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Abstract—Consider a Gaussian relay network where a number
of sources communicate to a destination with the help of several
layers of relays. Recent work has shown that a compress-and-
forward based strategy at the relays can achieve the capacity
of this network within an additive gap. In this strategy, the
relays quantize their observations at the noise level and map
it to a random Gaussian codebook. The resultant capacity gap
is independent of the SNR’s of the channels in the network but
linear in the total number of nodes.

In this paper, we show that if the relays quantize their signals
at a resolution decreasing with the number of nodes in the
network, the additive gap to capacity can be made logarithmic in
the number of nodes for a class of layered, time-varying wireless
relay networks. This suggests that the rule-of-thumb to quantize
the received signals at the noise level used for compress-and-
forward in the current literature can be highly suboptimal.

I. INTRODUCTION

Consider a source node communicating to a destination
node via a sequence of relays connected by point-to-point
channels. See Figure 1(a). The capacity of this line network
is achieved by simple decode-and-forward and is equal to
the minimum of the capacities of the successive point-to-
point links. The decoding at each stage removes the noise
corrupting the information signal and therefore the end-to-
end rate achieved is independent of the number of times the
message gets retransmitted.

Unfortunately, the optimality of decode-and-forward is lim-
ited to this line topology and in more general networks with
multiple relays at each layer, it is well-understood that the
rate achieved by decode-and-forward can be arbitrarily away
from capacity. Recent work by Avestimehr et al [1] has shown
that compress-and-forward can be a better fit for general relay
networks. In any relay network with multi-source multicast
traffic, it has been shown that a compress-and-forward based
relaying strategy can achieve the capacity of the network
within a gap that is independent of the SNR’s of the constituent
channels [1], [2], [3]. However, the gap to capacity increases
linearly in the number of nodes in the network. For example,
for the line network in Figure 1(a) it would lead to a gap that
is linear in the depth of the network D. One natural way to
explain this gap is the noise accumulation. As the information
signal proceeds deeper into the network, it is corrupted by
more and more noise. Therefore, any strategy that does not
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Fig. 1: (a) Line Network, (b) Multi-Layer Relay Network for
K = 3, each Hi is a Rayleigh fading matrix

remove the noise corrupting the signal at each stage will
naturally suffer a rate loss that increases with the number of
stages. However, it is not clear why this rate loss should be
linear in the depth of the network as the current results in
the literature suggest [1], [2], [3]. The total variance of the
accumulated noise over the D stages of the network is D times
the variance of the noise at each stage (assuming identical
noise variances over the D stages). A factor of D increase
in the noise variance in a point-to-point Gaussian channel
would lead to a logD decrease in capacity, and therefore it is
natural to ask if we can reduce the linear performance loss of
compress-and-forward strategies to logarithmic in D.

This paper is based on the observation that if the relay nodes
in Figure 1(a) quantize their observed signals at a resolution
decreasing linearly in D, the rate loss due to compress and
forward is only logarithmic in D. (See Section III.) This
suggests that the rule-of-thumb to quantize the received signals
at the noise level used for compress-and-forward in the current
literature [1], [2], [3] can be highly suboptimal. This is because
the rate penalty for describing the quantized signals can
be significantly larger than the rate penalty associated with
coarser quantization. This insight was used in [4] to show
that compress-and-forward based strategies can achieve the
capacity of the N -relay Gaussian diamond network within a
gap that is logarithmic in N .

The main setup we consider in this paper is the multi-layer
Gaussian relay network in Figure 1(b). Here K source nodes
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communicate to a destination node equipped with multiple
antennas over D layers, each layer containing K single-
antenna relays. Each relay observes a noisy linear combination
of the signals transmitted by the relays in the previous layer.
All channels are subject to i.i.d. Rayleigh fast-fading. Current
results on compress-and-forward [1], [2], [3] yield a sum-rate
which is within 1.3KD gap to the capacity of this network,
where KD is the total number of nodes. Instead, we show that
if relays quantize their received signals at a resolution that
decreases as the number of nodes increases, compress-and-
forward can achieve a sum-rate which is within an additive
gap of K logD + K of the network sum-capacity. So for a
fixed K, as the number of layers D increases, this gap only
grows logarithmically in the depth of the network D (and
therefore logarithmically in the number of nodes KD). As
a side result, we provide an analysis of the compress-and-
forward based strategies in [1], [2], [3] in fast fading wireless
networks.

This same setup has been considered in [5], where a
computation alignment strategy is proposed to remove the
accumulating noise with the depth of the network. This yields
a gap 7K3 + 5K logK. The computation alignment strategy
is based on the idea of combining compute-forward [6] with
ergodic alignment proposed in [7]. While the gap to capacity
obtained by computation alignment is independent of D, this
strategy is significantly more complex than compress-forward
and has a number of disadvantages from a practical perspec-
tive. In particular, ergodic alignment over the fading process
leads to large delays in communication and requires each relay
to know the instantaneous realizations of all the channels in
the network. Moreover, its performance critically depends on
the symmetry of the fading statistics. The compress-forward
strategy with improved quantization we propose in this paper
has minimal requirements. In particular, no channel state
information is required at the source and at the relays, and
the fading statistics are not critical to the operation of the
strategy.

II. MODEL AND PRELIMINARIES

A. Model

We consider the configuration shown in Figure 1(b). The
network is a directed layered network, each layer except the
last containing K nodes. The nodes in the ith layer are
collectively referred to as Vi where 0 ≤ i ≤ D. Nodes in
V0 are the K source nodes {sj}Kj=1, having messages at rate
Rj to be communicated to the single destination node d in
VD, which has K antennas. Since VD only contains d, we
use d and VD interchangeably in the sequel. We assume that
d is equipped with multiple antennas in order to keep the
problem interesting. Otherwise, the minimum cut becomes the
multiple-input-single-output cut from the last layer of relays to
d and this trivializes the problem of approximately achieving
the capacity of the network. Instead of multiple antennas at d,
one can also assume orthogonal bit-pipes from nodes in VD−1

to d, as done in [5]. Let Vi denote V0 ∪ V1 ∪ · · · ∪ Vi and N
denote the set of all nodes, i.e. N = VD.

For 0 ≤ i ≤ D−1, the received signal at nodes in Vi+1 (or
antennas if i = D − 1) depends only on the transmit signals
of nodes in Vi and at time t is given by

YVi+1
[t] = HVi→Vi+1

[t]XVi [t] + ZVi+1
[t],

where YVi+1
and XVi are vectors containing the received and

transmitted signals at nodes in Vi+1 and Vi respectively; and
ZVi+1 ∼ CN (0, σ2I), i.e. we assume flat-fading channels
between the nodes with i.i.d. circularly symmetric complex
Gaussian noise. The (k, l)’th entry of the matrix HVi→Vi+1

[t]
denotes the channel coefficient from l’th relay in Vi to k’th
relay in Vi+1 at time t. We further assume that channels
are i.i.d. Rayleigh fading, i.e each entry in the matrices
{HV0→V1 [t], HV1→V2 [t], . . . ,HVD−1→d[t]} is i.i.d. CN (0, 1)
across time, and independent of other entries and independent
of the noise and transmissions. (The conclusions of the paper
also hold under a block fading model.) All transmitting nodes
are subject to a long-term average power constraint P . We can
assume that YV0 = 0 and Xd = 0. The source nodes and the
relay nodes do not know the instantaneous realizations of the
channel coefficients, i.e have no transmit or receive channel
state information. (The source nodes know the topology of the
network and the channel statistics, i.e. the end-to-end ergodic
rate supported by the network.) All channel realizations are
known at the destination node and are used while decoding
the transmitted messages from the source nodes. The largest
achievable sum-rate

∑K
j=1Rj in the network is called the sum-

capacity of the network, denoted by Csum.

B. Preliminaries

A cut Ω is a subset of N . Let H[t] be a random vector
containing all the channel realizations in the network. Since
the channel realizations are known at the destination d, we
can view H[t] as part of the output of d at time t, i.e., at
time t, d observes Yd[t] and H[t]. Note that this does not alter
the memorylessness property of the network. For the sake of
notational convenience in the proofs, we define the following
quantity for a cut Ω,

C(Ω) := I(XΩ;YΩc , H|XΩc)

= I(XΩ;YΩc |XΩc , H) (1)

where XN are jointly distributed with some distribution such
that the average power constraints are satisfied. The second
equality follows from the fact that I(XΩ;H|XΩc) = 0 since
the distribution of XN\d is independent of H (H is unknown
to all nodes but the destination) and XVd = 0. With this
notation, the information-theoretic cutset upper bound [8,
Theorem 15.10.1] on the achievable rates in the network
can be expressed as follows: If each source sj can reliably
communicate at a rate Rj simultaneously, then there exists



some joint distribution p(XN ) on XN such that∑
j:sj∈Ω,d∈Ωc

Rj ≤ C(Ω) for all cuts Ω. (2)

III. LINE NETWORK

We first illustrate the main idea of this paper in a simple
setting, the line network in Figure 1(a). Here we assume
that each link i is a AWGN channel with gain hi and the
channel gains hi are fixed and known. Each node has power
P and the noise variance is σ2. (The conclusions below
also hold under a fast fading assumption similar to the one
described in Section II.) As mentioned before, a decode-
forward strategy at the relays achieves the capacity of this line
network, while compress-and-forward based strategies (such
as quantize-map-forward in [1] and noisy network coding in
[2]) with quantization done at the noise level have a gap to
capacity that is linear in the number of nodes D. Here, we
show that if relays instead quantize at (D−1) times the noise
level, the gap to capacity becomes logarithmic in D.

Number the nodes s through d as 0, 1, 2, . . . , D. Let’s
consider the rate achievable by noisy network coding for this
network, assuming all relay nodes choose their transmission
codebooks independently from a Gaussian distribution, i.e.
Xi ∼ CN (0, P ) and independent of each other. Theorem 1
in [2] says that the following rate is achievable

R = min
0≤i≤D−1

(
I(Xi; Ŷi+1|Xi+1)− I(YVi ; ŶVi |XN , ŶN\Vi)

)
where we are assuming that the destination node also performs
quantization for simplicity.

Now, let each relay choose Ŷi = Yi + Ẑi where Ẑi ∼
N (0, (D − 1)σ2) independent of everything else. Since
Yi+1 = hiXi + Zi+1, the channel from Xi to Ŷi+1 is
effectively an AWGN channel of noise power Dσ2 with gain
hi. Then the first term in the achievable rate expression
becomes log

(
1 + |hi|2P

Dσ2

)
which is greater than or equal to

log
(

1 + |hi|2P
σ2

)
− log(D).

Due to the coarse quantization, the second term in the
achievable rate expression is reduced significantly as compared
to quantizing at the noise level. We have

I(YVi ; ŶVi |XN , ŶN\Vi) = I(ZVi ; ẐVi)

= (|Vi| − 1) log

(
1 +

σ2

(D − 1)σ2

)
= i log

(
1 +

σ2

(D − 1)σ2

)
≤ i

D − 1
≤ 1,

since i ≤ D−1. Since the capacity of the line network is given
by the minimum of the capacities of each link: mini log(1 +
|hi|2P ), we see that decreasing the resolution of quantization
as the number of nodes increases results in a gap of log(D)+
1. If the quantization were done at the noise level, the first

term in the noisy network coding achievable rate would suffer
from only a log(2) decrease instead of log(D) with respect
to capacity, however the second term would be linear in D,
overall resulting in a linear gap in D to capacity.

IV. LAYERED NETWORK WITH MULTIPLE RELAYS

The main result of this paper is the following theorem.

Theorem 1. The sum-capacity of the network in Figure 1(b)
is bounded by

C(K,K)−K log(D)−K ≤ Csum ≤ C(K,K) (3)

where the lower bound is achievable by a compress-and-
forward strategy with appropriately chosen quantization levels.
C(K,K) denotes the ergodic capacity of a K-by-K MIMO
Rayleigh fast-fading channel with per-antenna average power
constraint of P and noise variance σ2 and is equal to the
information-theoretic cutset upper bound on the sum-capacity
of the network.

We first prove Theorem 1 for the case when the K source
nodes {s1, . . . , sK} are co-located, i.e. {s1, . . . , sK} behave
like a single source denoted by s with K antennas, with a per-
antenna power constraint P , transmitting a message at rate R
to the destination d, see Figure 2. In this case, we show that the
point-to-point capacity satisfies the conditions in Theorem 1.
At the end of this section, we extend the proof for the capacity
in the single-source case to the sum-capacity in the original
setup containing multiple sources.

We prove Theorem 1 for the single source setup in two
steps. We first establish the upper bound on the capacity in
Section IV-A and then show that it is achievable within a gap
K log(D) +K in Section IV-B.

A. Upper bound

The upper bound in Theorem 1 is easy to prove. Consider
the cutset upper bound in (2) for the single source case:

R ≤ min
Ω:s∈Ω,d∈Ωc

I(XΩ;YΩc |XΩc , H).

Considering only the cut Λ = V0 implies that

R ≤ max
p(XN )

min
Ω:s∈Ω,d∈Ωc

C(Ω)

≤ max
p(XN )

C(V0) (4)

= max
p(XN )

I(XV0 ;YN\V0 |XN\V0 , H)

(a)
= E

[
log det

(
I +

1

σ2
PHV0→V1H

†
V0→V1

)]
, C(K,K),

where (a) follows from the fact that the maximal mutual
information in the earlier line corresponds to the ergodic
capacity of a K×K MIMO Rayleigh fast-fading channel with
per-antenna average power constraint P and the maximizing
input distribution for this channel is well known to be i.i.d.
CN (0, P ) [9]. We denote this capacity by C(K,K).



Remark: The cutset upper bound in (2) bounds the rate
with many additional constraints arising from cuts other than
V0. In the above derivation, by concentrating on a single
cut Λ = V0 we have derived an upper bound (4) on the
cutset bound. Although such an upper bound can be weaker
in general, in the current case it can be shown that C(K,K)
is indeed the tightest constraint on the rate imposed by the
cutset bound. This can be observed from the discussion in the
next section (Claim 1), which implicitly shows that the cutset
bound on the rate evaluated under i.i.d distributions is equal to
C(K,K). Since the cutset bound evaluated under a particular
distribution forms a lower bound on the actual bound obtained
from (2), this shows that the tightest constraint imposed on the
rate by the cutset bound is exactly equal to C(K,K).

B. Achievability

We now prove the lower bound in Theorem 1. We start with
the rate achieved by noisy network coding in [2, Theorem 1],
which states that all rates R that satisfy

R ≤ min
Ω:s∈Ω,d∈Ωc

[
I(XΩ; ŶΩc , H|XΩc)

−I(YΩ; ŶΩ|XN , ŶΩc , H)
]

= min
Ω:s∈Ω,d∈Ωc

[
I(XΩ; ŶΩc |XΩc , H)

−I(YΩ; ŶΩ|XN , ŶΩc , H)
]
.

for some joint distribution of the form
Πk∈N p(xk)p(ŷk|yk, xk) are achievable. The equality
again follows from the fact that I(XΩ;H|XΩc) = 0. Hence,
the following R is achievable:

R ≤ min
Ω:s∈Ω,d∈Ωc

I(XΩ; ŶΩc , H|XΩc)

− max
Ω:s∈Ω,d∈Ωc

I(YΩ; ŶΩ|XN , ŶΩc , H). (5)

We choose the input distribution Xk at each node k to be
CN (0, P ) (and similarly the input distributions corresponding
to the antennas of the source node are i.i.d. CN (0, P )). We
choose Ŷk such that Ŷk = Yk + Ẑk where Ẑk is CN (0, (D −
1)σ2) independent of everything else. Note the difference with
the quantization in [1], [2], [3]: the quantization noise has
variance (D− 1)σ2 as opposed to σ2, the noise variance. For
simplicity, we also assume that the destination quantizes its
observation according to ŶVD = YVD + ẐVD , where ẐVD ∼
CN (0, (D − 1)σ2) independent of everything else, and treats
ŶVD (denoted by Ŷd for brevity) as its observation, along with
all the channel realizations H .

We will evaluate the right-hand side of (5) in two steps. In
Lemma 1, we upper bound the second term by K. In Lemma 2,
we lower bound the first term by C(K,K)−logD. Combining
the two results gives the lower bound in Theorem 1 (for the
single source case).

Ω
Ωc

s d

Fig. 2: Links crossing the cut Ω denoted by dashed lines;
M1 = 2,M2 = 1,M3 = 2,M4 = 0

Lemma 1.

max
Ω:s∈Ω,d∈Ωc

I(YΩ; ŶΩ|XN , ŶΩc , H) ≤ K

Proof: Given our choice for the distributions of the
random variables involved, we have

I(YΩ; ŶΩ|XN , ŶΩc , H)

= h(ŶΩ|XN , ŶΩc , H)− h(ŶΩ|YΩ, XN , ŶΩc , H)

≤ h(ŶΩ|XN , H)− h(ŶΩ|YΩ, XN , H)

= (|Ω| − 1) log(Dσ2)− (|Ω| − 1) log((D − 1)σ2)

≤ K(D − 1) log

(
1 +

1

D − 1

)
≤ K.

Hence maxΩ:s∈Ω,d∈Ωc I(YΩ; ŶΩ|XN , ŶΩc , H) ≤ K.
We next lower bound the first term in (5).

Lemma 2.

min
Ω:s∈Ω,d∈Ωc

I(XΩ; ŶΩc |XΩc , H) ≥ C(K,K)−K logD

Proof: We first prove the following relation:

Claim 1.

min
Ω:s∈Ω,d∈Ωc

I(XΩ;YΩc |XΩc , H) = C(K,K).

For notational convenience in this proof, we define
Ci.i.d.(Ω) := I(XΩ;YΩc |XΩc , H), where we emphasize that
the inputs are i.i.d. CN (0, P ) via the subscript “i.i.d.”.

Consider a cut Ω that contains M1 nodes from V1, M2 from
V2 and so on until MD−1 from VD−1 (see Figure 2). Recall
that we assume s ∈ Ω and d ∈ Ωc. Then Ci.i.d.(Ω) is given
by

E
[
log det

(
I +

P

σ2
HΩ→ΩcH†Ω→Ωc

)]
,

where HΩ→Ωc is a block diagonal matrix containing blocks
of size M c

1 -by-K, M c
2 -by-M1, M c

3 -by-M2, . . . , M c
D−1-by-

MD−2 and finally K-by-MD−1. We have abused notation here
by defining M c

i := |Vi| −Mi = K −Mi.
Since the capacity of a MIMO channel that has block

diagonal structure is the sum of the capacities of the individual
MIMO blocks, we have

Ci.i.d.(Ω) = E
[
log det

(
I +

P

σ2
HΩ→ΩcH†Ω→Ωc

)]
= C(M c

1 ,K) + C(M c
2 ,M1) + C(M c

3 ,M2)+

· · ·+ C(M c
D−1,MD−2) + C(K,MD−1) (∗)



We show below that (∗) ≥ C(K,K). Note the following
properties of the function C(x, y):

a) C(x, y) = C(y, x),
b) C(z, y) ≥ C(x, y) if z ≥ x,
c) C(x, y) + C(K − x, y) ≥ C(K, y) which can be shown

via an application of Hadamard’s inequality.
Proving that the expression in (∗) ≥ C(K,K) is just a matter
of applying these properties multiple times. For concreteness,
we show this for the case D = 4 below, which can be
generalized in a straightforward way to higher values of D.

(∗) = C(M c
1 ,K) + C(M c

2 ,M1) + C(M c
3 ,M2) + C(K,M3)

≥ C(M c
1 ,K) + C(M c

2 ,M1) + C(M c
3 ,M2) + C(M2,M3)

≥ C(M c
1 ,K) + C(M c

2 ,M1) + C(K,M2)

≥ C(M c
1 ,K) + C(M c

2 ,M1) + C(M1,M2)

≥ C(M c
1 ,K) + C(K,M1)

≥ C(K,K),

where the first inequality follows by applying property (b) to
the last term in the first line, the second inequality follows by
applying (c) to the last two terms in the earlier line etc. So
we have shown that

min
Ω:s∈Ω,d∈Ωc

Ci.i.d.(Ω) ≥ C(K,K). (6)

The cuts V0,V1, . . . ,VD−1 satisfy (6) with equality, so we are
done. (Each of these cuts induces a K-by-K MIMO channel
across the cut, i.e. Ci.i.d.(Vi) = C(K,K) for any 0 ≤ i ≤
D − 1.) This proves Claim 1.

Due to our choice of the quantization: Ŷ = Y + Ẑ where
Ẑ ∼ CN (0, D−1), evaluating the term I(XΩ; ŶΩc |XΩc , H) is
equivalent to evaluating I(XΩ;YΩc |XΩc , H) except that now
the noise is Z + Ẑ instead of just Z, i.e. the noise power is
Dσ2 instead of σ2. Hence,

min
Ω:s∈Ω,d∈Ωc

I(XΩ; ŶΩc |XΩc , H)

= E
[
log det

(
I +

P

Dσ2
HVi→Vi+1H

†
Vi→Vi+1

)]
≥ C(K,K)−K log(D), (7)

This concludes the proof of the lemma.

C. Proof of Theorem 1

Via Lemma 2 and Lemma 1, we have proved Theorem 1 for
the case of a single K-antenna source. We now show that the
same result holds for the sum-capacity in the original setup
containing K single-antenna sources.

It is clear that the upper bound established in Section IV-A is
an upper bound on the achievable sum-rate for the K sources.

For the lower bound, we observe that since in the above
discussion we have chosen i.i.d. input distributions for the
antennas at the source, we can apply the same strategy and
therefore achieve the same total rate even if antennas are not

collocated. A more formal argument can be made as follows.
Consider the setup with K sources as shown in Figure 1(b).
We fix the operation of the relays to be the same as that
described in Section IV-B. This induces a multiple access
channel between the sources s1, s2, . . . , sK and the destination
d described by a certain pdf p (yd, H|xV0). It is well known
that the achievable rate region for a memoryless MAC channel
is a polymatroid and the largest achievable sum-rate is given
by I(XV0 ;Yd, H) where p(xV0) =

∏K
j=1 p(xsj ) since the

transmitting nodes can cannot cooperate. If we fix p(xsj ) to
be the CN (0, P ) pdf for all 1 ≤ j ≤ K, then I(XV0 ;Yd, H)
is the same end-to-end mutual information that we obtain
in the case of a single source with K antennas using the
achievability scheme in Section IV-B. Thus, the lower bound
on the capacity for a single source with K antennas that we
proved in Lemma 2 also applies to the sum-capacity in the
case of K single antenna sources. This completes the proof
of Theorem 1.

Remark: We point out that Theorem 1 continues to hold
if there are multiple destination nodes in the final layer, each
having K antennas and interested in all the messages.

V. CONCLUDING REMARKS

In this paper, we have considered a time-varying Gaussian
relay network in which K sources communicate to a destina-
tion over multiple layers of relays, each layer containing K
nodes. We have shown that by better choosing the quantization
level in the compress-and-forward strategies, we can improve
the gap to capacity from linear to logarithmic in the depth of
the network. This is obtained by decreasing the resolution of
quantization as the number of nodes in the network increases,
which decreases the associated rate penalty to communicate
the quantization codewords to the destination.
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