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Abstract—In this paper, we consider the Ice-Wine problem: Two trans-
mitters send their messages over the Gaussian Multiple-Aess Channel
(MAC) and a receiver aims to recover a linear combination of odewords.
The best known achievable rate-region for this problem is de to [1],
2] as R; < llog(3+SNR) (i = 1,2). In this paper, we design a
novel scheme using lattice codes and show that the rate regioof this
problem can be improved. The main difference between our prposed
scheme with known schemes in_[1]/]2] is that instead of receving the
sum of codewords at the decoder, a non-integer linear combation of
codewords is recovered. Comparing the achievable rate-remn with the
outer bound, R; < %log(1+SNR) (¢ = 1,2), we observe that the
achievable rate for each user is partially tight. Finally, by applying our
proposed scheme to the Gaussian Two Way Relay Channel (GTWRQwe
show that the best rate region for this problem can be improvd.

I. INTRODUCTION

Lattice structures have been shown to be capacity-acigefon
AWGN channels such as the Gaussian point-to-point chari@iel
Multiple Access Channel (MAC)]1], Broadcast Channel (B&j)dnd
relay networks[[l]. Nested lattice codes have been showrchieee
the same rates which are achievable by independent, idéwntiis-

transmission scheme is provided. A constructive schemeoisoged
independently in(J1] and]2]. I]2], to decode the sum of codels
modulo a lattice, two schemes are proposed: one latticengodi
scheme based on minimum angle decoding while the other Kwhic
is similar to the one used by Nazer and Gastpar [1]) is based on
the proposed scheme inl[3] for the AWGN channel. Nazer and
Gastpar used the compute-and-forward scheme to obtainrbityagy
integer linear combination of messages. They applied tlgia to relay
networks to achieve some new rate-regidns [1]. In both tipegeers

it is shown that for this problem the best achievable ratgere is

Ri < 1log (% +SNR) (i = 1,2). As we can see, there is a loss
at most 1/2 bit. Recently, Zhan, Nazer, Erez and Gastparopezpa
new linear receiver architecture, called Integer-FordBjgwhere the
decoder recovers integer combinations of the codewordsy Tike the
receiver antennas to create an effective channel matrix integer-
valued element. Although, there have been some attempispimve

the achievable rate-region of the compute-and-forwarderseh for
decoding the sum of messagés][10], [9], the authors in [9sho

tributed (i.i.d) Gaussiarrandom codes in the decode-and-forward anthat this scheme is not able to achieve a larger rate-regian the

compress-and-forward schemes for the relay charifel [Sjveder,
in some scenarios, lattice codes may outperform i.i.d. gandodes
particularly when we are interested in decoding a linear lwoation
of codewords rather than decoding the individual codewasligshe
compute-and-forward schendi€e [1].

The compute-and-forward schemé [1] is a novel strategy hvhées
the advantage of the linear structure in lattice codes aadatitlitive

compute-and-forward scheme.

The compute-and-forward scheme was used in subsequens work
to achieve new rate-regions in many networks, see [e.¢j. [12], In
[11] the compute-and-forward scheme is applied to the Gangsvo-
Way Relay Channel (GTWRC) to achieve the capacity regiortisr
channel within 1/2 bit. By modifying the compute-and-fordidor the
Gaussian MAC with unequal powers, in_[12] it is shown that thoe

nature of Gaussian networks in order to get some new acheevafaussian relay networks with interference, the multicagtacity is

rate-regions for decoding linear combination of messa@emsider
the multiple access communication system model depicteflgia,

achievable within a constant gap which depends on only timebeu
of users. Note that in this class of relay networks, at eactleno

which can be seen such as a basic element for the relay netwofU(going channels to its neighbors are orthogonal, whitmrining
Each sender wishes to communicate an independent messiatyre signals from neighbors can interfere with each otlivéore recently,

to a common receiver. In[6], it is shown that the capacityioegf
the Gaussian MAC is given by the following rate region:

1 P .
§log<1+ﬁ), (i=

1 2P
ilog <1+ W) s

R, < 1,2)

Ri+ R»

IN

Zhu and Gastpar proposed a modified compute-and-forwarenseh
that is based on channel state information at the trangs\@SIT) in
order to compute the linear combination over the Gaussia© NIA&].
Then, using numerical results, they show that this schemechieve
a rate-region that is better than that of the common comantk-
forward scheme. Also, by applying it to the GTWRC, they shateit
it can improve the best rate-region of the GTWRC which is ioleté

where P is an average transmit power constraint at both nodes aimd[12].

N is the noise variance. Now, suppose that instead of estimati

In this paper, we use structured lattice codes to obtain araésy

transmitted codewordX ; and X - individually, we are interested in region for the Ice-Wine problem. In all previous attemptse sum

decoding the sum of codewords (or messages), Xa.+ X . This
problem is called the Ice-Wine problei [7]. One approachsfiving

of codewords is decoded and it is shown that there is a gapeeetw
the achievable rate and the upper bound for any finite SNRs Thi

this problem is based on random codes, i.e., codes from aomandpaper aims to answer the open challenge of getting the fak ‘falus”

ensemble. For this purpose, we must first recover both messaud
then recover the desired function. Since only a function eSsages
is desirable (instead of both messages separately), thisagh is not
optimal.

For this problem, in[[B] it is conjectured that a rate-regioh

term in the achievable rate of each user. Although reacHirggoal
does not seem to be feasible with nested lattices, in thisrpaging
nested lattice codes, we decode a non-integer linear ceidyinof
codewords,V1 + aV,, instead of an integer linear combination of
codewords. For this purpose, we first construct a latticénchathe

Ri < $log(1+SNR) (i = 1,2) can be achieved, however, notransmitter where the codebook at one transmitter depends. s
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Figure 1. The Gaussian Multiple Access Channel (MAC).

we will see, we can achieve the full rate for one user but due
the chosen codebooks, we can not achieve the full rate foottier

that mapsx into a point in the fundamental Voronoi region and
it is always placed inV. The modulo lattice operation satisfies the
following distributive property[[15]

[ mod A +y] mod A = [z + y] modA.

(Quantization Goodness or Rogers-good): A sequence atdatt
A CR" is good for mean-squared error (MSE) quantization if

1

2me’

The sequence is indexed by the lattice dimensioiThe existence

of such lattices is shown in [16].[17].

to
Definition 2. (AWGN channel coding goodness or Poltyrev-good):

lim G (A) =

n—o00

user. Although we were not aware of this recent work of Zhu and®t Z be a lengthii.d Gaussian vectorZ ~ N (0,0%15). The

Gastpar[[1B] at the time we submitted this paper to Inforamaiiheory
Workshop (ITW) 2014, but the main difference between ouppsed

scheme and the new scheme of Zhu and Gatspar is due to thedact t

in the scheme of [13], we must set the CSIT such that the aabiev

rate is maximized. But in our proposed scheme, we try to dsere

the variance of the effective noise which helps us to get @ tlat
is better than that of the common compute-and-forward sehdrhis
distinguishes our proposed scheme with thaf of [A3]an application

volume-to-noise ratio of a lattice is given by

(Vol(V))*/"
2rec?

w(A €)=

whereo? is chosen such that RZ ¢ V} = e and I, is ann x n
identity matrix. A sequence of lattices is Poltyrev-good if

lim p (A, e) =1,

n— o0

Ve € (0,1)

of our proposed scheme, we apply it to the GTWRC and we shéad, for fixed volume-to-noise ratio greater than Pr{Z ¢ V}

that the best rate-region given in_[11] for this open probleam be
improved.

decays exponentially in .
(Nested Lattices): A lattice\ is said to be nested in lattic®; if

The remainder of the paper is organized as follows. Sedfibn A S A1. A is referred to as the coarse lattice and as the fine

provides a brief review of nested lattice codes. In Sedfidhwe
present our proposed scheme for the Ice-Wine problem. @™
concludes the paper.

II. LATTICE CODES

Here, we provide some necessary definitions on lattices astba
lattice codes. Interested reader can refer[fo [1], [B]] [aAH the
references therein for more details.

Definition 1. A lattice A is a discrete additive subgroup &". A
lattice A can always be written in terms of a generator matxe

R™™ asA = {& =2G: z € Z"}, whereZ represents the set of

integers.
The nearest neighbor quantize@, maps any pointc € R™ to the
nearest lattice point:

On(x) = arg min ||l —1].

The fundamental Voronoi regiomnf lattice A is set of points inR™
closest to the zero codeword, i.e.,
Vo(A) ={x e R" : Q(x) = 0}.

o% (A) which is called the second moment of lattideis defined as

1 fv(A) H:I:||2 dz

2
g (A) = - ’ (1)
n fV(A) dx
and thenormalized second momeaot lattice A can be expressed as
a(A o?(A
G(A) = (A) Ha (3)7
[\/V(A) n V n

whereV = fvu\) dx is the Voronoi region volume.
The moduloA operation with respect to latticeA returns the
guantization error
z modA =x — Q(x),

lattice.

(Nested Lattice Codes): A nested lattice code is the setl pioaits
of a fine latticeA; that are within the fundamental Voronoi regidoh
of a coarse lattice\, i.e.,C = {A1 NV} . The rate of a nested lattice
code is defined as

Vol (V)
1 % Vol (V1)

In [I7], Erez, Litsyn and Zamir show that there exists a saqee
of lattices that are simultaneously good for packing, cioegrsource
coding (Rogers-good), and channel coding (Poltyrev-good)

R = l10g|C|
n

As an achievable scheme, we use a lattice-based coding eschem
In [I], [I2] by using two nested lattice codes, where one & th
lattices provides us codewords while the other latticesBat the
power constraint at each user, an achievable rate-regiothéolce-
Wine problem is established. In fact, the decoder recovermt@ger
combination of messages. In this paper, we provide a neveweblie
rate-region for this problem. To reach this goal, we firststarct three
nested lattices where one of them provides codewords whgl@ther
two lattices satisfy the power constraints. At the desiimatinstead
of finding an integer combination of lattice points (or megs), we
recover a non-integer linear combination of lattice poifinally, we
apply our proposed scheme to the Gaussian Two-Way Relaynéhan
(GTWRC) to improve the best rate-region for this open probkso
far. Let us consider a standard model of a Gaussian MAC with tw
users:

OUR PROPOSEDSCHEME

Y=X1+X2+2Z, 2

where Z denotes the AWGN process with zero mean and varidvice
Each channel inpulX; is subject to an average power constraitt
ie, 1E| X < P.

In the following, by applying a lattice-based coding schenve
obtain a new achievable rate-region to estimate a lineabgwation



of messages for the Gaussian MAC. For this purpose, suppdke

2
that there exist two Iattices;\1 and A2, which are Rogers-good _ (ol (V)™ > 1 4)
(ie. lim G (AW) = L for i = 1,2), and Poltyrev-good with 2meVar(Zig) =
the foIIowmg second moments where Z}; ~ N (0,Var(Z.s)). Since A. is Poltyrev-good, the
o2 (A) = P condition of [4) is satisfied. For calculating rala, we have:
) ] o ] Vol (V1)
Also, there is a lattice\. which is Poltyrev-good with\; C a1 A2 C R = o log W )
A. (a1 is a coefficient smaller than one).
- Ly o?(A1)
Encoding To transmit both messages, we first construct the follow- 2 & G(A1) ( Vol (vc))%
ing codebooks: 1 P
A < 3% (o mreEE) ©®)
Ci = {AcnVi}, C2={—nNlap.
a < 1o < SNR ) (6)
= 28 (1 — 1) SNR + a2

At each encoder, the message%latQ  onki } is arbitrarily mapped
ontoC; (i = 1,2). Then, node choosesV € C; associated with the Where [($) follows from[(#), and{6) is based on Rogers gocsiinds

messagdV; and sends A1. Now, for rate Rz, we have:
X, =[Vi:— D] modA,, Ry = Liog (i VOI0%) V2
n V0|

where D; and D, are wo independent ditherthat are uniformly 1 alt Vol Vg 1, Vol (V1)
distributed over Voronoi region¥: and V., respectively. Dithers are ~n lo ( Vol (V1) ) + Z ( Vol (Vc)>
known at the encoders and the decod®ure to the Crypto-lemmaTl8s], 1 (A1)a?o? (As)
X, is uniformly distributed ovel; and independent & ;. Thus, the = glog ( Glha)oZ (A1) ) + R: (1)
average transmit power of nodequals toP, and the power constraint 1
is met. = Ri+-= log (a?)

Decoding At the decoder, based on the channel output that is given < sl ( aiSNR ) 8)

Ing ) utpu is givi s 5 g (a1—1)2SNR+a§ ,

by (@), we estimate
where [[T) follows from the fact that lattice’s; and A» are Rogers-

[Vi+a1Va —ai1Qa, (V2 — D2)] modA;. good. Thus, to estimat@; correctly, from [6) and[{8), we get the
To do this, the decoder performs the following operations: rate-regionR, (1), where
Y, = [041Y+D1 +Oé1D2] mod A, Ra (al) = {(R17R2) o %1 g((all)%%)

<
= 1] a2SNR
[1 X1+ a1 X2+ a1 Z + Dy + a1 D] mod A, <1l (<a1 SELI. )} ©
= [VitaVet+ar X1 —(Vi—- D)
—a19n, (V2 — D2) + a1 Z] mod Ay

= Vit aiVa—a1Qa, (Vo — D)) mod A Theorem 1. For the Gaussian MAC shown in Figl 1, if any rate pair

+(ar = 1) X1 + a1 Z] mod Ay ®3) (R1, R2) satisfies the rate constraints given [d (9), then, theretexis
= [T1+ Z.s] modAy, sequences of nested latticas C ﬁ—f C A. such that the following
linear combination can be recovered:

Thus, we have proved the following Theorem which is one of the
main contributions of this paper.

where [3) follows from the distributive law of the modulo ogton.

The effective noise is given by [Vi4+aiVa—a19a, (V2 — D3)] modAy,
Zeg = [(Oél — 1)X1 + ogZ] mod Al, where0 <a; <1
and the sequence to be estimated is given by Now, by exchanging the role of two encoders in the preceding
theorem and by following the above-mentioned steps, we baw s

T, = [Vl + a1V —aq QA2 (Vz — DQ)] mod A;. that if

(X2
Ra(oz)= {(Ri,Re): Ri< dlog (bt )

Due to the dithers, the vecto®;, X; are independent, and also
independent oZ. Therefore Z .« is independent o¥'; andV,. The
decoder attempts to recov@l, from Y, instead of recovering/ 1 Ry < %bg (ww) }7
and V', individually. The method of decoding is minimum Euclidean 2

. . . S ) 0<a <1 (10)
distance lattice decodin@l[3].[119], which finds the clogesint toY 4
in A.. Thus, the estimate dI'; is given by then, we can correctly recover the following linear combimmaat the

destination:
T, =09a,. (Ya),

=[V2+ V- Vi1 — D;)] modAs.
and the probability of decoding error is given by Va+aaVi—a2Qa (V2 V)] :

. In Fig.[2, we compare the achievable rate-regions for esitigahese
Pe = Pr{Tl # Tl} = Pr{Zea ¢ Ve}. two linear combinations with the outer bound.

As itis shown in[[3] and[19], the error probability vanishes: — co Remarkl. Note that by replacingy; and az with ay,qn = ﬁg—l\%



try to eliminate X, at the effective noise. This helps us to achieve

1.4 )
full capacity for one user but due to the chosen codebookdat t
1ol __.—-"'/ ", | transmitter side, we cannot achieve the full rate for thesiotiser.
- \_-_--—\!\'- --------------------- e
L=t B oy ;
e 4:/, | IV. THE GAUSSIAN TwWO-WAY RELAY CHANNEL
. A o] ly th d scheme in thi to the Gaussi
r ne can apply the proposed scheme in this paper to the Gaussia
0.8+ ' 'i 8 Two-Way Relay Channel (GTWRC) to improve the best rate regio
N . Achievable Rate-Region (T,) :'f this channel, provided i [11]. The following Theorem pides this
0.6+ = = =Achievable Rate-Region (Tz) 1} h rate-region.
= Quter Bound \,\': . .
0.4k S i Theorem 2. For the Gaussian two-way relay channel, if both trans-
S mittgrs transmit at equal powers, then the following raggion is
02¢ S ' 8 achievable:
j' :
% 02 04 06 08 1 12 14 R = cl conv U Ri(en) | U U Ra(az) | ¢, (12)
R, a1€[0,1] az€[0,1]

Figure 2. The achievable rate-region in order to estimfateandT'. As we whereR, (1) and R, (a2) are defined in[{6) and (10), reSpeCtlve.ly'
observe, the proposed scheme can reach to the outer bourht p and ~ AlSO, C! and conv are the closure and the convex hull opematio
B. The signal-to-noise ratio is fixed &N R = 5. respectively.

Proof: For this purpose, nodeconstructs the following sequence

and sends it over the channel:
in the rate-regionsk+ (1) and R (a2), given in [9) and[(10), we

can see that the following points are achievable: X;=[Vi:— D;] modA, 1=1,2
A = (l log (1 + SNR) 1, . ( SNR® )) Then, by our proposed scheme, we can estimate the linearicamb
2 1+ SNR tion, T'y or T'2, at the relay node. In the following, without loss of
9 . . .
B - (% log (13_NSP;R) ,%log(l n SNR)) . generality, assume that we estim&fte, given as
e T, = [V1 + a1 Vay — a1QA2 (V2 — Dz)] mod A;.
On the other hand, achieving the sum of codewords over thesgau . .
MAC can be upper bounded by the following rate region: Now, the relay node, using random coding sefftysto both nodes as
1 1 it is explained in[[11]. At node 1, we know ;. Thus, we estimate
R < 3 log (1+SNR), Rs < 3 log (1 + SNR) . V5 as the following:
Thus, by comparing this outer bound with our achievable reggon, vV, = 1 [T, — v1] modAs
we observe that it always coincides with the outer bound farhe all
linear combination. = —[a1Va2—a19r, (V2 — D3)] modAs
a1
Achieving linear combination of codewords at the GaussiakCM _ 1 01 V2] mod As = V
has many applications in network information theory, see |2], [1], T R T
[12]. In all these papers, achieviily’ + V2] mod A, is studied and - similarly, node 2 with knowingV'», estimates message of node 1.
it is shown that the following rate region is achievable: Thus, we can achieve the rate-regi@n (o) for the GTWRC. On the
1 1 other hand, by findind@’, at the relay node, we can see that the rate-
Ri = glog (5 + SNR) , (6=1,2). 11 regionR» (a2) is also achievable. Finally, using time-sharing between
these two rate-regions, we get the entire achievable egfiem R in

By comparing the achievable rate region of the computefansard
scheme, given in[{11), with the outer bound, it is clear thw t
compute-and-forward scheme is not able to coincide withcahier
bound even partially whereas our achievable rate-regiorsttmating
T or Ty is partially tight.

2. u

As a numerical example, in Fidsl 3 and 4, we compare the achiev
able rate-region of our proposed scheme with that of the coeaand-
forward scheme. For comparison, an outer bound is also gedviAs
we observe, our proposed scheme can achieve the outer bodnd a
Remark2. Here, we compare our proposed scheme for the Ice-Wigys capacity region is partially known. By increasing SN gap
problem with the proposed schemeslin [1], [2.][12]. In thpapers, petween our proposed scheme with the outer bound is redincttse
using the fact that each integer linear combination ofdatfoints is Figures, we also depict the convex hull of our achievable-ragion
another lattice point, the given rate-region [nl(11) is késaed. As and the achievable rate-region by the compute-and-fonsargme.
we see, there is a loss (%f bit compared with the outer bound. But,Tg the best of our knowledge, this rate region is the bestneg®n

where is the source of this loss? for the Gaussian TWRC so far.
To achieveV; + V5] mod A, we are forced to have the following
effective noise: V. CONCLUSION

In this paper, we studied the Ice-Wine problem and usingedest
lattice codes, we obtained a new achievable rate-regiothfsmprob-
We see that both termX ; and X » are presented in the effective noiselem. In contrast with the previous obtained achievable raggons,
This yields the loss 0% bit. However, in our proposed scheme, wehe achievable rate-region achieves the outer bound [hafiia each

Zeg = [(a— 1) (X1 + X2) + aZ] modA.
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Figure 4. Achievable rate-regions and rate-region outenddor SNR = 6.

user. As we observed, our proposed scheme achieves sonse rate
which are not achievable by all known schemes to date. Finading
applying our proposed scheme to the GTWRC, we showed that the
best achievable rate-region for this open problem can beaweg
significantly.
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