
Fixed-to-Variable Length Resolution Coding
for Target Distributions
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Abstract—The number of random bits required to approximate
a target distribution in terms of un-normalized informational
divergence is considered. It is shown that for a variable-to-
variable length encoder, this number is lower bounded by the
entropy of the target distribution. A fixed-to-variable length
encoder is constructed using M -type quantization and Tunstall
coding. It is shown that the encoder achieves in the limit an un-
normalized informational divergence of zero with the number of
random bits per generated symbol equal to the entropy of the
target distribution. Numerical results show that the proposed
encoder significantly outperforms the optimal block-to-block
encoder in the finite length regime.

I. INTRODUCTION

Given is a target distribution PY . We ask the following
question.

What is the minimum number of random bits that
we need to generate symbols that appear to be
distributed according to PY ?

This minimum number is called the resolvability of the target
distribution and codes that achieve this minimum are called
resolution codes. This question is a special case of the
problem of channel resolvability, namely when the channel
input is equal to the channel output. In [1], this special
case is called the identity channel. For channel resolvability,
three measures of resemblance have been considered in the
literature, namely the normalized informational divergence, the
un-normalized informational divergence, and the variational
distance. Wyner [2] has discussed resolvability for Discrete
Memoryless Channels (DMC) and product target distributions.
Using normalized informational divergence, he showed that
the minimum number of bits required for this task is the mutual
information of channel input and channel output. In [1], Han
and Verdu have shown similar results for information stable
distributions using both variational distance and normalized
informational divergence. It should be pointed out that neither
criterion (i.e. normalized informational divergence and vari-
ational distance) is stronger than the other. A stronger result
using un-normalized informational divergence has been shown
in [3] for DMCs and product distributions, implying both the
results in [2] and [1]. The analysis presented in [1]–[3] is
based on random coding arguments and only the existence of
resolvability achieving codes is shown. No discussion has been
presented on the construction of practical encoders. Moreover,

the problem of channel resolvability has only been addressed
in the context of block-to-block encoders.

For normalized informational divergence and the identity
channel, distribution matching codes can be used. Variable
length codes that achieve resolvability have been developed
in [4], [5, Sec. 3.2] and [6]. These codes are one-to-one, i.e.,
the input can be decoded from the output, a property that
is normally not characteristic for resolution codes. Bloch et
al have discussed in [7] the use of polar codes to construct
resolution codes for binary input symmetric DMCs using un-
normalized informational divergence.

In this work, we consider the problem of resolution coding
for target distributions using variable length encoders. We use
un-normalized informational divergence as our criterion for
approximation. The resolution rate of a variable length encoder
is defined in Sec. II and in Sec. II-D, we relate our definition to
the definitions in [1]. We lower bound achievable resolution
rates by the target distribution entropy in Sec. III. We then
propose in Sec. IV a fixed-to-variable length encoder using
Tunstall coding [8, Sec. 2.10] and M -type quantization [9].
In Sec. V, we prove that our scheme achieves in the limit the
lower bound. Finally, in Sec. VI, we present numerical results
that show that our fixed-to-variable length scheme significantly
outperforms the optimal block-to-block scheme in the finite
length regime.

II. VARIABLE LENGTH RESOLUTION CODING

A. Target Distribution

Consider a Discrete Memoryless Source (DMS) PY that
generates a sequence Y1, Y2, . . . where the Yi are iid according
to PY and where Yi takes values in a finite set Y . We define
D := |Y|, i.e., the DMS PY generates D-ary strings. Denote
by X the set of paths from the root to the leaves of a complete
D-ary tree. A D-ary tree is complete if every right-infinite
D-ary sequence starts with a path from X . A path x can
be written as x = x1x2 · · ·x`(x) with xi ∈ Y , where `(x)
denotes the length of path x. By using the distribution PY as
a branching distribution in the tree, we define a distribution
PXY over X as follows [10, p. 23].

PXY (x) :=

`(x)∏
i=1

PY (xi).
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If X = Yn, then PXY = PnY , i.e., the product distribution.
Given a complete D-ary tree X , the problem of generating a
sequence that resembles the output of the DMS PY can be
solved by generating a sequence that resembles the output of
the DMS PXY , see [10, Prop. 7].

B. Variable Length Encoder

A variable length encoder consists of a complete binary
dictionary U , a complete codebook X (a set is complete if it
can be represented by a complete tree), and a deterministic
mapping f : U → X . There is no further restriction on f , i.e.,
f may map no, one, or more than one word from U to a
specific codeword from X . We give an example in Fig. 1.

The encoder parses independent and uniformly distributed
bits at its input by its dictionary U . This generates a random
variable U , which takes values in U according to PU with

PU (u) = 2−`(u), ∀u ∈ U .

The encoder maps U to a codeword X = f(U) ∈ X and the
generated distribution is PX . Define

`max := max
u∈U

`(u).

The distribution PX is 2`max -type, i.e., each probability is
of the form k/2`max where k is a non-negative integer. The
described setting comprises fixed-to-fixed, variable-to-fixed,
fixed-to-variable, and variable-to-variable length encoders.

Remark 1. If the mapping f is many-to-one, it may generate
non-dyadic 2`max -type distributions over X . This is an impor-
tant difference to channel matching [4], [5, Sec. 3.2], where
we can only generate dyadic distributions because of a one-
to-one mapping constraint for decodability.

C. Resolution Rate, Entropy Rate, and Resolvability

We define the resolution rate R of a variable length encoder
as the average input length divided by the average output
length, i.e.,

R(U ,X , f) :=
E[`(U)]

E[`(X)]
.

For notational convenience, we also write R if the considered
encoder is clear from the context. A resolution rate R is called
achievable if there exists a family of encoders (Uk,Xk, fk)
with resolution rate Rk such that

D(PXk
‖PXk

Y )
k→∞→ 0 (1)

Rk
k→∞→ R. (2)

For the rest of this paper, we will omit the index k. For
example, D(PX‖PXY ) → 0 means (1). The minimum of all
achievable resolution rates is called the resolvability of PY
and is denoted by S(PY ). The entropy rate of a variable length
encoder is [5, Sec. 4.2]

R̄(U ,X , f) :=
H(PX)

E[`(X)]
.
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Fig. 1. A variable length encoder with a complete dictionary U =
{0, 100, 101, 110, 111} and a complete codebook X = {aa, ab, ac, b, c}.
The mapping is many-to-one and not onto.

An achievable entropy rate is defined accordingly. This is an
extension of the definition given in [1, Sec. 2] to variable
length encoders. The minimum achievable entropy rate is
called mean resolvability of PY and is denoted by S̄(PY ).

The expected input length is bounded as

E[`(U)] =
∑
u∈U

2−`(u)`(u)

= H(U)

≥ H[f(U)]

= H(PX). (3)

Note that (3) is the converse [11, Theo. 5.11.1] for exact
random number generation [12]. Using (3), for any encoder,
resolution rate and entropy rate relate as

R(U ,X , f) ≥ R̄(U ,X , f). (4)

In Sec. III, we show the converse, namely that S(PY ) ≥
S̄(PY ) ≥ H(PY ). In Sec. IV, we propose a fixed-to-variable
length code and we show in Sec. V that it achieves in the
limit a resolution rate of H(PY ). Combining converse and
achievability proves the following proposition.

Proposition 1. For any target distribution PY , the resolvabil-
ity S(PY ) and the mean-resolvability S̄(PY ) are both equal
to the entropy of the target distribution, i.e.,

S(PY ) = S̄(PY ) = H(PY ).

D. Relation to Han-Verdu Resolvability [1]

The Han-Verdu Resolution Rate Rhv of a variable length
encoder is [1, Sec. II]

Rhv :=
log2MX

E[`(X)]

where MX is the minimum integer for which PX is M -type.
We have replaced n in [1, Eq. (2.4)] by E[`(X)] to account
for the variable length codewords. For the target distribution
PY , we define the achievable Han-Verdu resolution rate in
the same way as we defined the achievable resolution rate in
Sec. II-C. Analogously, we define the Han-Verdu resolvability
and we denote it by Shv(PY ). Achievability has been defined
in [1, Sec. II] for variational distance. Here, we deliberately



define the Han-Verdu quantities with respect to un-normalized
informational divergence to be able to compare them to the
quantities we defined in Sec. II-C.

Recall that `max is the length of the longest binary string in
U . The distribution PU is then 2`max -type. Since X = f(U)
where f is a deterministic mapping, we have 1 ≤ MX ≤
2`max . Therefore,

Rhv =
log2MX

E[`(X)]

≤ `max

E[`(X)]
.

Also, we have

R =
E[`(U)]

E[`(X)]

≤ `max

E[`(X)]
.

For variable length input encoders, we cannot establish a
relation between Rhv and R in general. For example, an
encoder can map a certain binary input string u ∈ U of length
`max to a codeword x ∈ X and map no other binary string in
U to x. For this encoder, PX will also be of 2`max -type and
hence Rhv ≥ R. On the other hand, if the encoder maps all
binary strings u ∈ U with |U| > 1 to a single x ∈ X , then
PX is a 1-type distribution, Rhv = 0 and hence R > Rhv.

However, for fixed-to-variable length encoders, E[`(U)] =
`max because of the fixed length parsing dictionary U and
therefore

R =
E[`(U)]

E[`(X)]
=

`max

E[`(X)]
≥ Rhv.

By [1, Lemma 2], H(PX) ≤ log2MX for any distribution PX
and therefore Rhv ≥ R̄.

Remark 2. Since Rhv ≥ R̄ as well as R ≥ R̄ for any variable
length encoder, establishing the converse R̄ ≥ H(PY ) directly
provides a converse for Rhv and R as well. Moreover, we
will construct a fixed-to-variable length encoder that achieves
R = H(PY ). Since for fixed-to-variable length encoders R ≥
Rhv ≥ R̄, this establishes the achievability for Han-Verdu
resolvability (and mean-resolvability) as well, i.e.,

Shv(PY ) = H(PY ).

III. CONVERSE

For any variable length encoder, the resolution rate is greater
than or equal to the entropy rate, see (4). To get a general
converse, we therefore lower bound achievable entropy rates.
Furthermore, since E[`(X)] ≥ 1, the normalized informational
divergence is smaller or equal to the un-normalized informa-
tional divergence, i.e.,

D(PX‖PXY )

E[`(X)]
≤ D(PX‖PXY ). (5)

If a code can drive the un-normalized informational divergence
to zero, it automatically also drives the normalized infor-
mational divergence to zero. We therefore lower bound the

entropy rates that are achievable with respect to the normalized
informational divergence. The following proposition relates
entropy rate and informational divergence.

Proposition 2.

D(PX‖PXY )

E[`(X)]
→ 0⇒

∣∣∣∣ H(PX)

E[`(X)]
−H(PY )

∣∣∣∣→ 0. (6)

Proof: We give the proof in [10].
We will use Prop. 2 both in the proof of the converse and

in the proof of achievability.

Proposition 3. If R̃ is for a target distribution PY an achiev-
able entropy rate with respect to the normalized informational
divergence, then

R̃ = H(PY ). (7)

In particular,

S(PY ) ≥ S̄(PY ) ≥ H(PY ) (8)

where definitions of S(PY ) and S̄(PY ) in II-C are based on
un-normalized informational divergence.

Proof: The statement (7) of the proposition follows from
Prop. 2. The statement (8) follows from (4), (5), and statement
(7).

IV. FIXED-TO-VARIABLE LENGTH RESOLUTION CODE

We construct a fixed-to-variable length code with m input
bits as follows. First, we construct a complete variable length
codebook X with |X | = N = 2n codewords by applying
Tunstall coding [8, Sec. 2.10] to PY . Note that n does not
necessarily need to be an integer. According to the Tunstall
Lemma [13, p. 47], the distribution PXY is close to uniform in
the sense that the smallest and the greatest probabilities differ
at most by a factor of

µY := min
a∈suppPY

PY (a). (9)

Note that µY does only depend on PY and is independent of
X . In particular, the probability PXY (x) is lower bounded as

PXY (x) ≥ µY 2−n (10)

and it is upper bounded as

PXY (x) ≤ 2−n

µY
. (11)

Next, we quantize PXY using [9, Alg. 1] to obtain the 2m-type
PX with the property

PX(a) ≤ PXY (a) + 2−m, ∀a ∈ X . (12)

The distribution PX can be generated by a many-to-one
mapping f : {0, 1}m → X . The codebook is of size 2n and the
input of the encoder is of length m bits. We define q = m−n.
If q > 0, the mapping f is many-to-one (but possibly not
onto), and if q < 0, the mapping is not onto (but possibly
many-to-one).



A. Discussion of Code Construction

• The Tunstall code guarantees that for each codeword
x ∈ X , the target probability PXY (x) deviates from the
uniform probability 1/2n at most by a factor of µY ,
which is independent of X , n, and m.

• Because the input is of fixed length m, it is uniformly
distributed over the dictionary U = {0, 1}m. A many-
to-one mapping from U to X resolves the remaining
difference between the generated uniform distribution
over U and the almost uniform target distribution over
X .

V. ACHIEVABILITY

The following proposition states that the fixed-to-variable
length resolution code that we defined in Sec. IV achieves in
the limit the resolvability of the target distribution.

Proposition 4 (Achievability).
1) If q →∞, then

D(PX‖PXY )→ 0. (13)

2) If q → ∞ and q/n → 0, then the resolution rate
approaches the resolvability of the target distribution,
i.e.,

R→ H(PY ). (14)

We now prove both statements of the proposition.

A. Informational Divergence

We bound

D(PX‖PXY ) =
∑

a∈suppPX

PX(a) log2

PX(a)

PXY (a)

(a)

≤
∑

a∈suppPX

PX(a) log2

PXY (a) + 2−m

PXY (a)

(b)

≤
∑

a∈suppPX

PX(a) log2

(
1 +

2n

2mµY

)
(c)

≤
∑

a∈suppPX

PX(a)
2n

2mµY
log2 e

=
2n

2mµY
log2 e

=
2−q

µY
log2 e (15)

where (a) follows from (12), where (b) follows from (10), and
where we used the bound log2(1 + x) ≤ x log2 e in (c). The
bound (15) establishes the first statement of Prop. 4.

B. Entropy

For each a ∈ X , the probability PX(a) is upper bounded
by

PX(a)
(a)

≤ PXY (a) + 2−m

(b)

≤ 2−n

µY
+ 2−m (16)

where (a) and (b) follow from (12) and (11), respectively. We
can now bound the entropy of X as follows.

H(PX) = E
[
log2

1

PX(X)

]
≥ log2

1

max
a∈suppPX

PX(a)

(a)

≥ log2

1
2−n

µY
+ 2−m

= n− log2

( 1

µY
+

2n

2m

)
= n− log2

( 1

µY
+ 2−q

)
(17)

where we used (16) in (a). This can also be rewritten as a
bound on n, namely

n ≤ H(PX) + log2

(
1

µY
+ 2−q

)
. (18)

C. Rate
For the rate, we get

R =
E[`(U)]

E[`(X)]

=
m

E[`(X)]

=
n

E[`(X)]
+

q

E[`(X)]

(a)

≤ H(PX)

E[`(X)]
+
q + log2( 1

µY
+ 2−q)

E[`(X)]
(19)

where we used (18) in (a). We separately bound the two terms
in (19). For the second term, we get

q + log2( 1
µY

+ 2−q)

E[`(X)]

(a)

≤
q + log2( 1

µY
+ 2−q)

H(PX) 1
log2D

(b)

≤
q + log2( 1

µY
+ 2−q)

n− log2( 1
µY

+ 2−q)
log2D

q
n→0,q→∞
→ 0 (20)

where (a) follows from the Source Coding Theorem [14,
Theo 4.1] and where we used (17) in (b). For the first term in
(19), we have by (15) and Proposition 2,

H(PX)

E[`(X)]

q→∞→ H(PY ). (21)

Using (20) and (21) in (19), we get

lim
q
n
→0

q→∞

R ≤ H(PY ). (22)

From the converse stated in Prop. 3, we know that

R ≥ H(PY ). (23)

Combining (22) and (23), we conclude that

R

q
n
→0

q→∞→ H(PY ). (24)

This proves the second statement of Prop. 4.
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Fig. 2. Comparison of fixed-to-variable length and block-to-block resolution
coding. The target distribution is PY (0) = 1 − PY (1) = 0.211. The input
length takes the values m = 6, 9, 12 (red,green,blue, respectively). For each
m, n is varied, see Tab. I. For a fixed input length m, a larger n results in
a smaller rate but a higher divergence. The divergence-rate pairs of block-to-
block coding are marked by an × and the divergence-rate pairs of fixed-to-
variable length coding are marked by a ∗. The vertical dashed line marks the
theoretical limit of H(PY ) = 0.7415. We use codebook sizes of N = 2n

for the fixed-to-variable length code for comparison. However, we are not
restricted to that. To illustrate this, we consider m = 12 and 2n = N =
3072, which is not an integer power of two. The resulting divergence-rate
pair is marked by a circle.

VI. NUMERICAL EXAMPLE

To evaluate the performance of our resolution code, we fix
m and then determine, which rate-divergence pairs we can
achieve with m fair bits. Our example is the binary target
distribution

PY (0) = 0.211, PY (1) = 0.789. (25)

We compare our fixed-to-variable length resolution code from
Sec. IV to optimal block-to-block resolution coding.

A. Optimal Block-to-Block Resolution Coding

Consider an m-to-n block-to-block encoder. The codebook
is Yn, i.e., the n-fold Cartesian product of Y . Note that n has
to be an integer. The encoder defines a deterministic mapping
from U = {0, 1}m to Yn. The distribution of X = f(U)
is 2m-type. The optimal encoder chooses the f that generates
the 2m-type quantization P ∗X that minimizes the informational
divergence, i.e.,

P ∗X = argmin
P is 2m-type

D(P‖PnY ). (26)

The 2m-type P ∗X can efficiently be found by [9, Alg. 2]. The
resulting rate is m

n and the resulting divergence is D(P ∗X‖PnY ).

B. Discussion

We calculate the divergence-rate pairs that are achieved by
block-to-block and variable-to-fixed length codes for several
values of m and n, see Tab. I. The results are displayed in

TABLE I
CODEBOOK SIZES

m n
6 3 4 5 6
9 5 6 7 8 9

12 8 9 10 11 12

Fig. 2. The theoretical minimum rate H(PY ) = 0.7415 is
marked by a vertical dashed line. As we can see, for larger
m, the divergence-rate curves get closer to the theoretical rate
limit of H(PY ) and the divergence limit of 0. Fixed-to-variable
length coding significantly outperforms block-to-block coding.
For m = 12, the fixed-to-variable length curve is remarkably
close to the limits. It should be remarked that the codebook
size for fixed-to-variable length coding is not restricted to
integer powers of two. We illustrate this by displaying a
divergence-rate pair that is achieved by 2n = N = 3072.
It is marked by a circle in Fig.2.
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