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Abstract—We propose two coding schemes for discrete mem-
oryless broadcast channels (DMBCs) with rate-limited feedback
from only one receiver. For any positive feedback rate and for the
class of strictly less-noisy DMBCs, our schemes strictly improve
over the no-feedback capacity region.

I. INTRODUCTION

We study the capacity region of discrete memoryless broad-
cast channels (DMBCs) with feedback. It is known that for
physically degraded DMBCs, feedback does not change the
capacity region [1]. In contrast, there exist a few specific
examples of not physically degraded DMBCs where feedback
strictly enlarges the capacity region [2], [3], [4]. For general
DMBCs with feedback, achievable regions have been proposed
in [2], [4], [5]. But due to their complexity it is hard to evaluate
these regions or to obtain general insights from them.

The usefulness of feedback has also been shown for memo-
ryless Gaussian broadcast channels (BCs) [6], [7]. Achievable
regions and the asymptotic high-SNR sum-capacity of Gaus-
sian BCs have been presented in [8], [9].

In this paper we propose two coding schemes for general
DMBCs with feedback which lead to relatively simple achiev-
able regions (with only two auxiliary random variables). In
our schemes it suffices that there is a rate-limited feedback
link from the weaker receiver and no feedback link from the
stronger receiver.

For the class of strictly less-noisy DMBCs (see Definition 1
ahead), our schemes strictly improve over the no-feedback
capacity region for any positive feedback rate, no matter how
small. As we will see, the class of strictly less-noisy DMBCs
includes, for example, all asymmetric binary symmetric BCs
(BS-BCs) and all asymmetric binary erasure BCs (BE-BCs).

We conclude this section with some notation. We write
Z ∼ Bern(p) to indicate that Z is Bernoulli-p, and we use the
definitions ā := (1− a) and a ∗ b := āb+ ab̄, for a, b ∈ [0, 1].
Also, for any positive integer k, Ak stands for the k-tuple
A1, . . . , Ak. Given a set S ∈ R2, we denote by bd(S) and
int(S) the boundary and the interior of S.

II. CHANNEL MODEL

Communication takes place over a DMBC with rate-limited
feedback from Receiver 1, see Figure 1. The setup is char-
acterized by the finite input alphabet X , the finite output
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Fig. 1. Broadcast channel with rate-limited feedback from Receiver 1.

alphabets Y1 and Y2, the channel law PY1Y2|X , and the
nonnegative feedback rate RFB. Specifically, if at discrete-
time t the transmitter sends the channel input xt ∈ X , then
Receiver i ∈ {1, 2} observes the output Yi,t ∈ Yi, where
the pair (Y1,t, Y2,t) ∼ PY1Y2|X(·, ·|xt). Also, after observing
Y1,t, Receiver 1 can send a feedback signal Vt ∈ Vt to the
transmitter, where Vt denotes the finite alphabet of Vt and is a
design parameter of a scheme. The feedback link is assumed to
be instantaneous and noiseless—i.e., the transmitter observes
Vt before it has to produce the next input Xt+1—but rate-
limited to RFB bits on average. Thus, if the transmission takes
place over a total blocklength N , then

|V1| · · · |VN | ≤ 2NRFB . (1)

The goal of the communication is that the transmit-
ter conveys two independent private messages M1 ∈
{1, . . . , b2NR1c} and M2 ∈ {1, . . . , b2NR2c}, to Receiver 1
and 2, respectively. Each Mi, i = 1, 2, is uniformly distributed
over the set Mi := {1, . . . , b2NRic}, where Ri denotes the
private rate of transmission of Receiver i.

The transmitter is comprised of a sequence of encoding
functions

{
f
(N)
t

}N
t=1

of the form f
(N)
t : M1 ×M2 × V1 ×

· · · × Vt−1 → R that is used to produce the channel inputs as

Xt = f
(N)
t

(
M1,M2, V1, . . . , Vt−1

)
, t ∈ {1, . . . , N}.

(2)
Receiver 1 is comprised of a sequence of feedback-encoding

functions {ψ(N)
t }Nt=1 of the form ψ

(N)
t : Rt → Vt that is used

to produce the symbols

Vt = ψ
(N)
t (Y1,1, . . . , Y1,t), t ∈ {1, . . . , N}, (3)

sent over the feedback link, and of a decoding function Φ
(N)
1 :
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RN →M1 used to produce a guess of Message M1:

M̂1 = Φ
(N)
1 (Y N1 ). (4)

Receiver 2 is only comprised of a decoding function Φ
(N)
2 :

RN →M2 used to produce a guess of Message M2:

M̂2 = Φ
(N)
2 (Y N2 ). (5)

A rate region (R1, R2) is called achievable if for every
blocklength N , there exists a set of N encoding functions{
f
(N)
t

}N
t=1

, two decoding functions Φ
(N)
1 and Φ

(N)
2 , N feed-

back alphabets V1, . . . ,VN satisfying (1), and N feedback-
encoding functions

{
ψ
(N)
t

}N
t=1

such that the error probability

Pr(M1 6= M̂1 or M2 6= M̂2) (6)

tends to zero as the blocklength N tends to infinity. The
closure of the set of achievable rate pairs (R1, R2) is called
the feedback capacity region and is denoted by CFB(RFB).

In the special case RFB = 0 the feedback signals are con-
stant and the setup is equivalent to a setup without feedback.
We denote the capacity region for this setup by CNoFB.

We are particularly interested in the following DMBCs:

Definition 1. A DMBC is called less-noisy [10] if

I(U ;Y2) ≥ I(U ;Y1) (7)

holds for all probability mass functions (pmf) PUXPY1Y2|X .
We call a DMBC strictly less-noisy if (7) holds with strict
inequality whenever I(U ;Y1) > 0.

In general, the capacity region of DMBCs with and without
feedback are unknown. For the class of less-noisy BCs, the
no-feedback capacity region CNoFB is known [10]. It is the set
of all nonnegative rate pairs (R1, R2) that satisfy

R1 ≤ I(U ;Y1) (8a)
R2 ≤ I(X;Y2|U), (8b)

for some pmf PUX , where the cardinality of the auxiliary
random variable U satisfies |U| ≤ min{|X |, |Y1|, |Y2|}+ 1.

We will also need these definitions. A BC is said physically
degraded if X−Y2−Y1 forms a Markov chain. For physically
degraded BCs the capacity regions with and without feedback
are the same and given by the constraints in (8) [1].

For comparison, we introduce the notion of enhanced
DMBC, which is obtained from the original DMBC by re-
vealing outputs Y n1 to Receiver 2. The enhanced DMBC is
physically degraded and thus, with and without feedback, its
capacity region is described by (8) where Y2 needs to be
replaced by (Y1, Y2). We denote this capacity region by CEnh.

III. MAIN RESULTS

Theorem 1. For less-noisy DMBCs, the capacity region
CFB(RFB) includes the set Rin,1 of all nonnegative rate pairs
(R1, R2) that satisfy

R1 ≤ I(U ;Y1|Q) (9a)
R1 ≤ I(U ;Y2|Q)− I(Ỹ ;Y1|UY2Q) (9b)
R2 ≤ I(X; Ỹ Y2|UQ) (9c)

for some pmf PQPU |QPX|UQPY1Y2|XPỸ |UY1Q
satisfying

I(Ỹ ;Y1|UY2Q) ≤ RFB. (10)

Proof: See Section IV.

Corollary 1. For less-noisy DMBCs, the capacity region
CFB(RFB) includes the set of all nonnegative rate pairs
(R1, R2) that satisfy

R1 ≤ I(U ;Y1|Q) (11a)
R2 ≤ I(X; Ỹ Y2|UQ) (11b)

for some pmf PQPU |QPX|UQPY1Y2|XPỸ |UY1Q
satisfying

I(Ỹ ;Y1|UY2Q) ≤ min{RFB, I(U ;Y2|Q)− I(U ;Y1|Q)}.
(12)

Example 1. Consider asymmetric BS-BCs, where PY1Y2|X is
described by

Yi = X ⊕ Zi, i ∈ 1, 2 (13)

for Z1 ∼ Bern(p1) and Z2 ∼ Bern(p2) independent of each
other with 0 < p2 < p1 < 1/2. We evaluate the region Rin,1
in Theorem 1 for distributions of the form

X = U ⊕W1 (14a)
Ỹ = U ⊕ Y1 ⊕W2 (14b)

with U ∼ Bern(1/2), W1 ∼ Bern(α), and W2 ∼ Bern(β)
independent of each other and of the pair (Z1, Z2) and α, β ∈
[0, 1/2]. This results in the region of all nonnegative rate pairs
(R1, R2) that satisfy

R1 ≤ 1−H(α ∗ p1) (15a)
R1 ≤ 1 +H(β)−H(α1, α2, α3, α4)

R2 ≤ H(α1, α2, α3, α4)−H(p2)−H(p1 ∗ β) (15b)

for some α, β ∈ [0, 1/2] satisfying

H(α1, α2, α3, α4)−H(α ∗ p2)−H(β) ≤ RFB

where

α1 = (p1 ∗ β)p2α+ (1− p1 ∗ β)p̄2ᾱ

α2 = (p1 ∗ β)p̄2α+ (1− p1 ∗ β)p2ᾱ

α3 = (p1 ∗ β)p̄2ᾱ+ (1− p1 ∗ β)p2α

α4 = (p1 ∗ β)p2ᾱ+ (1− p1 ∗ β)p̄2α.

Figure 2 compares this region to CNoFB when p2 = 0.1, p1 ∈
{0.2, 0.25, 0.3}, and RFB = 0.85.

Theorem 2. For less-noisy DMBCs, the capacity region
CFB(RFB) includes the set Rin,2 of all nonnegative rate pairs
(R1, R2) that satisfy

R1 ≤ I(U ;Y1|Q) (16a)
R1 ≤ I(X;Y2|Q) + I(X; Ỹ |UY2Q)

−I(Ỹ ;Y1|UY2Q) (16b)
R2 ≤ I(X;Y2Ỹ |UQ) (16c)

R1 +R2 ≤ I(X;Y2|Q) + I(XY2; Ỹ |UQ)

+ I(X; Ỹ |UY2Q)− I(Ỹ ;Y1|UY2Q) (16d)
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Fig. 2. CNoFB and the achievable region in (15) are plotted for BS-BCs
with parameters p2 = 0.1 and p1 ∈ {0.2, 0.25, 0.3} and feedback rate
RFB = 0.85.

for some pmf PQPU |QPX|UQPY1Y2|XPỸ |UY1Q
satisfying

I(Ỹ ;Y1|UY2Q)− I(X; Ỹ |UY2Q) ≤ RFB. (17)

Proof: The scheme achieving Rin,2 is similar to the
scheme achievingRin,1 described in Section IV, but Receiver 2
applies backward decoding as opposed to sliding-window
decoding. Details and analysis are omitted.

Remark 1. Rin,1 ⊆ Rin,2.

This holds because Constraints (9a) and (9c) are equivalent
to Constraints (16a) and (16c), respectively; Constraint (9b) is
stricter than Constraint (16b); the combination of Constraints
(9b) and (9c) is stricter than Constraint (16d); finally, Con-
straint (10) is stricter than Constraint (17).

Remark 2. For Ỹ = const., both Rin,1 and Rin,2 specialize
to CNoFB. Thus, both regions Rin,1 and Rin,2 include CNoFB.

Theorem 3. Assume RFB > 0. For strictly less-noisy DMBCs:
1) every rate pair (R1 > 0, R2 > 0) on the boundary of
CNoFB that is not also on the boundary of CEnh can be
improved with rate-limited feedback:

(R1 > 0, R2 > 0) ∈
(
bd(CNoFB) ∩ int(CEnh)

)
⇒ (R1, R2) ∈ int(CFB(RFB)). (18)

2) whenever CNoFB does not coincide with CEnh, then the
feedback capacity region is strictly larger than the no-
feedback capacity region:(

CNoFB ⊂ CEnh
)
⇒
(
CNoFB ⊂ CFB(RFB)

)
. (19)

Proof: Statement 1) is proved in Section V. Statement 2)
follows directly from Statement 1).

(Notice that for physically degraded DMBCs, CNoFB = CEnh
and in fact, feedback does not increase capacity.)

Corollary 2. For BS-BCs with cross-over probabilities p1, p2
that satisfy 1/2 > p1 > p2 > 0, rate-limited feedback
increases the entire capacity region irrespective of RFB > 0.

The same statement holds also for BE-BCs with erasure
probabilities δ1, δ2 that satisfy 1 > δ1 > δ2 > 0.

IV. PROOF OF THEOREM 1

We first describe a scheme achieving Rin,1 for |Q| = 1
(Section IV-A). Due to space limitations, we only sketch the
required modifications for |Q| ≥ 2 (Section IV-B).

A. Scheme achieving rate region Rin,1 for |Q| = 1

Let ε > 0. Fix a pmf PUPX|UPY1Y2|XPỸ |UY1
and positive

rates R1 and R2 such that the constraints in (9) and (10) hold
with strict inequality. Choose a positive rate R̃ that satisfies

I(Ỹ ;Y1|UY2) + ε ≤ R̃ ≤ RFB. (20)

Transmission takes place over B + 1 consecutive blocks,
with length n for each block. We denote the input and output
sequences in block b ∈ {1, . . . , B + 1} by Xn

b , Y
n
1,b, Y

n
2,b,

respectively. The messages to be sent are in a product form
Mi = (Mi,1, . . . ,Mi,B), for i ∈ {1, 2}, where each Mi,b is
uniformly distributed over the set M(n)

i := {1, . . . , b2nRic}.
Let M̃ := {1, . . . , b2nR̃c} and M := {1, . . . , b2nR̂c} with
R̂ := I(Ỹ ;Y1|U) + ε.

1) Codebook generation: For each block b, randomly and in-
dependently generate 2n(R1+R̃) sequences unb (m1,b, lb−1), for
m1,b ∈ M(n)

1 and lb−1 ∈ M̃. Each sequence unb (m1,b, lb−1)
is drawn according to the product distribution

∏n
t=1 PU (ub,t),

where ub,t denotes the t-th entry of unb (m1,b, lb−1).
For each pair (m1,b, lb−1), randomly and conditionally inde-

pendently generate 2nR2 sequences xnb
(
m2,b|(m1,b, lb−1)

)
, for

m2,b ∈M(n)
2 . Each sequence xnb

(
m2,b|(m1,b, lb−1)

)
is drawn

according to the product distribution
∏n
t=1 PX|U (xb,t|ub,t),

where xb,t denotes the t-th entry of xnb
(
m2,b|(m1,b, lb−1)

)
.

For each pair (m1,b, lb−1), randomly and conditionally
independently generate 2nR̂ sequences ỹnb

(
mb|(m1,b, lb−1)

)
,

for mb ∈ M. Each sequence ỹnb
(
mb|(m1,b, lb−1)

)
is drawn

according to the product distribution
∏n
t=1 PỸ |U (ỹb,t|ub,t),

where ỹb,t denotes the t-th entry of ỹnb
(
mb|(m1,b, lb−1)

)
.

Partition M into 2nR̃ equal-size subsets referred as bins
B(lb) = {(lb − 1)2n(R̂−R̃) + 1, . . . , lb2

n(R̂−R̃)}.
All codebooks are revealed to transmitter and receivers.
2) Transmitter: To simplify notation, define

(l0,m1,B+1,m2,B+1,mB+1) := (1, 1, 1, 1).
For each block b ∈ {1, . . . , B + 1} and given that M1,b =

m1,b and M2,b = m2,b and that the feedback message in block
b− 1 is Lb−1 = lb−1, the transmitter sends

xnb (m2,b|m1,b, lb−1). (21)

(The generation of the feedback signal Lb−1 = lb−1 sent in
block b− 1 is described shortly.)

3) Receiver 1: In each block b ∈ {1, .., B + 1}, after
observing channel outputs Y n1,b = yn1,b, Receiver 1 first looks
for an index m̂1,b ∈M(n)

1 that satisfies(
unb (m̂1,b, lb−1), yn1,b

)
∈ T nε (PUY1

). (22)

Notice that Receiver 1 knows the feedback message lb−1,
because it has generated it itself in the previous block (b−1).



Next, it looks for a compression message mb ∈ M that
satisfies(

unb (m̂1,b, lb−1), ỹnb (mb|m̂1,b, lb−1), yn1,b
)
∈ T nε (PUỸ Y1

),
(23)

and feeds back the index lb of the bin containing mb, i.e. it
feeds back lb if mb ∈ B(lb). Thus, Receiver 1 only sends a
feedback signal in the last channel use of each block, otherwise
it stays silent. By (20) and because the message lb is of rate R̃,
our scheme satisfies the average feedback-rate constraint (1).

After decoding block B+1, Receiver 1 produces the product
message m̂1 = (m̂1,1, . . . , m̂1,B) as its guess.

4) Receiver 2: For each block b ∈ {1, . . . , B + 1},
after observing Y n2,b = yn2,b, Receiver 2 looks for a pair
(m̂′1,b, l̂b−1) ∈M(n)

1 × M̃ that satisfies(
unb (m̂′1,b, l̂b−1), yn2,b

)
∈ T nε (PUY2

). (24)

Then, it looks for the compression message m̂b−1 ∈ B
(
l̂b−1

)
that satisfies(
unb−1(m̂′1,b−1, l̂b−2), yn2,b−1,

ỹnb−1(m̂b−1|m̂′1,b−1, l̂b−2)
)
∈ T nε (PUỸ Y2

), (25)

and finally searches for an index m̂2,b−1 ∈M(n)
2 that satisfies(

unb−1(m̂′1,b−1, l̂b−2), xnb−1(m̂2,b−1|m̂′1,b−1, l̂b−2),

ỹnb−1(m̂b−1|m̂′1,b−1, l̂b−2), yn2,b−1
)
∈ T nε (PUXỸ Y2

). (26)

After decoding block B+ 1, Receiver 2 produces the product
message m̂2 = (m̂2,1, . . . , m̂2,B) as its guess.

5) Analysis: Using standard typicality arguments one can
show that the average probability of error of the scheme,
(6), (averaged over the random messages, the random channel
realization and the random code construction) tends to zero as
the blocklength n tends to infinity, whenever

R1 < I(U ;Y1)− δ(ε) (27a)
R̃ > I(Ỹ ;Y1|U, Y2) + δ(ε) (27b)

R1 + R̃ < I(U ;Y2)− δ(ε) (27c)
R2 < I(X; Ỹ Y2|U)− δ(ε) (27d)

for some function δ(ε) that tends to 0 as ε tends to 0.
This implies that there also is a deterministic code with
probability of error tending to 0 as n tends to infinity whenever
constraints (27) are satisfied.

Applying the Fourier-Motzkin algorithm to the constraints
in (20) and (27) to eliminate the rate R̃, and letting ε tend to 0
and the blocklength B to infinity, establishes the achievability
of the region Rin,1 when |Q| = 1. (Notice that for a finite B
the rates of transmission are B

B+1R1 and B
B+1R2.)

B. Sketch of scheme achieving rate region Rin,1 for |Q| > 1

Let Q = {1, . . . , |Q|}. Our scheme consists of the phases
1, . . . , |Q|. In each phase q ∈ Q, we apply the scheme from
the previous subsection IV-A, but where now, the transmitter
can delay the transmission of the compression messages {lb}
(or parts of them) to subsequent phases. More specifically:

For each phase q ∈ Q, the transmitter and Receiver 2 each
have a first-input first-output (FIFO) queue. At the beginning
of each block b of phase q, the transmitter stores in its FIFO
queue a bit representation of the feedback-signal lq,b−1 it
observed in the previous block. To perform the encoding,
it retrieves the first nqR

(q)
fw bits from this queue, where nq

denotes the blocklength in phase q and R(q)
fw is a new parameter

of the scheme. It then follows the encoding described in
Section IV-A but where lb−1 in (21) needs to be replaced
by kq,b−1, the index corresponding to the retrieved bits, and
in general the subscript b must be replaced by the pair q, b.

Receiver 2 decodes m̂′1,q,b and k̂q,b−1 as in (24) (but where
lb−1 is replaced by kq,b−1 and generally the subscript b is
replaced by q, b) and stores the decoded index k̂q,b−1 in its
FIFO queue. Once the FIFO queue contains all pieces to re-
construct the feedback message l̂q,b−1, Receiver 2 decodes the
submessage m2,q,b−1 as in (25) and (26). Receiver 1 performs
the same operations as in the scheme in Section IV-A, but
where lb−1 in (22) and (23) needs to be replaced by kq,b−1
and the subscript b by q, b. (Receiver 1 knows {kq,b−1} as it
can simulate the transmitter’s queue.)

We sketch the main points of the analysis. For each q ∈ Q,
let PU |Q=qPX|UQ=qPY1Y2|XPỸ |UY1Q=q denote the distribu-

tion used in the code construction of phase q. Also, let R(q)
1

and R
(q)
2 denote the rates of transmission of the messages

sent in phase q and R̃(q) denote the rate of the compression
messages {lq,b}Bb=1. The blocklength in phase q is chosen as
nq := PQ(q)n for some large positive integer n, where PQ(q)
is a pmf over Q. For simplicity of exposition, assume that the
labeling of the elements in Q is such that∑

1≤q′≤q

R̃(q′)PQ(q′) ≥
∑

1≤q′≤q

R
(q′)
fw PQ(q′) (28)

holds for all q ∈ Q. Inequality (28) ensures that prior to each
block of phase q the transmitter finds nqR

(q)
fw bits in its queue.

Now, if ∑
q∈Q

R̃(q)PQ(q) =
∑
q∈Q

R
(q)
fw PQ(q) (29)

then, at the end of the last phase |Q|, Receiver 2 has re-
constructed all feedback signals {l̂q,b}. Assuming that Condi-
tions (28) and (29) hold, if also the following Conditions (30)–
(33) are satisfied for each q ∈ Q:

R
(q)
1 < I(U ;Y1|Q = q) (30)

R
(q)
1 +R

(q)
fw < I(U ;Y2|Q = q) (31)

R
(q)
2 < I(X;Y2Ỹ1|UQ = q) (32)

R̃(q) > I(Ỹ ;Y1|UY2Q = q), (33)

then the probability of error tends to 0 as N →∞. Notice that
our scheme satisfies the feedback-rate constraint (1), whenever∑

q∈Q
R̃(q) ≤ RFB. (34)

From Constraints (29)–(34), we obtain the achievable region
in Theorem 1, for example by applying the Fourier-Motzkin



algorithm (where we can relax the equality in (29) to an ≤-
inequality).

V. PROOF OF THEOREM 3
Assume that RFB > 0. Fix (R

(1)
1 > 0, R

(1)
2 > 0) such that

(R
(1)
1 , R

(1)
2 ) ∈

(
bd(CNoFB) ∩ int(CEnh)

)
. (35)

(This implies R(1)
1 > 0 and R

(1)
2 > 0.) Since (R

(1)
1 , R

(1)
2 ) ∈

bd(CNoFB), there exists a pmf PU(1)X(1) satisfying

R
(1)
1 := I(U (1);Y

(1)
1 ) (36a)

R
(1)
2 := I(X(1);Y

(1)
2 |U (1)) (36b)

where (Y
(1)
1 , Y

(1)
2 ) ∼ PY1Y2|X , given X(1). Now, since

(R
(1)
1 , R

(1)
2 ) ∈ int(CEnh), we can find (R

(2)
1 , R

(2)
2 ) ∈ bd(CEnh)

satisfying

R
(2)
1 > R

(1)
1 and R

(2)
2 > R

(1)
2 . (37)

Since (R
(2)
1 , R

(2)
2 ) ∈ bd(CEnh), there is a pmf PU(2)X(2)

satisfying

R
(2)
1 := I(U (2);Y

(2)
1 ) (38a)

R
(2)
2 := I(X(2);Y

(2)
1 Y

(2)
2 |U (2)), (38b)

where (Y
(2)
1 , Y

(2)
2 ) ∼ PY1Y2|X , given X(2).

Choose now γ ∈ (0, 1) to satisfy

γH(2) ≤ min{RFB, γI
(2) + γ̄I(1)} (39)

with

H(2) := H(Y
(2)
1 |Y

(2)
2 U (2))

I(q) := I(U (q);Y
(q)
2 )− I(U (q);Y

(q)
1 ), for q = 1, 2.

Such a γ exists because RFB, H(2), I(1), and I(2) are positive.
(Here, I(1) and I(2) are positive because the DMBC is strictly
less-noisy, see (7).) Then, introduce an independent random
variable Q with

PQ(q) =

{
1− γ, q = 1
γ, q = 2

(40)

and define

R′1 := (1− γ)R
(1)
1 + γR

(2)
1 = I(U (Q);Y

(Q)
1 |Q) (41a)

R′2 := (1− γ)R
(1)
2 + γR

(2)
2 = I(X(Q); Ỹ (Q)Y

(Q)
2 |U (Q)Q)

(41b)

with Ỹ (2) = Y
(2)
1 and Ỹ (1) being a constant. By (37) and

since 0 < γ < 1, we have

R′1 > R
(1)
1 and R′2 > R

(1)
2 . (42)

In the rest of the proof we show that the pair (R′1, R
′
2) ∈

CFB(RFB). Combined with (42) this establises that (R
(1)
1 , R

(1)
2 )

must lie in the interior of (CFB(RFB)).
Notice first that the pmf of the tuple

(U (Q), X(Q), Y
(Q)
1 , Y

(Q)
2 , Ỹ (Q), Q) is of the form

PQPU(Q)|QPX(Q)|U(Q)QPY (Q)
1 Y

(Q)
2 |X(Q)PỸ (Q)|U(Q)Y

(Q)
1 Q

(43)

where P
Y

(Q)
1 Y

(Q)
2 |X(Q) coincides with the channel law

PY1,Y2|X . This statement holds because by construction it is
satisfied given Q = 1 and given Q = 2, and because Q is
independent of {(U (q), X(q), Y

(q)
1 , Y

(q)
2 , Ỹ (q))}2q=1.

Since Ỹ (1) = const. and Ỹ (2) = Y
(2)
1 and by (39)

I(Ỹ (Q);Y
(Q)
1 |U (Q)Y

(Q)
2 Q)

= γI(Ỹ (Q);Y
(Q)
1 |U (Q)Y

(Q)
2 , Q = 2)

= γH(2)

≤ min{RFB, I(U (Q);Y
(Q)
2 |Q)− I(U (Q);Y

(Q)
1 |Q)}. (44)

The fact that (R′1, R
′
2) ∈ CFB(RFB) follows now by (41),

(43), and (44), and by Corollary 1.

VI. EXTENSION: NOISY FEEDBACK

The results obtained in Section III (Theorems 1, 2, and
3) apply also to the related setup where the feedback link
is a noisy channel of capacity RFB. For example, to achieve
the rates in Theorem 1, the transmitter alternates between
sending the blocks of two independent instances (with same
parameters) of the scheme in Section IV. During each of these
blocks, Receiver 1 sends the feedback message pertaining
to the preceeding block (that belongs to the other scheme)
using a code that achieves the capacity RFB of the feedback
link. Decoding at the receivers is performed as before. The
transmitter now has to decode the compression message sent
over the feedback link, which can be erroneous. However, it
can be shown that these additional error events do not change
the set of achievable rates.
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