.

A. One-Parameter Exponential Model and Bounded Variables

In this section, we assume that the variables(Xt)t are
independent and identically distributed, and that their distri-
bution Pθ0 belongs to a canonical exponential model of the
form {Pθ : θ ∈ Θ}, whereΘ is an real interval and where
Pθ has, with respect to some reference measure, the density
pθ : R → R defined by:

pθ(x) = exp (xθ − b(θ) + c(x)) .

Here, c is a real function and the log-partition functionb is
supposed to be twice differentiable. It is well-known that,by
denotingµ(θ) = ḃ(θ) the expectation ofPθ, one defines a one-
to-one, differentiable mappingµ. In this case, one easily shows
that the rate functionI is directly related to the Kullback-
Leibler divergence (which is here a Bregman divergence for
b) as follows: for everyβ, θ ∈ Θ,

KL(Pβ ;Pθ) = I(µ(β);µ(θ)) = b(θ)− b(β)− ḃ(β)(θ − β) .

Hence, a sequence(Rt)t>1 of confidence intervals for
the parameter θ0 jointly valid with probability 1 −
2e ⌈δ log(n)⌉ exp(−δ) is obtained by choosing:

Rt =

{

θ : KL
(

Pµ−1(X̄t);Pθ

)

6
δ

t

}

=

{

θ : I
(

X̄t;µ(θ)
)

6
δ

t

}

.

This applies in particular to usual families of distributions like
Poisson, Exponential, Gamma (with fixed shape parameter)...



In [4], an example concerning exponential variable detailed:
in that case,I(x, y) = x/y − 1− log(x/y).

But the case of Bernoulli variables deserves to be high-
lighted, as it easily extends to generalboundedvariables. In-
deed, as observed by Hoeffding [22], the exponential moments
of a [0, 1]-valued variableX with expectationµ are upper-
bounded by those of a Bernoulli variable, and for allλ ∈ R

it holds that

E [exp(λX)] 6 1− µ+ µ exp(λ) ,

with equality if and only ifX ∼ B(µ). Recall thatkl denotes
the binary entropy function, i.e. the rate function associated
to Bernoulli variables. Theorem 1 yields that, for independent
variablesXt bounded in[0, 1],

P

(

sup
t6n

kl
(

X̄t, µ
)

>
δ

t

)

6 2e ⌈δ log(n)⌉ exp(−δ) . (5)

Of course, this result together with Pinsker’s inequality
kl(p, q) > 2(p − q)2, yields a self-normalized version of
Hoeffding’s inequality on the epocht ∈ {1, . . . , n}:

P

(

sup
t6n

∣

∣X̄t − µ
∣

∣ >
δ√
t

)

6 4e
⌈

δ2 log(n)
⌉

exp(−2δ2) . (6)

This bound may seem simpler and easier to use than the
previous one. However, the case of bounded bandits (detailed
in [4], [5]), as well as the case of context tree estimation
(presented in [12]) show that Equation (5) is sometimes really
to be preferred, as it leads to significantly more efficient
algorithms at the price of an hardly increased computational
complexity.

B. Multinomial Distributions

As suggested by Sanov’s (asymptotic) Theorem, this kind
of inequalities is not limited to real-valued variables. Itis also
possible to construct informational, self-normalized confidence
regions for random vectors; let us detail here the simple case
of multinomial laws, as they are required, for example, in
order to estimate transition distributions in Markov chains
(see [12], [23]). LetP andQ be two elements of the setS of
all probability distributions over a finite setA. By remarking
that

−KL(P ;Q) +
∑

x∈A

kl (P (x);Q(x))

= (|A| − 1)
∑

x∈A

1− P (x)

|A| − 1
log

(

(1− P (x))/(|A| − 1)

(1−Q(x))/(|A| − 1)

)

is non-negative, one easily shows that

KL(P ;Q) 6
∑

x∈A

kl (P (x);Q(x)) .

It follows that ifX1, . . . , Xn are i.i.d. variables of lawP0 ∈ S,
and if P̂t(k) =

∑t
s=1 1{Xs = k}/t, then

P
(

∃t ∈ {1, . . . , n} : KL
(

P̂t;P0

)

>
δ

t

)

6
∑

a∈A

P

(

∃t ∈ {1, . . . , n} : kl
(

P̂t(a);P0(a)
)

>
δ

|A|t

)

6 2e (δ log(n) + |A|) exp
(

− δ

|A|

)

. (7)

The fact that this bound involves directly the Kullback-
Leibler divergence between the empirical measure and the true
distribution allows, in context tree estimation (see [12]), to
suppress unnecessary assumptions that resulted, in previous
papers, from the use of Bernstein’s inequality. Moreover,
the Equation (7) permits to construct a sequence(Rt)t6n

of “Sanov-type” confidence regions forP0 that are simulta-
neously valid with probability at least1 − α, by choosing
Kullback-Leibler neighborhoods of the maximum likelihood
estimator:

Rt =

{

Q ∈ S : KL(P̂t;Q) 6
δ

t

}

,

with δ such that2e (δ log(n) + |A|) exp (−δ/|A|) = α. These
regionsRt of the simplex have nice geometric properties that
are exploited in [23] for reinforcement learning in Markov De-
cision Process, improving on former results usingL1 regions.
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