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Abstract—Let Xn
∈ X

n be a sequence drawn from a discrete
memoryless source, and letY n

∈ Y
n be the corresponding

reconstruction sequence that is output by a good rate-distortion
code. This paper establishes a property of the joint distribution
of (Xn, Y n). It is shown that for D > 0, the input-output
statistics of a R(D)-achieving rate-distortion code converge (in
normalized relative entropy) to the output-input statistics of a
discrete memoryless channel (dmc). The dmc is “backward” in
that it is a channel from the reconstruction spaceYn to source
spaceXn. It is also shown that the property does not necessarily
hold when normalized relative entropy is replaced by variational
distance.

I. I NTRODUCTION

Consider a discrete memoryless source with generic dis-
tribution PX and a per-symbol distortion measured(x, y).
Given a distortion allowanceD, the minimum achievable rate
of compression (in bits per source symbol) is given by rate-
distortion theory as

R(D) = min
PXY ∈P(D)

I(X ;Y ),

where

P(D) =
{
PXY :

∑

y

PXY = PX andE d(X,Y ) ≤ D
}
.

One intriguing achievability proof of this classic theorem
was given by Wolfowitz in [1] (see also [2, Theorem 7.3])
and goes roughly as follows. A joint distributionPXY ∈ P(D)
gives rise to a random transformationPX|Y from the reproduc-
tion alphabet to the source alphabet. Using Feinstein’s maxi-
mal code construction, create achannelcode designed for the
“backward” dmc

∏n
i=1 PX|Y (xi|yi); here, “backward” refers

to the reversed flow of information from the reconstruction
space to the source space. The resulting channel code can be
transformed into a rate-distortion code by using the channel
decoder as a source encoder and the channel encoder as a
source decoder. In [1], it is shown that the distortion criterion
is met as long as the channel code has large enough error
probability, thus demonstrating that good rate-distortion codes
can be constructed from certain channel codes.

In this paper, we explore another connection between lossy
source coding and backward dmc’s, one which involves the
input-output statistics of good rate-distortion codes. Briefly,
the result is as follows. Consider an arbitraryR(D)-achieving
rate-distortion code1 that maps source sequencesXn to recon-

1More precisely, a sequence of codes.

fn gn
Xn i.i.d. {1, . . . ,M} Y n

(a) A rate-distortion code is a pair(fn, gn) that maps a source
sequenceXn to a reconstruction codewordY n. The code induces
a distributionPXnY n on the pair(Xn, Y n).

gnPX|Y

Unif{1, . . . ,M}Ỹ nX̃n

(b) Select a codeword̃Y n uniformly at random from the codebook
corresponding to(fn, gn), then passỸ n through a memoryless
channelPX|Y . The pair(X̃n, Ỹ n) induces a distributionQXnY n .

Fig. 1: Description of the true joint distributionPXnY n (Fig. 1a)
and the approximating joint distributionQXnY n (Fig. 1b).

struction codewordsY n. The code induces a joint distribution
PXnY n on the pair(Xn, Y n) (see Figure 1a).

Using the corresponding codebook, select a codeword
uniformly at random as the input to a backward dmc∏n

i=1 PX|Y (xi|yi), wherePX|Y is derived from the minimizer
of R(D).2 This channel coding operation induces a joint
distributionQXnY n on the pair(X̃n, Ỹ n), where Ỹ n is the
randomly selected codeword and̃Xn is the channel output
(see Figure 1b). We show that, provided some mild necessary
conditions are satisfied,

lim
n→∞

1

n
D(PXnY n ||QXnY n) = 0. (1)

That is, the input-output statistics of nearly allR(D)-achieving
sequences of rate-distortion codes converge (in the sense of
normalized relative entropy) to the output-input statistics of a
backward dmc acting on the rate-distortion codebook.3

The property in (1) is analogous to the property of capacity-
achieving codes for memoryless channels established in [4,
Theorem 15], namely that the channel output statistics con-
verge (in normalized relative entropy) to a memoryless distri-
bution. More precisely, a capacity-achieving sequence of codes

2Although the minimizer may not be unique, it is well-known that PX|Y
is unique.

3We note that a similar claim appears in [3, Thm. 2]; however, their
unconditional claim is not correct. Furthermore, their proof is brief and
incorrect. We comment more on this during our proof.
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satisfies
lim
n→∞

1

n
D(PY n ||QY n) = 0, (2)

where PY n is the true distribution of the channel output
andQY n =

∏n

i=1 PY (yi), wherePY is the unique capacity-
achieving output distribution.

There are various properties of good rate-distortion codes
that have been examined in the past (see, for example,
[5] and [6]). Notably, [6] showed that the empiricalkth-
order distribution of a good rate-distortion code converges in
distribution almost surely to the minimizer of thekth-order
rate-distortion function (when that minimizer is unique).Note
that the property in (1), in contrast, concerns the actual (not
empirical) joint distribution andk = n. In some sense, (1)
complements [6] in the same way that (2) complements the
results in [7] on thekth-order empirical input distribution of
good channel codes.

In order to show that good rate-distortion codes yield (1), we
will first prove in Section II that the property holds for good
empirical coordination codes. Empirical coordination, studied
in [8], is similar to rate-distortion except for the distortion
criterion, which is replaced by the requirement that the varia-
tional distance between the joint empirical distribution and a
target joint distributionPXY converges in probability. Thus,
one aims to achieve coordination pairs(R,PY |X) instead of
rate-distortion pairs(R,D). Upon demonstrating that (1) holds
for good empirical coordination codes, we show in Section III
that the property holds for good rate-distortion codes, as well.
In Section IV, we show that the property can fail to hold
when the distance measure is replaced by variational distance
or unnormalized relative entropy.

Although we do not prove it here, we are able to use the
property in (1) to solve a problem in information-theoretic
secrecy relating to Yamamoto’s “Rate-distortion theory ofthe
Shannon cipher system” [9]. Specifically, one can use the
property to show that the results of [10] can be achieved simply
by using good rate-distortion codes, instead of the particular
stochastic encoders that [10] asserts the existence of. It is likely
that the property can provide a solution or give insight into
other secrecy problems, as well.

II. GOOD EMPIRICAL COORDINATION CODES

We begin by introducing empirical coordination codes. All
results in this paper will assume memoryless sources and
finite alphabets. Furthermore, we assume for simplicity that
the source satisfiesPX(x) > 0, ∀x ∈ X . We first give the
definition of a coordination code (see Figure 1a).

Definition 1. An (n,Rn) coordination code consists of an
encoder-decoder pair(fn, gn) operating at rateRn, where

fn : Xn −→ {1, . . . ,M} (3)

gn : {1, . . . ,M} −→ Yn (4)

Rn = 1
n
logM. (5)

A coordination code acts on a memoryless sourceXn with
generic distributionPX . For a fixed source sequencexn, the

code produces a codewordyn = g(f(xn)). The empirical
distribution of the resulting pair(xn, yn) is defined for all
(x, y) ∈ X × Y by

Txnyn(x, y) ,
1

n

n∑

i=1

1{(xi, yi) = (x, y)}. (6)

The empirical distribution of the pair of random variables
(Xn, Y n) is itself a random variable and is denoted byTXnY n .
Variational distance, a measure of the distance between two
distributionsP andQ with common alphabet, is defined by

‖P −Q‖ , sup
A

|P (A)−Q(A)|. (7)

Definition 2. The pair(R,PY |X) is achievable if there exists
a sequence of(n,Rn) coordination codes such that

lim
n→∞

Rn = R (8)

and
‖TXnY n − PXY ‖

i.p.
−−→ 0, (9)

wherePXY = PXPY |X .

Theorem 1 ([8]). The pair (R,PY |X) is achievable if and
only if R ≥ I(X ;Y ).

The rate boundary in Theorem 1 justifies the following
definition of a “good” coordination code.

Definition 3. Given a sourcePX , a sequence of(n,Rn)
coordination codes{(fn, gn)}∞n=1 is good forPY |X if

lim
n→∞

Rn = I(X ;Y ) (10)

and
‖TXnY n − PXY ‖

i.p.
−−→ 0. (11)

To each good sequence of coordination codes forPY |X , we
associate two sequences of joint distributions{PXnY n}∞n=1

and {QXnY n}∞n=1. The first, PXnY n , is the distribution of
the pair(Xn, Y n) induced by the code. That is,

PXnY n = PXnPY n|Xn , (12)

where

PXn(xn) =

n∏

i=1

PX(xi) (13)

is the memoryless source distribution and

PY n|Xn(yn|xn) = 1
{
yn = gn(fn(x

n))
}

(14)

is the composition of the encoder with the decoder. The second
distribution,QXnY n , is the distribution of the pair(X̃n, Ỹ n),
where Ỹ n is a codeword selected uniformly at random and
X̃n is the output of the backward dmc when the input isỸ n.
That is,

QXnY n = QY nQXn|Y n , (15)

where

QY n(yn) =
|g−1

n (yn)|

M
(16)



is the uniform distribution over the codebook (which might
contain duplicate codewords) and

QXn|Y n(xn|yn) =

n∏

i=1

PX|Y (xi|yi) (17)

is the backward dmc with generic channelPX|Y derived from
the joint distributionPXY = PXPY |X .

Our main result is the following theorem.4

Theorem 2. Let PXY ∈ A, where

A , {PXY : PX|Y (x|y) > 0, ∀(x, y)} (18)

Then, for any good sequence of coordination codes forPY |X ,
it holds that

lim
n→∞

1

n
D(PXnY n ||QXnY n) = 0, (19)

where PXnY n and QXnY n are defined in(12)-(17). Fur-
thermore, ifPXY /∈ A, then there exists a good sequence of
coordination codes forPY |X such that

lim
n→∞

1

n
D(PXnY n ||QXnY n) = ∞. (20)

Proof:
We will need the following property of variational distance,

which is easily verified. Letε > 0 and letf(x) be a function
bounded byb ∈ R. Then

‖P −Q‖ < ε =⇒
∣∣EP f(X)− EQf(X)

∣∣ < εb. (21)

We also need the following chain rule of relative entropy:

D(PXnY n ||QXnY n)

= D(PXnY n ||PY nQXn|Y n) +D(PY n ||QY n). (22)

To begin the proof of Theorem 2, fixPXY ∈ A and a good
sequence of coordination codes forPY |X . We first show that
such a sequence has the property5

lim
n→∞

1

n
I(Xn;Y n) = I(X ;Y ), (23)

where I(Xn;Y n) is evaluated with respect to the true dis-
tribution PXnY n . Throughout the proof, bear in mind that
all expectations and mutual information expressions involving
(Xn, Y n) are evaluated with respect to the true distribution
PXnY n .

To show (23), we first introduce an auxiliary random
variable J ∼ Unif{1, . . . , n} independent of(Xn, Y n). Re-
gurgitating some of the standard steps found in the converse

4We exclude the single pathological casePXY (x, y) = 1

|X|
1{x = y},

in which it is possible that there are some codebooks such that PXnY n =
QXnY n and other codebooks such thatD(PXnY n ||QXnY n ) = ∞.

5In [3], the assertion is that the theorem follows from (23). However, this
is not the case. It is necessary to establish the steps in (38)-(41), which rely
on the property of coordination codes in (36).

to the lossy source coding theorem, we have

Rn =
1

n
logM (24)

≥
1

n
H(Y n) (25)

≥
1

n
I(Xn;Y n) (26)

≥
1

n

n∑

i=1

I(Xi, Yi) (27)

= I(XJ ;YJ |J) (28)
(a)
= I(XJ ;YJ , J) (29)

≥ I(XJ ;YJ ), (30)

where(a) follows from XJ ⊥ J . If we can show that

lim
n→∞

I(XJ ;YJ) = I(X ;Y ), (31)

then the proof of the property in (23) will be complete by
(10) and the squeeze theorem. To that end, we use several
observations from [8]. By the boundedness of variational
distance, (11) implies

lim
n→∞

E ‖TXnY n − PXY ‖ = 0. (32)

Upon noting that

ETXnY n = PXJYJ
, (33)

we have

‖PXJYJ
− PXY ‖ = ‖ETXnY n − PXY ‖ (34)

(a)

≤ E ‖TXnY n − PXY ‖, (35)

where (a) follows from Jensen’s inequality. Therefore,

lim
n→∞

‖PXJYJ
− PXY ‖ = 0. (36)

Since mutual information is continuous with respect to vari-
ational distance for finite alphabets (this follows from (21)),
we see that (36) yields (31). Thus, the property in (23) holds.

We remark that the property in (36) underlies the reason that
we are considering empirical coordination codes. In brief,it
arises more naturally in an empirical coordination settingthan
in a rate-distortion setting. We will invoke (36) again shortly.

With (23) in hand, we now show that

lim
n→∞

1

n
D(PXnY n ||PY nQXn|Y n) = 0. (37)

To start, we have

lim
n→∞

1

n
E

[
log

∏n

i=1 PX|Y (Xi|Yi)∏n

i=1 PX(Xi)

]

= lim
n→∞

1

n

n∑

i=1

E

[
log

PX|Y (Xi|Yi)

PX(Xi)

]
(38)

= lim
n→∞

E

[
log

PX|Y (XJ |YJ)

PX(XJ)

]
(39)

(a)
= lim

n→∞
E

[
log

PX|Y (X |Y )

PX(X)

]
(40)

= I(X ;Y ). (41)



To see how (a) follows, first note that the function

f(x, y) = log
PX|Y (x|y)

PX(x)
(42)

is bounded due to the restrictionPXY ∈ A (in fact, this is
the only step where the restriction is needed). Then, use (36)
along with (21). Continuing, we have

lim
n→∞

1

n
D(PY nPXn|Y n ||PY nQXn|Y n)

= lim
n→∞

1

n
E

[
log

PXn|Y n(Xn|Y n)

QXn|Y n(Xn|Y n)

]
(43)

= lim
n→∞

1

n
E

[
log

PXn|Y n(Xn|Y n)

PXn(Xn)

]
(44)

− lim
n→∞

1

n
E

[
log

QXn|Y n(Xn|Y n)

PXn(Xn)

]
(45)

= lim
n→∞

1

n
I(Xn;Y n) (46)

− lim
n→∞

1

n
E

[
log

∏
PX|Y (Xi|Yi)∏

PX(Xi)

]
(47)

(a)
= lim

n→∞

1

n
I(Xn;Y n)− I(X ;Y ) (48)

(b)
= 0, (49)

where (a) is due to (41) and (b) is due to (23). This proves
the property in (37).

Finally, write

lim
n→∞

1

n
D(PY n ||QY n)

= lim
n→∞

1

n

∑

yn

PY n(yn) log
1

QY n(yn)
(50)

− lim
n→∞

1

n
H(Y n) (51)

≤ lim
n→∞

1

n
logM − lim

n→∞

1

n
H(Y n) (52)

(a)
= 0 (53)

where (a) follows from the squeeze theorem. To complete the
first part of the theorem, invoke the chain rule of relative
entropy in (22).

To show the second part of Theorem 2, fixPXY /∈ A and
a good sequence of coordination codes for the corresponding
PY |X . The conditionPXY /∈ A implies the existence of a
pair (x, y) such thatPX|Y (x|y) = 0. For everyn, append a
codewordyn to the codebook and associate with it a sequence
xn such that

|i : (xi, yi) = (x, y)| > 0.

Accordingly, modifyfn andgn so thatyn = g(f(xn)). Such
a modification maintains the goodness of the code, but now
PXnY n has support on(xn, yn), while QXnY n does not.
Consequently,1

n
D(PXnY n ||QXnY n) diverges.

III. G OOD RATE-DISTORTION CODES

In this section, we establish the counterpart to Theorem 2
for good rate-distortion codes. A rate-distortion code is defined
according to Definition 1. The notion of good is also similar;
in this case, a good code is anR(D)-achieving one.

Definition 4. Given a sourcePX and a distortion mea-
sure d(x, y), a sequence of(n,Rn) rate-distortion codes
{(fn, gn)}

∞
n=1 is good for distortionD if

lim
n→∞

Rn = R(D) (54)

and

lim
n→∞

1

n

n∑

i=1

E d(Xi, Yi) ≤ D. (55)

For a fixed per-letter distortion measured(x, y), the
rate-distortion function is defined forD ≥ Dmin, where
Dmin = E[miny d(X, y)]. Without loss of generality, we as-
sume thatDmin = 0.

In view of the restriction in Theorem 2 toPXY ∈ A, the
following lemma is useful.

Lemma 1 ([11, Ch. 2, Lemma 1]). Let D > 0. Any PXY

that minimizesR(D) is such that, ifPY |X(y|x) = 0 for some
(x, y), thenPY |X(y|x′) = 0 for all x′ ∈ X . Accordingly, the
reproduction symboly may be deleted fromY without affecting
R(D).

Thus, we have that for anyD > 0 we can reduce the re-
production alphabetY, without penalty, to an alphabetY∗(D)
such that anyPXY minimizingR(D) satisfiesPXY (x, y) > 0
for all (x, y) ∈ X × Y∗. In particular,PXY ∈ A. It is shown
in [11] that this does not hold forD = 0. From this point on,
we assume thatY has been reduced according to Lemma 1,
so that Theorem 2 can be invoked.

Although the minimizer ofR(D) need not be unique,
it turns out that the corresponding backward channelPX|Y

is unique. This is analogous to the fact that the capacity-
achieving output distribution is unique, even though the input
distribution is not.

Lemma 2 ([2, Problem 8.3]). If PXY andQXY both minimize
R(D), thenPX|Y = QX|Y .

We now state the counterpart to Theorem 2. The proof is
immediate once we use the fact that good rate-distortion codes
are good empirical coordination codes.

Theorem 3. Let D > 0, and assume that the reproduction
alphabet has been reduced toY∗(D). Then, for any good
sequence of rate-distortion codes forD, it holds that

lim
n→∞

1

n
D(PXnY n ||QXnY n) = 0, (56)

where

PXnY n(xn, yn) =

n∏

i=1

PX(xi) 1
{
yn = gn(fn(x

n))
}

(57)



and

QXnY n(xn, yn) =
|g−1

n (yn)|

M

n∏

i=1

PX|Y (xi|yi), (58)

wherePX|Y is the unique backward channel corresponding to
D.

Proof: From [8, Theorem 11] or [6, Theorem 9], we have
that a good rate-distortion code forD is a good empirical
coordination code for somePY |X minimizing R(D). Due to
the reduction toY∗(D), we havePXY ∈ A, which allows us
to invoke Theorem 2.

IV. VARIATIONAL DISTANCE

In this section, we show that Theorem 2 does not hold when
we replace normalized divergence by variational distance.
From Pinsker’s inequality, this implies that it does not hold
in unnormalized relative entropy, either.

Theorem 4. There existsPXY ∈ A and a sequence of good
coordination codes for the correspondingPY |X such that

lim
n→∞

‖PXnY n −QXnY n‖ 6= 0, (59)

wherePXnY n andQXnY n are defined in(12)-(17).

Proof: Let PXY ∈ A be such thatPY is an capacity-
achieving input distribution of the channelPX|Y . Fix a se-
quence of good empirical coordination codes{(fn, gn)}

∞
n=1

for PY |X such that the decoder is bijective and

Rn = I(X ;Y ) + n− 1

2
+δ, (60)

for someδ > 0. This is possible by Theorem 1. By way of
contradiction, suppose that

lim
n→∞

‖PXnY n −QXnY n‖ = 0. (61)

To reach a contradiction, we first define joint distributions
P
XnY nM̂

andQ
XnY nM̂

by

P
XnY nM̂

(xn, yn, m̂) = PXnY n(xn, yn)1
{
m̂ = fn(x

n)
}

Q
XnY nM̂

(xn, yn, m̂) = QXnY n(xn, yn)1
{
m̂ = fn(x

n)
}
.

Observe thatQ
XnY nM̂

is the joint distribution governing
the triple (Xn, Y n, M̂) in the following channel coding set-
ting:

gn PX|Y fn
Unif{M} Y n Xn M̂

Thus, we have turned the rate-distortion code(fn, gn) into
a channel code by identifying the channel encoder as the
source decoder and the channel decoder as the source encoder.
Becausegn is bijective, the error event for the channel coding
is given by

En =
{
gn(M̂) 6= Y n

}
, (62)

and the probability of error is Pr{Error(n)} , Q(En).

On the other hand, notice that under the distribution
P
XnY nM̂

, it holds that

gn(M̂) = gn(fn(X
n)) = Y n, (63)

and thusP (En) = 0.
Now, since variational distance has the property

‖PXPY |X −QXPY |X‖ = ‖PX −QX‖, (64)

we have by (61) that

lim
n→∞

‖P
XnY nM̂

−Q
XnY nM̂

‖ (65)

= lim
n→∞

‖PXnY n −QXnY n‖ (66)

= 0. (67)

Therefore, by the definition of variational distance,

lim
n→∞

Pr{Error(n)} = lim
n→∞

Q(En) (68)

= lim
n→∞

|Q(En)− P (En)| (69)

= 0. (70)

Thus, we have demonstrated a sequence of channel codes
whose rates approach the channel capacity slowly6 from
above, yet whose probability of error vanishes. This is impos-
sible due to the strong converse to the channel coding theorem
(e.g., [12, Theorem 5.8.5]), yielding a contradiction.
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