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Abstract—Let X™ € X™ be a sequence drawn from a discrete X™ii.d. {1,...,M} Y»
memoryless source, and letY™ € Y™ be the corresponding — /n > gn

reconstruction sequence that is output by a good rate-disttion
code. This paper establishes a property of the joint distrilition
of (X™,Y™). It is shown that for D >0, the input-output
statistics of a R(D)-achieving rate-distortion code converge (in
normalized relative entropy) to the output-input statistics of a
discrete memoryless channel (dmc). The dmc is “backward” in
that it is a channel from the reconstruction space)™ to source - ~ Unif{l, o M}

n n
spaceX™. It is also shown that the property does not necessarily L@: Y Gn

hold when normalized relative entropy is replaced by variatonal L_J

distance. ~
(b) Select a codeword™ uniformly at random from the codebook

. INTRODUCTION corresponding tdf., g»), then passy™ through a memoryless

Consider a discrete memoryless source with generic dighannelPx y. The pair(X™,Y") induces a distributio x»yn.

t(;l_butlon fx a'."d a”per-sygborll dlst_o!'tlon meﬁ_suaixégl, y). Fig. 1: Description of the true joint distributio®x~y~ (Fig. [13)
Iven a 'SK_’”'O“_ allowance), the minimum achievabie rate and the approximating joint distributio x»y~ (Fig.[IB).

of compression (in bits per source symbol) is given by rate-

distortion theory as

(a) A rate-distortion code is a paltf», g») that maps a source
sequenceX™ to a reconstruction codeword™. The code induces
a distribution Px~»y~ on the pair(X™,Y™).

R(D)= min I(X;Y), struction codeword¥™. The code induces a joint distribution
Pxy €P(D) Pxnyn on the pair(X™,Y") (see Figuré Ta).
where Using the corresponding codebook, select a codeword

P(D) = {ny . ZPXY = Px andEd(X,Y) < D}. uniformly at random as the input to a backward dmc
" [T 1 Pxy (xilyi), wherePxy is derived from the minimizer
One intriguing achievability proof of this classic theoren?! P?(D?E This channel coding operation induces a joint
was given by Wolfowitz in[[L] (see alsdl[2, Theorem 7.3]flistribution @x~y~ on the pair(X",Y™), whereY™ is the
and goes roughly as follows. A joint distributidhy € P (D) randomly selected codeword and™ is the chann_el output
gives rise to a random transformatié |, from the reproduc- (see lF_lgurﬂb). V\/e_show that, provided some mild necessary
tion alphabet to the source alphabet. Using Feinstein'simagenditions are satisfied,
mal code construction, createchannelcode designed for the
“backward” dmc]:_, Pxy (z:|y:); here, “backward” refers

to the reversed flow of information from the reconstructiorll . . . -
: hat is, the input-output statistics of nearly Bl{ D)-achieving
space to the source space. The resulting channel code can be

transformed into a rate-distortion code by using the channg Juences of rate-distortion codes converge (in the sense o

normalized relative entropy) to the output-input statstof a
decoder as a source encoder and the channel encoder S kward dme acting on the rate-distortion codetfbok
source decoder. In[1], it is shown that the distortion ciite 9 :

is met as long as the channel code has large enough err J e property in(l) is analogous to the property of capacity-

or. . . .
probability, thus demonstrating that good rate-distartiodes achevmg codes for memoryless channels established!in [4,
can be co}lstructed from certain channel codes Theorem 15], namely that the channel output statistics con-

In this paper, we explore another connection between lo ¥y/9e (in normali;ed relative erlltropy). to_a memorylessrilist
source coding and backward dmc’s, one which involves tj? tion. More precisely, a capacity-achieving sequencedés

InpUt_OUtp.Ut statistics of goqd rate_dlStprtlon COdesl'e{.B"r’ 2Although the minimizer may not be unique, it is well-knowrattPy |y
the result is as follows. Consider an arbitrdtyD)-achieving s ynique.
rate-distortion codthat maps source sequences to recon-  3We note that a similar claim appears inl [3, Thm. 2]; howevagirt

unconditional claim is not correct. Furthermore, their girés brief and
IMore precisely, a sequence of codes. incorrect. We comment more on this during our proof.

.1
lim _D(PXnYnHQXnYn) =0. (1)
n—oo N
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satisfies code produces a codeword® = g¢(f(z")). The empirical

lim lp(pyn,HQyn) =0, (2) distribution of the resulting paifz",y") is defined for all

noeen (x,y) € X x Y by

where Py. is the true distribution of the channel output Lo

and Qy~ =[], Py (v:), where Py is the unique capacity- . s ) =

achieving Ollj_'[[pu}t disgrib)ution. Taryn(@,9) n Z (@i p) = (@ 9)} ©)
There are various properties of good rate-distortion codj_é

=1

that have been examined in the past (see, for examp e empirical distribution of the pair of random variables

[5] and [€]). Notably, [6] showed that the empiricékth- v 7.1’3”1) IIS (ljt_si,\lfarandom varlablefatrr:d 'Z_dfnmedt;bﬁ"y"' ;
order distribution of a good rate-distortion code convsrige ariational distance, a measure of ine distance between two

distribution almost surely to the minimizer of thgh-order distributions > and ¢ with common alphabet, is defined by

rate-distortion function (when that minimizer is uniquipte |P - Q| £ sup|P(A) — Q(A)|. (7
that the property in[{1), in contrast, concerns the actuat (n A
empirical) joint distribution andk = n. In some sense[{(1) pefinition 2. The pair (R, Py|x) is achievable if there exists
complements[[6] in the same way that (2) complements thesequence ofn, R,,) coordination codes such that
results in [7] on thekth-order empirical input distribution of
good channel codes. Jlim R, =R (8)
In order to show that good rate-distortion codes yigld (B, w
will first prove in Sectior ]l that the property holds for goooand i.p.
empirical coordination codes. Empirical coordinatiomdséd 1Ty = Pxy || =0, ©)
in. [8]_, is similar. to rate-distortion except for the disﬁpn where Pxy = Px Py x.
criterion, which is replaced by the requirement that theavar ) _ _ _
tional distance between the joint empirical distributiordaa Theorem 1 ([8]). The pair (R, Py|x) is achievable if and
target joint distributionPxy converges in probability. Thus, only if R > I(X;Y).
one aims to achieve coordination pal®, Py|x) instead of  The rate boundary in Theorefd 1 justifies the following
rate-distortion pair¢R, D). Upon demonstrating thdfl(1) holdsgefinition of a “good” coordination code.
for good empirical coordination codes, we show in Sedtidn Il ]
that the property holds for good rate-distortion codes, el w Definition 3. Given a sourcePx, a sequence ofn, l2,)
In Section[T¥, we show that the property can fail to hol@oordination codeq(fy,gn)}72, is good for Py x if
when the dis_tance measure is replaced by variational distan lim R, = I(X:Y) (10)
or unnormalized relative entropy. n—00
Although we do not prove it here, we are able to use thgd
property in K;L) to solve a problem in _information-theoretic |Txry= — Pxy| Py, (11)
secrecy relating to Yamamoto’s “Rate-distortion theorythaf
Shannon cipher systemf1[9]. Specifically, one can use theT0 €ach good sequence of coordination codesory, we
property to show that the results 6f[10] can be achievedlgimgssociate two sequences of joint distributigfy»y«}52,
by using good rate-distortion codes, instead of the pdaicu@nd {Q@x»y~};2,. The first, Px»y«, is the distribution of
stochastic encoders that[10] asserts the existence sfikely the pair(X™,Y™) induced by the code. That is,
that the property can provide a solution or give insight into

P nyn — P nP n n oy 12
other secrecy problems, as well. xmy XmEymix (12)
where
Il. GOOD EMPIRICAL COORDINATION CODES n
We begin by introducing empirical coordination codes. All Pxr(a") = HPX(L') (13)

results in this paper will assume memoryless sources and

finite alphabets. Furthermore, we assume for simplicityt thi the memoryless source distribution and

the source satisfie®x (x) > 0, Vx € X. We first give the niny _ n_ n

definition of a coordina(tic)m code (see Figlre 1a).g Pyropn(y1a") = 1{y" = gn(fn(@"))} (14)

is the composition of the encoder with the decoder. The skcon
distribution,Q x~y~, is the distribution of the paifX™,Y™"),
where Y™ is a codeword selected uniformly at random and

Definition 1. An (n, R,) coordination code consists of an
encoder-decoder paiff,, g,) operating at rateR,,, where

fa: X" —{1,..., M} (3) X" is the output of the backward dmc when the inputss.
gn:{1,.... M} — YY" 4) That is,
R = 1 lOg M. (5) QX"’Y" = QY"’QX"\YTH (15)
L . . where
A coordination code acts on a memoryless souXé¢ewith g1 (y™)|

generic distributionPy . For a fixed source sequencé, the Qv»(y") = =5 (16)



is the uniform distribution over the codebook (which mighto the lossy source coding theorem, we have

contain duplicate codewords) and 1
R, = —logM (24)
n n
Qxnpyn(@"ly") = [ [ Py (@ilys) a7) > lH(yn) (25)
=1 n
1
is the backward dmc with generic chani@},- derived from > EI(X"; Y") (26)
the joint distributionPxy = Px Py |x. 1
Our main result is the following theoreff). > = ZI(XZ-, Y:) (27)
n
Theorem 2. Let Pxy € A, where _ ](;(_Jl- Y51J) 28)
A2 {Pxy : Pxy(zly) > 0,Y(z,y)} (18) Y 1(X,:Y5,0) (29)
Then, for any good sequence of coordination codes*gry, 2 I(X5:Yy), (30)
it holds that where(a) follows from X ; L J. If we can show that
lim %D(PXnYnHQXnYn) =0, (19) Jim I(X;Yy) = I(X;Y), (31)

then the proof of the property if_(R3) will be complete by

where Pxny» and Qxny« are defined in{@2){I7). Fur- (%LQ) and the squeeze theorem. To that end, we use several
thermore, if Pxy ¢ A, then there exists a good sequence Qpgeryations from[]8]. By the boundedness of variational
coordination codes foy|x such that distance, [{T11) implies

1 ; _ _

Jim ED(PX"Y”HQX"Y") = oo0. (20) i BTy = Py || =0, (32)
Upon noting that

Proof: ETxnyn = Px,y,, (33)

We will need the following property of variational distance

which is easily verified. Let > 0 and letf(z) be a function we have
bounded by € R. Then IPx,v, — Pxyl| = [[ETxny~» — Pxy]|| (34)
(a)
IP-Qll<e = [Epf(X)-Eqf(X)| <eb. (21) < E|[Txny» — Pxv|, (35)
where (a) follows from Jensen’s inequality. Therefore,

We also need the following chain rule of relative entropy:
lim ||PX Y; — nyH =0. (36)
D(Pxeyn||Qxny) S o o " .
— D(Pxnyn||PyaOQxnivn) + D(Pyn ) (22 ince mutual information is continuous with respect to vari
(Pxry [Py Qcnpym) (Py»[|Qy-). (22) ational distance for finite alphabets (this follows from)21

To begin the proof of TheoreM 2, fiRyxy € A and a good We see that (36) yield (B1). Thus, the propertyli (23) holds
sequence of coordination codes fBf . We first show that Ve remark that the property i (86) underlies the reason that

such a sequence has the progerty we are considering empirical coordination codes. In biitef,
arises more naturally in an empirical coordination setthman
lim lI(X"; Y™ = I(X;Y), (23) in a rate-distortion setting. We will invoké (36) again sthor
n—0oo n With (23) in hand, we now show that
where I(X™;Y™) is evaluated with respect to the true dis- 1 _
tribution Px.y~. Throughout the proof, bear in mind that i nD(PXnYnHPYnQXn‘Y") =0 (37)

all expectations and mutual information expressions vingl To start, we have

(X™,Y"™) are evaluated with respect to the true distribution 1

Pxnyn. lim —E[log
To show [2B), we first introduce an auxiliary random

[T, Px|y(Xz'|Yz')}
H?:l Px (Xi)

variable J ~ Unif{1,...,n} independent of X", Y™). Re- ~ i L zn:]E{log PX\Y(Xi|Yi)} (38)
gurgitating some of the standard steps found in the converse n—oo N Px(X;)
P XY,

“We exclude the single pathological cagy (z,y) = ‘%14@ =y}, = lim E{log M} (39)
in which it is possible that there are some codebooks sudhRRayn» = oo Px (XJ)
Qxnyn and other codebooks such tha{ Pxnyn||Qxnyn) = co. (a) . Px )y (X]Y)

5In [3], the assertion is that the theorem follows frdm](23pwver, this = hjﬂ E [ log W} (40)
is not the case. It is necessary to establish the stefsn{43B)which rely nree x (X)

on the property of coordination codes [N 136). = I(X;Y). (42)



To see how (a) follows, first note that the function I1l. GOOD RATE-DISTORTION CODES

Py (z[y) In this section, we establish the counterpart to Thedrem 2
f(z,y) =log “Pe) (42) for good rate-distortion codes. A rate-distortion codedfirkd
X

according to Definitiofi]1. The notion of good is also similar;
is bounded due to the restrictiaRyy € A (in fact, this is in this case, a good code is d¥(D)-achieving one.

the only step where the restriction is needed). Then, use ($:finition 4. Given a sourcePy and a distortion mea-
along with [21). Continuing, we have sure d(z,y), a sequence ofn,R,) rate-distortion codes

1 {(fn,gn)}22, is good for distortionD if
hm ED(PY'"'PX"‘Y"||PY77’QX""Y")

L lim R, = R(D) (54)
B n—oo n anlyn (Xn'Yn) and "
1 Pxnjyn (X"Y™) lim =S Ed(X,,Y;) < D. (55)
= nh—>H;o EE[lOg W} (44) n—oo M ; o
im 2Eo Qxnpyn (XMY") 45 For a fixed per-letter distortion measuré(z,y), the
Pxn (X7 (45) <torti ion i !
";0" n xn (X7) rate-distortion function is defined fo) > D.;,, where
= lim —I(X™;Y") (46) Dmin = E[min, d(X,y)]. Without loss of generality, we as-
n—00 N sume thatD,;, = 0.
— lim lE[lo HPXIY(X”YZ')} (47) In view of the restriction in Theoref] 2 t&xy <€ A, the
n—co [1Px(X;) following lemma is useful.
a . 1 n n
@ Jim. EI(X Y™ - I(XY) (48) Lemma 1 ([11, Ch. 2, Lemma 1]) Let D > 0. Any Pxy
®) that minimizesi(D) is such that, ifPy| x (y|=) = 0 for some
=0, (49)  (z,y), then Py x (y|«") = 0 for all 2’ € X. Accordingly, the

reproduction symba} may be deleted fro¥ without affecting
where (a) is due td_(41) and (b) is due [a](23). This provey(p)
the property in[(37).
Finally, write Thus, we have that for anyp > 0 we can reduce the re-
’ production alphabey, without penalty, to an alphabgt*(D)
such that anyPxy minimizing R(D) satisfiesPxy (z,y) > 0
for all (z,y) € X x Y*. In particular,Pxy € A. It is shown

.1
lim —D(Py~||Qyn)
n—o0o N

— 1 Z P % 1 (50) in [11] that this does not hold fab = 0. From this point on,
= n v (y")log Qy~(y™) we assume thay has been reduced according to Lemima 1,
Y 1 so that Theorerh]2 can be invoked.
— lim —H({™) (51) Although the minimizer of R(D) need not be unique,
e ] it turns out that the corresponding backward chanRg|y
< lim —logM — lim —H(Y™) (52) is unique. This is analogous to the fact that the capacity-
(a) achieving output distribution is unique, even though thguin

= (53) distribution is not.

where (a) follows from the squeeze theorem. To complete th8Mma 2 ([2, Problem 8.3]) If Pxy andQxy both minimize
first part of the theorem, invoke the chain rule of relativé(D), thenPxjy = Qx|y.

entropy in [22). We now state the counterpart to Theorg 2. The proof is

To show the second part of Theoréin 2, fixy ¢ A and immediate once we use the fact that good rate-distortioesod
a good sequence of coordination codes for the correspondiig good empirical coordination codes.

Py |x. The conditionPxy ¢ A implies the existence of a ]
pair (z,y) such thatPy |y (z|y) = 0. For everyn, append a Theorem 3. Let D > 0, and assume that the reproduction

codewordy™ to the codebook and associate with it a sequen@Phabet has been reduced (D). Then, for any good

" such that sequence of rate-distortion codes fbx, it holds that
. _ 1
i+ (@i 9:) = (@, 9)] > 0. im ED(PX"Y"HQX"Y") =0, (56)

Accordingly, modify f,, andg,, so thaty”™ = g(f(z™)). Such where
a modification maintains the goodness of the code, but now n

Pxnyn has support on(z",y"), while Qx»y~ does not.  p. . (zn ) = HPX(%_) 1{y" = gu(fa(@™)} (57)

Consequently: D(Pxny«||Qxny~) diverges. [ ey



and On the other hand, notice that under the distribution

_ n P —, it holds that
190" (y™)] Xy
Qxnyn(z",y") = == ] Pxv (@ily:), (58) — n n
M 11;[1 gn(M) = gn(fn(X")) = Y7, (63)
where Px |y is the unique backward channel corresponding tand thusP(&,,) = 0.
D. Now, since variational distance has the property
Proof: From [§, Theorem 11] o [6, Theorem 9], we have | PxPy|x — QxPyix|| = ||Px — Qx|l, (64)

that a good rate-distortion code fdp is a good empirical

coordination code for somé&y- x minimizing R(D). Due to we have by[(B1) that

the reduction tqy* (D), we havePxy € A, which allows us lim || Pyynis — @xnyni7ll (65)
to invoke Theorerl]2. [ noreen ' '
n— o0
IV. VARIATIONAL DISTANCE —0 67)

In this section, we show that Theoré&in 2 does not hold when I . .
we replace normalized divergence by variational distanc-gherefore’ by the definition of variational distance,
From Pinsker’s inequality, this implies that it does notdol lim PH{Erronn)} = lim Q(&,) (68)
in unnormalized relative entropy, either. oo nTroo
= lim [Q(&) — P(E)[  (69)

Theorem 4. There existsPxy € A and a sequence of good ~0 (70)

coordination codes for the correspondidg-| x such that
. Thus, we have demonstrated a sequence of channel codes
J [| Py = Qxmynl| # 0, (59)  whose rates approach the channel capacity sfovitpm
where Px.y~ and Qxny- are defined in(L2)-(7). above, yet whose probability of error vanishes. This is igpo
sible due to the strong converse to the channel coding threore

Proof: Let Pxy € A be such thatPy is an capacity- (e.g., [12, Theorem 5.8.5]), yielding a contradiction. m
achieving input distribution of the channély|y. Fix a se-
quence of good empirical coordination codgs.,, g,)}5° V. ACKNOWLEDGEMENTS
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