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Abstract—In this paper, we consider the Ice-Wine problem: Two trans-
mitters send their messages over the Gaussian Multiple-Access Channel
(MAC) and a receiver aims to recover a linear combination of codewords.
The best known achievable rate-region for this problem is due to [1],
[2] as Ri ≤ 1

2
log

(

1
2
+ SNR

)

(i = 1, 2). In this paper, we design a
novel scheme using lattice codes and show that the rate region of this
problem can be improved. The main difference between our proposed
scheme with known schemes in [1], [2] is that instead of recovering the
sum of codewords at the decoder, a non-integer linear combination of
codewords is recovered. Comparing the achievable rate-region with the
outer bound, Ri ≤

1
2
log (1 + SNR) (i = 1, 2), we observe that the

achievable rate for each user is partially tight. Finally, by applying our
proposed scheme to the Gaussian Two Way Relay Channel (GTWRC), we
show that the best rate region for this problem can be improved.

I. I NTRODUCTION

Lattice structures have been shown to be capacity-achieving for
AWGN channels such as the Gaussian point-to-point channel [3],
Multiple Access Channel (MAC) [1], Broadcast Channel (BC) [4] and
relay networks [1]. Nested lattice codes have been shown to achieve
the same rates which are achievable by independent, identically dis-
tributed (i.i.d)Gaussianrandom codes in the decode-and-forward and
compress-and-forward schemes for the relay channel [5]. However,
in some scenarios, lattice codes may outperform i.i.d. random codes
particularly when we are interested in decoding a linear combination
of codewords rather than decoding the individual codewordsas the
compute-and-forward scheme [1].

The compute-and-forward scheme [1] is a novel strategy which uses
the advantage of the linear structure in lattice codes and the additive
nature of Gaussian networks in order to get some new achievable
rate-regions for decoding linear combination of messages.Consider
the multiple access communication system model depicted inFig. 1,
which can be seen such as a basic element for the relay networks.
Each sender wishes to communicate an independent message reliably
to a common receiver. In [6], it is shown that the capacity region of
the Gaussian MAC is given by the following rate region:

Ri ≤
1

2
log

(
1 +

P

N

)
, (i = 1, 2)

R1 +R2 ≤
1

2
log

(
1 +

2P

N

)
,

whereP is an average transmit power constraint at both nodes and
N is the noise variance. Now, suppose that instead of estimating
transmitted codewordsX1 andX2 individually, we are interested in
decoding the sum of codewords (or messages), i.e.,X1 +X2. This
problem is called the Ice-Wine problem [7]. One approach forsolving
this problem is based on random codes, i.e., codes from a random
ensemble. For this purpose, we must first recover both messages and
then recover the desired function. Since only a function of messages
is desirable (instead of both messages separately), this approach is not
optimal.

For this problem, in [8] it is conjectured that a rate-regionof
Ri < 1

2
log (1 + SNR) (i = 1, 2) can be achieved, however, no

transmission scheme is provided. A constructive scheme is proposed
independently in [1] and [2]. In [2], to decode the sum of codewords
modulo a lattice, two schemes are proposed: one lattice coding
scheme based on minimum angle decoding while the other (which
is similar to the one used by Nazer and Gastpar [1]) is based on
the proposed scheme in [3] for the AWGN channel. Nazer and
Gastpar used the compute-and-forward scheme to obtain any arbitrary
integer linear combination of messages. They applied this idea to relay
networks to achieve some new rate-regions [1]. In both thesepapers
it is shown that for this problem the best achievable rate-region is
Ri ≤ 1

2
log
(
1
2
+ SNR

)
(i = 1, 2). As we can see, there is a loss

at most 1/2 bit. Recently, Zhan, Nazer, Erez and Gastpar proposed a
new linear receiver architecture, called Integer-Forcing[9], where the
decoder recovers integer combinations of the codewords. They use the
receiver antennas to create an effective channel matrix with integer-
valued element. Although, there have been some attempts to improve
the achievable rate-region of the compute-and-forward scheme for
decoding the sum of messages [10], [9], the authors in [9] show
that this scheme is not able to achieve a larger rate-region than the
compute-and-forward scheme.

The compute-and-forward scheme was used in subsequent works
to achieve new rate-regions in many networks, see e.g. [11],[12]. In
[11] the compute-and-forward scheme is applied to the Gaussian Two-
Way Relay Channel (GTWRC) to achieve the capacity region forthis
channel within 1/2 bit. By modifying the compute-and-forward for the
Gaussian MAC with unequal powers, in [12] it is shown that forthe
Gaussian relay networks with interference, the multicast capacity is
achievable within a constant gap which depends on only the number
of users. Note that in this class of relay networks, at each node,
outgoing channels to its neighbors are orthogonal, while incoming
signals from neighbors can interfere with each other.More recently,
Zhu and Gastpar proposed a modified compute-and-forward scheme
that is based on channel state information at the transmitters (CSIT) in
order to compute the linear combination over the Gaussian MAC [13].
Then, using numerical results, they show that this scheme can achieve
a rate-region that is better than that of the common compute-and-
forward scheme. Also, by applying it to the GTWRC, they shownthat
it can improve the best rate-region of the GTWRC which is obtained
in [12].

In this paper, we use structured lattice codes to obtain a newrate-
region for the Ice-Wine problem. In all previous attempts, the sum
of codewords is decoded and it is shown that there is a gap between
the achievable rate and the upper bound for any finite SNR. This
paper aims to answer the open challenge of getting the full “one plus”
term in the achievable rate of each user. Although reaching this goal
does not seem to be feasible with nested lattices, in this paper, using
nested lattice codes, we decode a non-integer linear combination of
codewords,V 1 + αV 2, instead of an integer linear combination of
codewords. For this purpose, we first construct a lattice chain at the
transmitter where the codebook at one transmitter depends on α. As
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Figure 1. The Gaussian Multiple Access Channel (MAC).

we will see, we can achieve the full rate for one user but due to
the chosen codebooks, we can not achieve the full rate for theother
user.Although we were not aware of this recent work of Zhu and
Gastpar [13] at the time we submitted this paper to Information Theory
Workshop (ITW) 2014, but the main difference between our proposed
scheme and the new scheme of Zhu and Gatspar is due to the fact that
in the scheme of [13], we must set the CSIT such that the achievable
rate is maximized. But in our proposed scheme, we try to decrease
the variance of the effective noise which helps us to get a rate that
is better than that of the common compute-and-forward scheme. This
distinguishes our proposed scheme with that of [13].As an application
of our proposed scheme, we apply it to the GTWRC and we show
that the best rate-region given in [11] for this open problemcan be
improved.

The remainder of the paper is organized as follows. Section II
provides a brief review of nested lattice codes. In Section III, we
present our proposed scheme for the Ice-Wine problem. Section V
concludes the paper.

II. L ATTICE CODES

Here, we provide some necessary definitions on lattices and nested
lattice codes. Interested reader can refer to [1], [3], [14]and the
references therein for more details.

Definition 1. A lattice Λ is a discrete additive subgroup ofRn. A
lattice Λ can always be written in terms of a generator matrixG ∈

R
n×n as Λ = {x = zG : z ∈ Z

n} , whereZ represents the set of
integers.

The nearest neighbor quantizerQΛ maps any pointx ∈ R
n to the

nearest lattice point:

QΛ(x) = argmin
l∈Λ

‖x− l‖ .

The fundamental Voronoi regionof lattice Λ is set of points inRn

closest to the zero codeword, i.e.,

V0(Λ) = {x ∈ R
n : Q(x) = 0} .

σ2 (Λ) which is called the second moment of latticeΛ is defined as

σ2(Λ) =
1

n

´

V(Λ)
‖x‖2 dx

´

V(Λ)
dx

, (1)

and thenormalized second momentof latticeΛ can be expressed as

G(Λ) =
σ2(Λ)

[
´

V(Λ)
dx]

2

n

=
σ2(Λ)

V
2

n

,

whereV =
´

V(Λ)
dx is the Voronoi region volume.

The modulo-Λ operation with respect to latticeΛ returns the
quantization error

x modΛ = x−Q(x),

that mapsx into a point in the fundamental Voronoi region and
it is always placed inV. The modulo lattice operation satisfies the
following distributive property [15]

[x modΛ + y] modΛ = [x+ y] modΛ.

(Quantization Goodness or Rogers-good): A sequence of lattices
Λ ⊆ R

n is good for mean-squared error (MSE) quantization if

lim
n→∞

G (Λ) =
1

2πe
.

The sequence is indexed by the lattice dimensionn. The existence
of such lattices is shown in [16], [17].

Definition 2. (AWGN channel coding goodness or Poltyrev-good):
Let Z be a length-i.i.d Gaussian vector,Z ∼ N

(
0, σ2

ZIn

)
. The

volume-to-noise ratio of a lattice is given by

µ (Λ, ǫ) =
( Vol(V))2/n

2πeσ2
Z

,

whereσ2
Z is chosen such that Pr{Z /∈ V} = ǫ andIn is ann × n

identity matrix. A sequence of lattices isΛ Poltyrev-good if

lim
n→∞

µ (Λ, ǫ) = 1, ∀ǫ ∈ (0, 1)

and, for fixed volume-to-noise ratio greater than1, Pr{Z /∈ V}

decays exponentially inn .
(Nested Lattices): A latticeΛ is said to be nested in latticeΛ1 if

Λ ⊆ Λ1. Λ is referred to as the coarse lattice andΛ1 as the fine
lattice.

(Nested Lattice Codes): A nested lattice code is the set of all points
of a fine latticeΛ1 that are within the fundamental Voronoi regionV
of a coarse latticeΛ, i.e.,C = {Λ1 ∩ V} . The rate of a nested lattice
code is defined as

R =
1

n
log |C| =

1

n
log

Vol (V)
Vol (V1)

.

In [17], Erez, Litsyn and Zamir show that there exists a sequence
of lattices that are simultaneously good for packing, covering, source
coding (Rogers-good), and channel coding (Poltyrev-good).

III. O UR PROPOSEDSCHEME

As an achievable scheme, we use a lattice-based coding scheme.
In [1], [12] by using two nested lattice codes, where one of the
lattices provides us codewords while the other lattice satisfies the
power constraint at each user, an achievable rate-region for the Ice-
Wine problem is established. In fact, the decoder recovers an integer
combination of messages. In this paper, we provide a new achievable
rate-region for this problem. To reach this goal, we first construct three
nested lattices where one of them provides codewords while the other
two lattices satisfy the power constraints. At the destination, instead
of finding an integer combination of lattice points (or messages), we
recover a non-integer linear combination of lattice points. Finally, we
apply our proposed scheme to the Gaussian Two-Way Relay Channel
(GTWRC) to improve the best rate-region for this open problem so
far. Let us consider a standard model of a Gaussian MAC with two
users:

Y = X1 +X2 +Z, (2)

whereZ denotes the AWGN process with zero mean and varianceN .
Each channel inputXi is subject to an average power constraintP ,
i.e., 1

n
E ‖Xi‖

2 ≤ P .
In the following, by applying a lattice-based coding scheme, we

obtain a new achievable rate-region to estimate a linear combination



of messages for the Gaussian MAC. For this purpose, suppose
that there exist two latticesΛ1 and Λ2, which are Rogers-good
(i.e., lim

n→∞
G
(
Λ

(n)
i

)
= 1

2πe
, for i = 1, 2 ), and Poltyrev-good with

the following second moments

σ2 (Λi) = P.

Also, there is a latticeΛc which is Poltyrev-good withΛ1 ⊆ α1Λ2 ⊆

Λc (α1 is a coefficient smaller than one).

Encoding: To transmit both messages, we first construct the follow-
ing codebooks:

C1 = {Λc ∩ V1} , C2 =

{
Λc

α1
∩ V2

}
.

At each encoder, the message set
{
1, 2, ..., 2nRi

}
is arbitrarily mapped

ontoCi (i = 1, 2). Then, nodei choosesV i ∈ Ci associated with the
messageWi and sends

Xi = [V i −Di] modΛi,

whereD1 and D2 are two independent dithersthat are uniformly
distributed over Voronoi regionsV1 andV2, respectively. Dithers are
known at the encoders and the decoder.Due to the Crypto-lemma [18],
Xi is uniformly distributed overVi and independent ofV i. Thus, the
average transmit power of nodei equals toP , and the power constraint
is met.

Decoding: At the decoder, based on the channel output that is given
by (2), we estimate

[V 1 + α1V 2 − α1QΛ2
(V 2 −D2)] modΛ1.

To do this, the decoder performs the following operations:

Y d = [α1Y +D1 + α1D2] modΛ1

= [α1X1 + α1X2 + α1Z +D1 + α1D2] modΛ1

= [V 1 + α1V 2 + α1X1 − (V 1 −D1)

−α1QΛ2
(V 2 −D2) + α1Z] modΛ1

= [[V 1 + α1V 2 − α1QΛ2
(V 2 −D2)] modΛ1

+(α1 − 1)X1 + α1Z] modΛ1 (3)

= [T 1 +Zeff ] modΛ1,

where (3) follows from the distributive law of the modulo operation.
The effective noise is given by

Zeff = [(α1 − 1)X1 + α1Z] modΛ1,

and the sequence to be estimated is given by

T 1 = [V 1 + α1V 2 − α1QΛ2
(V 2 −D2)] modΛ1.

Due to the dithers, the vectorsV 1,X1 are independent, and also
independent ofZ. Therefore,Zeff is independent ofV 1 andV 2. The
decoder attempts to recoverT 1 from Y d instead of recoveringV 1

andV 2 individually. The method of decoding is minimum Euclidean
distance lattice decoding [3], [19], which finds the closestpoint toY d

in Λc. Thus, the estimate ofT 1 is given by

T̂ 1 = QΛc
(Y d) ,

and the probability of decoding error is given by

Pe = Pr
{
T̂ 1 6= T 1

}
= Pr{Zeff /∈ Vc} .

As it is shown in [3] and [19], the error probability vanishesasn → ∞

if

µ =
( Vol (Vc))

2

n

2πeVar(Z∗
eff)

> 1, (4)

where Z∗
eff ∼ N (0,Var(Zeff)). Since Λc is Poltyrev-good, the

condition of (4) is satisfied. For calculating rateR1, we have:

R1 =
1

n
log

(
Vol (V1)

Vol (Vc)

)
,

=
1

2
log

(
σ2(Λ1)

G(Λ1) ( Vol (Vc))
2

n

)

≤
1

2
log

(
P

G(Λ1)2πeVar(Z∗
eff)

)
(5)

≤
1

2
log

(
SNR

(α1 − 1)2 SNR+ α2
1

)
(6)

where (5) follows from (4), and (6) is based on Rogers goodness of
Λ1. Now, for rateR2, we have:

R2 =
1

n
log

(
αn
1 Vol (V2)

Vol (Vc)

)

=
1

n
log

(
αn
1 Vol (V2)

Vol (V1)

)
+

1

n
log

(
Vol (V1)

Vol (Vc)

)

=
1

2
log

(
G(Λ1)α

2
1σ

2 (Λ2)

G(Λ2)σ2 (Λ1)

)
+R1 (7)

= R1 +
1

2
log
(
α2
1

)

≤
1

2
log

(
α2
1SNR

(α1 − 1)2 SNR+ α2
1

)
, (8)

where (7) follows from the fact that latticesΛ1 andΛ2 are Rogers-
good. Thus, to estimateT 1 correctly, from (6) and (8), we get the
rate-regionR1 (α1), where

R1 (α1) =
{
(R1, R2) : R1 ≤ 1

2
log
(

SNR
(α1−1)2SNR+α2

1

)

R2 ≤ 1
2
log
(

α2

1
SNR

(α1−1)2SNR+α2
1

)}
. (9)

Thus, we have proved the following Theorem which is one of the
main contributions of this paper.

Theorem 1. For the Gaussian MAC shown in Fig. 1, if any rate pair
(R1, R2) satisfies the rate constraints given in (9), then, there exist
sequences of nested latticesΛ1 ⊆ Λ2

α1
⊆ Λc such that the following

linear combination can be recovered:

[V 1 + α1V 2 − α1QΛ2
(V 2 −D2)] modΛ1,

where0 ≤ α1 ≤ 1.

Now, by exchanging the role of two encoders in the preceding
theorem and by following the above-mentioned steps, we can show
that if

R2 (α2) =
{
(R1, R2) : R1 ≤ 1

2
log
(

α2
2
SNR

(α2−1)2SNR+α2
2

)

R2 ≤ 1
2
log
(

SNR
(α2−1)2SNR+α2

2

)}
,

0 ≤ α2 ≤ 1 (10)

then, we can correctly recover the following linear combination at the
destination:

T 2 = [V 2 + α2V 1 − α2QΛ1
(V 1 −D1)] modΛ2.

In Fig. 2, we compare the achievable rate-regions for estimating these
two linear combinations with the outer bound.

Remark1. Note that by replacingα1 andα2 with α
MMSE

= SNR
1+SNR
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Figure 2. The achievable rate-region in order to estimateT 1 andT 2. As we
observe, the proposed scheme can reach to the outer bound at points A and
B. The signal-to-noise ratio is fixed atSNR = 5.

in the rate-regionsR1 (α1) andR2 (α2), given in (9) and (10), we
can see that the following points are achievable:

A =

(
1

2
log (1 + SNR) ,

1

2
log

(
SNR2

1 + SNR

))

B =

(
1

2
log

(
SNR2

1 + SNR

)
,
1

2
log (1 + SNR)

)
.

On the other hand, achieving the sum of codewords over the Gaussian
MAC can be upper bounded by the following rate region:

R1 ≤
1

2
log (1 + SNR) , R2 ≤

1

2
log (1 + SNR) .

Thus, by comparing this outer bound with our achievable rateregion,
we observe that it always coincides with the outer bound for each
linear combination.

Achieving linear combination of codewords at the Gaussian MAC
has many applications in network information theory, see e.g. [2], [1],
[12]. In all these papers, achieving[V 1 + V 2] modΛ1 is studied and
it is shown that the following rate region is achievable:

Ri ≤
1

2
log

(
1

2
+ SNR

)
, (i = 1, 2). (11)

By comparing the achievable rate region of the compute-and-forward
scheme, given in (11), with the outer bound, it is clear that the
compute-and-forward scheme is not able to coincide with theouter
bound even partially whereas our achievable rate-region for estimating
T 1 or T 2 is partially tight.

Remark2. Here, we compare our proposed scheme for the Ice-Wine
problem with the proposed schemes in [1], [2], [12]. In thesepapers,
using the fact that each integer linear combination of lattice points is
another lattice point, the given rate-region in (11) is established. As
we see, there is a loss of1

2
bit compared with the outer bound. But,

where is the source of this loss?

To achieve[V 1 + V 2] modΛ, we are forced to have the following
effective noise:

Zeff = [(α− 1) (X1 +X2) + αZ] modΛ.

We see that both termsX1 andX2 are presented in the effective noise.
This yields the loss of1

2
bit. However, in our proposed scheme, we

try to eliminateX2 at the effective noise. This helps us to achieve
full capacity for one user but due to the chosen codebooks at the
transmitter side, we cannot achieve the full rate for the other user.

IV. T HE GAUSSIAN TWO-WAY RELAY CHANNEL

One can apply the proposed scheme in this paper to the Gaussian
Two-Way Relay Channel (GTWRC) to improve the best rate region of
this channel, provided in [11]. The following Theorem provides this
rate-region.

Theorem 2. For the Gaussian two-way relay channel, if both trans-
mitters transmit at equal powers, then the following rate-region is
achievable:

R = cl conv









⋃

α1∈[0,1]

R1 (α1)




⋃



⋃

α2∈[0,1]

R2 (α2)








 , (12)

whereR1 (α1) andR2 (α2) are defined in (9) and (10), respectively.
Also, cl and conv are the closure and the convex hull operations,
respectively.

Proof: For this purpose, nodei constructs the following sequence
and sends it over the channel:

Xi = [V i −Di] modΛi, i = 1, 2

Then, by our proposed scheme, we can estimate the linear combina-
tion, T 1 or T 2, at the relay node. In the following, without loss of
generality, assume that we estimateT 1, given as

T 1 = [V 1 + α1V 2 − α1QΛ2
(V 2 −D2)] modΛ1.

Now, the relay node, using random coding sendsT 1 to both nodes as
it is explained in [11]. At node 1, we knowV 1. Thus, we estimate
V 2 as the following:

V̂ 2 =
1

α1
[T 1 − v1] modΛ3

=
1

α1
[α1V 2 − α1QΛ2

(V 2 −D2)] modΛ3

=
1

α1
[α1V 2] modΛ3 = V 2.

Similarly, node 2 with knowingV 2, estimates message of node 1.
Thus, we can achieve the rate-regionR1 (α1) for the GTWRC. On the
other hand, by findingT 2 at the relay node, we can see that the rate-
regionR2 (α2) is also achievable. Finally, using time-sharing between
these two rate-regions, we get the entire achievable rate-regionR in
(12).

As a numerical example, in Figs. 3 and 4, we compare the achiev-
able rate-region of our proposed scheme with that of the compute-and-
forward scheme. For comparison, an outer bound is also provided. As
we observe, our proposed scheme can achieve the outer bound and
thus capacity region is partially known. By increasing SNR,the gap
between our proposed scheme with the outer bound is reduced.In these
Figures, we also depict the convex hull of our achievable rate-region
and the achievable rate-region by the compute-and-forwardscheme.
To the best of our knowledge, this rate region is the best rateregion
for the Gaussian TWRC so far.

V. CONCLUSION

In this paper, we studied the Ice-Wine problem and using nested
lattice codes, we obtained a new achievable rate-region forthis prob-
lem. In contrast with the previous obtained achievable rateregions,
the achievable rate-region achieves the outer bound partially for each
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Figure 4. Achievable rate-regions and rate-region outer bound forSNR = 6.

user. As we observed, our proposed scheme achieves some rates
which are not achievable by all known schemes to date. Finally, using
applying our proposed scheme to the GTWRC, we showed that the
best achievable rate-region for this open problem can be improved
significantly.
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