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Abstract—In this paper we present a novel framework to
convert the K-user multiple access channel (MAC) over Fpm

into the K-user MAC over ground field Fp with m multiple
inputs/outputs (MIMO). This framework makes it possible to
develop coding schemes for MIMO channel as done in symbol
extension for time-varying channel. Using aligned network diag-
onalization based on this framework, we show that the sum-rate
of (2m−1) log p is achievable for a 2×2×2 interference channel
over Fpm . We also provide some relation between field extension
and symbol extension.

I. INTRODUCTION

In recent years, significant progress has been made on the
understanding of the theoretical limits of wireless commu-
nication networks. In [1], the capacity of multiple multicast
network (where every destination desires all messages) is
approximated within a constant gap independent of SNR and
of the realization of the channel coefficients. Also, for multiple
flows over a single hop, new capacity approximations were
obtained in the form of degrees of freedom (DoF), generalized
degrees of freedom (GDoF), and O(1) approximations [2]–[4].
Yet, the study of multiple flows over multiple hops remains
largely unsolved. The 2×2×2 Gaussian interference channel
(IC) has received much attention recently, being one of the
fundamental building blocks to characterize the DoFs of two-
flows networks [5]. The optimal DoF was obtained in [6]
using aligned interference neutralization, which appropriately
combines interference alignment and interference neutraliza-
tion. Also, there was the recent extension to the K ×K ×K
Gaussian IC in [7], achieving the optimal K DoF using aligned
network diagonalization.

In this paper we investigate interference networks over
finite-field. This model can be meaningful in practical wireless
communication systems, by the observation that the main
bottleneck of a digital receiver is the Analog-to-Digital Con-
version (ADC), which is power-hungry, and does not scale
with Moore’s law. Rather the number of bits per second
produced by an ADC is roughly a constant that depends on the
power consumption [8]. Therefore, it makes sense to consider
the ADC as part of channel, which may produce the finite-field
model, as shown in [10]. Also, Compute-and-Forward (CoF)
in [11] enables to decode linear combinations of messages
over finite-field at relays. By forwarding linear combinations,

the overall end-to-end “transfer function” between sources and
destinations can be described by a system of linear equations
over finite-field. Each destination can solve such equations to
obtain desired messages as long as there exists a full-rank
sub-system of equations involving the desired messages. In
the setting of multiple flows (inference) over multiple hops,
interference alignment (or neutralization and diagonalization)
over finite-field is generally needed. However, current schemes
developed for Gaussian channel may not be straightforwardly
applicable for finite-field interference networks. For example,
it is not so clear to apply the framework of real interference
alignment [9] based on rational dimensions to finite-field
interference networks.

Our Contribution: We show that the K-user multiple
access channel (MAC) over Fpm is equivalent to the K-
user MAC over Fp with m multiple inputs/outputs (MIMO).
In the transformed MIMO channel, the m × m channel
matrices are represented by the powers of companion matrix
of primitive element of Fpm . This framework makes it possible
to develop coding schemes for MIMO channel as done in
symbol extension for time-varying channel. Next, we focus
on a 2 × 2 × 2 IC over Fpm and show that the sum-rate of
(2m−1) log p is achievable by applying the concept of aligned
network diagonalization to the transformed MIMO channel,
under certain condition on channel coefficients. We also prove
that this condition is satisfied with probability 1 if the channel
coefficients are uniformly and independently drawn from non-
zero elements of Fpm and either m or p goes to infinity. In
addition, we consider the 2×2×2 MIMO IC over Fp and show
that symbol extension (i.e., coding over multiple time slots)
is needed for the aligned network diagonalization scheme. We
characterize the required symbol extension order (number of
time slots over which coding takes place) that depends on the
channel coefficients and is upper-bounded by the number of
inputs/outputs.

II. MIMO TRANSFORM OVER GROUND FIELD

Throughout the paper, it is assume that Fpm denotes a
finite-field of order pm, generated by a primitive polyno-
mial π(x)

∆
= a0 + a1x + · · · + am−1x

m−1 + xm. The
elements of Fpm are given by the polynomial representation
{b0+b1x+· · · bm−1x

m−1 : b0, . . . , bm−1 ∈ Fp}. Also, we can
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represent the elements of Fpm using primitive element α as
{0 = α∞, 1 = α0, α, . . . , αpm−2}. As usual, F?

pm denotes the
multiplicative group of Fpm , i.e., the set of non-zero elements
of Fpm .

Definition 1: The companion matrix of the polynomial
π(x) = a0 + a1x + · · · + am−1x

m−1 + xm is defined to be
m×m matrix over Fp

C =


0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

. . .
... · · ·

0 0 · · · 1 −am−1

 .
♦

Then, M ∆
= {0 = C∞, I = C0,C, . . . ,Cpm−2} forms a

finite-field of order pm. From [12, Theorem 6], all finite fields
of order pm are isomorphic 1. Then, we have one-to-one
mappings:
• Vector representation (i.e., one-to-one mapping between

polynomials and m-dimensional vectors over Fp):

Φ(b0 + b1x+ · · ·+ bm−1x
m−1) = [b0, . . . , bm−1]T. (1)

• Matrix representation (i.e., one-to-one mapping between
elements of Fpm and matrices over Fp):

Ψ(α`) = C`. (2)

With these mappings, we have:
Lemma 1: For Xk ∈ Fpm , let Y =

∑K
k=1 qkXk for some

coefficients qk ∈ Fpm . Also, set y =
∑K

k=1 Qkxk where xk =
Φ(Xk) ∈ Fm

p and Qk = Ψ(qk) ∈ Fm×m
p for k = 1, . . . ,K.

Then, we have y = Φ(Y).
The above lemma shows that the K-user scalar MAC

over Fpm can be transformed into the K-user MIMO MAC
over ground field Fp where all nodes have m multiple in-
puts/outputs.

III. TWO-UNICAST TWO-HOP IC OVER Fpm

We consider a 2× 2× 2 IC over Fpm where all nodes have
a single input/output. Notice that CoF framework produces a
noiseless finite-field IC, while the symbol-by-symbol sampling
(i.e., taking the ADC as part of channel) results in a finite-field
IC with additive noise [10]. In this paper we only consider a
noiseless model by focusing on interference management. In
the first hop, the IC over Fpm is described by[

Y1

Y2

]
=

[
q11 q12

q21 q22

] [
X1

X2

]
(3)

and also, in the second hop, the IC over Fpm is described by[
Y3

Y4

]
=

[
q33 q34

q43 q44

] [
X3

X4

]
(4)

where Xk ∈ Fpm , k = 1, 2, 3, 4 and Y` ∈ Fpm , ` = 1, 2, 3, 4.
Here, the channel coefficients q`k ∈ F?

pm are fixed and known
to all nodes. Also, it is assumed that each hop has full-rank
2× 2 channel matrices over Fpm .

1Two fields F,G are said to be isomorphic if there is a one-to-one mapping
from F onto G which preserves addition and multiplication.

Fig. 1. 2× 2× 2 interference channel over Fpm .

Definition 2: The minimal polynomial over Fp of β ∈ Fpm

is the lowest degree monic polynomial µ(x) with coefficients
from Fp such that µ(β) = 0. We denote the degree of
polynomial µ(β) by deg(µ(β)). ♦

With this definition, we have:
Theorem 1: For 2 × 2 × 2 IC over Fpm , the sum-rate

of (2m − 1) log p is achievable if deg(µ(γ)) = m and
deg(µ(γ′)) = m where

γ = q−1
11 q12q

−1
22 q21 and γ′ = s−1

11 s12s
−1
22 s21 (5)

and [
s11 s12

s21 s22

]
=

[
q33 q34

q43 q44

]−1

.

Proof: See Section III-A.
Also, we derive a normalized achievable sum-rate with respect
to interference-free channel capacity m log p when either m
or p goes to infinity. This metric is analogous to degrees-of-
freedom of Gaussian channels.

Corollary 1: If the channel coefficients q`k are uniformly
and independently drawn from F?

pm , the following normalized
sum-rates are achievable with probability 1:

dsum(p) = lim
m→∞

Rsum(p,m)

m log p
= 2 (6)

dsum(m) = lim
p→∞

Rsum(p,m)

m log p
=

2m− 1

m
(7)

where Rsum(p,m) denotes the achievable sum-rate for given
finite-field Fpm .

Proof: The proof consists of showing that the conditions
in Theorem 1 are satisfied with probability 1 in the limits. Let
N(p,m) denote the number of monic irreducible polynomials
of degree-m over Fp. From [12, Theorem 15], we have:

N(p,m) =
1

m

∑
d|m

ν(d)pm/d

where ν(d) denotes the Möbius function, defined by

ν(d) =

 1 if d = 1
(−1)r, if d is the product of r distinct primes
0, otherwise.

Notice that each degree-m monic irreducible polynomial has
m distinct roots in Fpm and is a degree-m minimal polynomial
of such roots. Thus, we have mN(p,m) distinct elements in
Fpm with degree-m minimal polynomial. Also, we can derive



a simple lower-bound on mN(p,m) by setting ν(d) = −1 for
any d with d|m, d > 1:

mN(p,m) ≥ pm −
∑

d|m,d>1

pm/d.

Using this bound and the fact that γ defined in (5), is uniformly
distributed over F?

pm , we can compute:

P({deg(µ(γ)) = m}) =
mN(m, p)

pm − 1

≥
pm −

∑
d|m,d>1 p

m/d

pm

= 1−
∑

d|m,d>1

pm(1/d−1).

This probability goes to 1 if either m or p goes to infinity. With
the same procedures, we can also prove that P({deg(µ(γ′)) =
m}) goes to 1 if either m or p goes to infinity. This completes
the proof.

Remark 1: We provide a brief comparison with the case of
a 2×2×2 IC over Fp with time varying channel and m-symbol
extension. Similarly to the case of the degree-m extension
field, the symbol extension also yields a MIMO IC where
m×m channel matrices are the form of diagonal matrix with
diagonal elements in F?

p. One may expect that the two MIMO
channel models (namely, the one obtained by field extension
and the other by symbol extension) are equivalent since they
have about pm possible channel matrices and these matrices
belong to a commutative algebra (products of such matrices
do not depend on the order of the factors). For the symbol
extension, the same achievable scheme of Section III-A can
be used under different feasibility conditions, namely, that the
diagonal elements of the products of channel matrices (i.e.,
Q = Q−1

11 Q12Q
−1
22 Q21 in (9)) are distinct and non-zero [6].

We can compute the probability that this condition is satisfied.
For p → ∞, the condition is satisfied with probability 1, as
for the case of field extension. However, when m→∞ and p
is finite, this probability is strictly less than 1, while we have
seen before that in the field extension the feasibility probability
goes to 1 also in this case. This shows that symbol extension
and field extension are generally not equivalent. ♦

A. Proof of Theorem 1: Achievable scheme
We prove Theorem 1 using aligned network diagonalization,

under the assumption that γ and γ′ have degree-m minimal
polynomial. From Section II, we can transform the 2× 2× 2
scalar IC over Fpm in (3) and (4) into MIMO IC over Fp with
channel coefficients Q`k = Ψ(q`k) ∈ Fm×m

p . Notice that Q`k

is always full rank over Fp. The proposed coding scheme is
performed for the transformed MIMO channel and the one-
to-one mapping Φ(·) is used to transmit coded messages via
the channels. In order to transmit (2m− 1) streams, source 1
sends m independent messages {w1,` ∈ Fp : ` = 1, . . . ,m} to
destination 1 and source 2 sends m−1 independent messages
{w2,` ∈ Fp : ` = 1, . . . ,m−1} to destination 2. For simplicity,
we also use the vector representation of messages as w1 =
[w1,1, . . . , w1,m]T and w2 = [w2,1, . . . , w2,m−1]T.

1) Encoding at the sources: We let V1 =
[v1,1, . . . ,v1,m] ∈ Fm×m

p and V2 = [v2,1, . . . ,v2,m−1] ∈
Fm×m−1
p denote the precoding matrices used at sources 1 and

2, respectively, chosen to satisfy the alignment conditions:

Q11v1,`+1 = Q12v2,`

Q21v1,` = Q22v2,` (8)

for ` = 1, . . . ,m− 1. For alignment, we use the construction
method proposed in [6]:

v1,`+1 = (Q−1
11 Q12Q

−1
22 Q21)`v1,1 (9)

v2,` = (Q−1
22 Q21Q

−1
11 Q12)`−1Q−1

22 Q21v1,1 (10)

for ` = 1, . . . ,m − 1. Using Ψ(·) and γ defined in (5), the
above constructions can be rewritten as

v1,`+1 = Ψ(q−1
11 q12q

−1
22 q21)`v1,1 = Ψ(γ`)v1,1 (11)

v2,` = Ψ(q−1
22 q21)Ψ(γ`−1)v1,1 (12)

for ` = 1, . . . ,m− 1.
Encoding:
• Source k precodes its message over Fp as xk = Vkwk

and produces the channel input

Xk = Φ−1(xk) ∈ Fpm , k = 1, 2. (13)

Then, X1 and X2 are transmitted over channels.
2) Relaying operations: Relays decode linear combinations

of source messages and forward the precoded linear combina-
tions to destination.

Decoding:
• Relay 1 observes:

Y1 = q11X1 + q12X2 ∈ Fpm

and maps the received signal onto ground field Fp:

Φ(Y1) = Q11Φ(X1) + Q12Φ(X2)

= Q11V1w1 + Q12V2w2

(a)
= Q11V1


w1,1

w1,2 + w2,1

...
w1,m + w2,m−1


︸ ︷︷ ︸

∆
=u1

(14)

where (a) is due to the fact that precoding vectors satisfy
the alignment conditions in (8). Since V1 is full-rank
over Fp by Lemma 2, relay 1 can decode u1 (i.e., linear
combinations of source messages).

• Similarly, relay 2 observes the aligned signals over Fp:

Φ(Y2) = Q21Φ(X1) + Q22Φ(X2)

= Q21V1w1 + Q22V2w2

(a)
= Q21V1


w1,1 + w2,1

...
w1,m−1 + w2,m−1

w1,m


︸ ︷︷ ︸

∆
=u2

(15)



where (a) is due to the fact that precoding vectors satisfy
the alignment conditions in (8). Since V1 is full-rank
over Fp by Lemma 2, relay 2 can decode u2.

Lemma 2: Assume that deg(µ(γ)) = m. V1 has rank m if
we choose v1,1 = Φ(1).

Proof: Using v1,1 = Φ(1), we have:

Ψ(γ`)v1,1 = Φ(Ψ−1(Ψ(γ)`)Φ−1(v1,1)) = Φ(γ`). (16)

From (11) and (16), the precoding matrix V1 can be written
as

V1 = [v1,1, . . . ,v1,m]

= [Φ(1),Φ(γ),Φ(γ2), . . . ,Φ(γm−1)].

Since γ is assumed to have degree-m minimal polynomial, the
following holds:

b0 + b1γ + · · ·+ bm−1γ
m−1 6= 0

for any non-zero coefficients vector (b0, . . . , bm−1) ∈ Fm
p .

Using this, we can prove that V1 has m linearly independent
columns:

b0Φ(1) + b1Φ(γ) + · · ·+ bm−1Φ(γm−1)

= Φ(b0) + Φ(b1γ) + · · ·+ Φ(bm−1γ
m−1)

= Φ(b0 + b1γ + · · ·+ bm−1γ
m−1) 6= 0

for any non-zero coefficients vector (b0, . . . , bm−1) ∈ Fm
p .

This completes the proof.
Encoding:
• Relay 1 precodes the decoded linear combinations as

x3 = S11V3u1 and produces the channel input

X3 = Φ−1(x3) ∈ Fpm (17)

• Likewise, relay 2 precodes the decoded linear combina-
tions as x4 = S21V3u2 and produces the channel input

X4 = Φ−1(x4) ∈ Fpm (18)

where

S =

[
S11 S12

S21 S22

]
=

[
Q33 Q34

Q43 Q44

]−1

(19)

and V3 are chosen to satisfy the alignment conditions in
(8) with respect to S:

v3,`+1 = Ψ(γ′`)v3,1 (20)
v4,` = Ψ(s−1

22 s21)Ψ(γ′`−1)v3,1 (21)

for ` = 1, . . . ,m − 1 where sij = Ψ−1(Sij) and where
γ′ is defined in (5).

From Lemma 2, we can immediately prove that V3 and V4

are full rank by choosing v3,1 = Φ(1) since deg(µ(γ′)) = m.
The other precoding vectors are completely determined by the
(20) and (21).

From (14) and (15), we can observe that the coefficients of
the linear combinations only depend on alignment conditions,
independent of channel coefficients. From this, we can produce
the received signal for which the channel matrix is equal to the

inverse of second-hop channel matrix. This is the key property
to enable the network diagonalization. That is, x3 and x4 are
equal to received signals with channel coefficients S:[

x3

x4

]
=

[
S11V3u1

S21V3u2

]
=

[
S11V3w1 + S12V4w2

S21V3w1 + S22V4w2

]
=

[
Q33 Q34

Q43 Q44

]−1 [
V3w1

V3w2

]
. (22)

3) Decoding at the destinations: Destinations 1 and 2
observe: [

Y3

Y4

]
=

[
q33 q34

q43 q44

] [
X3

X4

]
.

By mapping the received signals onto ground field Fp, we can
get: [

Φ(Y3)
Φ(Y4)

]
=

[
Q33 Q34

Q43 Q44

] [
S11V3u1

S21V3u2

]
(a)
=

[
V3w1

V4w2

]
where (a) is due to the precoding at relays to satisfy (22). This
shows that destination 1 can decode w1 using V−1

3 Φ(Y3) and
destination 2 can decode w2 using V−1

4 Φ(Y4). This completes
the proof of Theorem 1.

IV. TWO-UNICAST TWO-HOP MIMO IC OVER Fp

We consider a 2×2×2 MIMO IC over Fp where all nodes
have m multiple inputs/outputs. Here, the m × m channel
matrices are denoted by Q`k ∈ Fm×m

p . Notice that they
are neither diagonal matrices nor in the form of powers of
companion matrix, and do not commute. Therefore, it is not
possible to apply straightforwardly the same approach devel-
oped before. Instead, we have to resort to symbol extension by
going to an extension field in order to obtain aligned network
diagonalization.

From (11), we can define the precoding matrix V1 to satisfy
the alignment conditions as function of v1,1:

V1 = [v1,1,Qv1,1 . . . ,Q
m−1v1,1] (23)

where Q = Q−1
11 Q12Q

−1
22 Q21. We cannot use the result in

Section III-A since Q is not mapped onto the element of
Fpm . For the time being, we assume that Q has m distinct
eigenvalues. Following [6], [13], we can prove that V1 is full
rank if we choose v1,1 = E1 where E consists of m linearly
independent eigenvectors of Q. In case of complex-valued
Gaussian channel, we can always find m distinct eigenvalues
in the given complex field. However, in the finite field Fp,
some eigenvalues of Q may not exist in the ground field
Fp, depending on characteristic polynomial of Q (denoted
by C(λ)). Suppose that this polynomial is factored in the
following way:

C(λ) =
∏
i

πi(λ) (24)

where deg(πi(λ)) ≥ deg(πj(λ)) if i ≤ j. If deg(π1(λ)) =
r > 1 then some eigenvalues of Q do not exist in Fp. Also, we



can see that π1(λ) is a degree-r irreducible polynomial over
Fp. Thus, L = Fp[λ]/π1(λ) generates an extension field of Fp

with order pr and is isomorphic to Fpr . We can notice that r
is the minimum order for which the corresponding extension
field contains the roots of π1(λ). Since deg(πi(λ)) ≤ r for
i > 1, we are able to find all roots of C(λ) in Fpr . In
short, Fpr is the splitting field 2 of C(λ). Assume that Q
has m distinct eigenvalues {λi ∈ Fpr : i = 1, . . . ,m} and
corresponding eigenvectors {ei ∈ Fm

pr : i = 1, . . . ,m}. Since
Q is diagonalizable, we have Q = EΛE−1 where E has
ei as its the i-th column and Λ has λi as its i-th diagonal
element. Then, we choose v1,1 = E1 ∈ Fm

pr . Following [13],
we can show that V1 is full rank over Fpr as follows. Since
Q = EΛE−1 and v1,1 = E1, we have:

V1 = E

 1 λ1 · · · λm−1
1

...
...

. . .
...

1 λm · · · λm−1
m


︸ ︷︷ ︸

∆
=J

. (25)

Since J is a Vandermonde matrix, the determinant of V1 is
computed by

det(V1) = det(E)det(J)

= det(E)
∏

1≤i<j≤m

(λj − λi) 6= 0.

Therefore, V1 is full rank.
Next, we present our coding scheme over the r-symbol

extension (i.e., over r time slots).
Encoding at the sources:
• Source 1 precodes its message w1 ∈ Fm

pr using precoding
matrix V1 ∈ Fm×m

pr :

x1 = V1w1 ∈ Fm
pr

and transmits the t-th column of ΦT(x1) ∈ Fm×r
p at time

slot t for t = 1, . . . , r where ΦT : Fpr → [Fp, . . . ,Fp]
(notice that differently from (1), it maps the elements of
Fpr to the r-dimensional row vectors).

• Similarly, source 2 precodes its message w2 ∈ Fm−1
pr

using precoding matrix V2 ∈ Fm×m−1
pr :

x2 = V2w2 ∈ Fm
pr

and transmits the t-th column of ΦT(x2) ∈ Fm×r
p at time

slot t for t = 1, . . . , r.
Decoding at the relays:
• Relay 1 observes:

ΦT(y1) = Q11ΦT(x1) + Q12ΦT(x2) ∈ Fm×r
p .

By mapping the received signal onto the element of Fpr ,
we have:

y1 = Q11V1w1 + Q12V2w2

= Q11V1u1

2A splitting field of a polynomial with coefficients in a field is a smallest
field extension of that field over which the polynomial splits into linear factors.

where the last step is due to the fact that precoding vectors
satisfy the alignment conditions in (8).

• Similarly, relay 2 observes the aligned signal:

y2 = Q21V1u2.

At this point, we can follow Section III-A. In this case, we can
achieve the sum-rate of (2m − 1) log pr during r time slots.
Therefore, we can achieve the sum-rate of (2m− 1) log p per
time slot.

Remark 2: The number of required symbol extensions r ≤
m depends on the channel coefficients. In general, we can
always use the m-symbol extension to use the aligned network
diagonalization, regardless of channel coefficients. In this way,
the coding block length (symbol extension order) depends
only on the number of inputs/outputs at each node, and it
is independent of the channel coefficients. ♦
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