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Abstract—In this paper, we prove a MacWilliams identity for
the weight adjacency matrices based on the constraint codes of a
convolutional code (CC) and its dual. Our result improves upon a
recent result by Gluesing-Luerssen and Schneider, where the re-
quirement of a minimal encoder is assumed. We can also establish
the MacWilliams identity for the input-parity weight adjacency
matrices of a systematic CC and its dual. Most importantly, we
show that a type of Hamming weight enumeration functions of
all codewords of a CC can be derived from the weight adjacency
matrix, which thus provides a connection between these two very
different notions of weight enumeration functions in the convo-
lutional code literature. Finally, the relations between various
enumeration functions of a CC and its dual are summarized in
a diagram. This explains why no MacWilliams identity exists for
the free-distance enumerators.

I. INTRODUCTION

The free-distance enumerator of a convolutional code (CC)
that counts the weight distribution of fundamental paths in the
full trellis diagram has been shown to have no MacWilliams
identity [1] by Shearer and McEliece in 1977 [2]. On the
contrary, a recent result by Gluesing-Luerssen and Schneider
proved a MacWilliams identity for the enumeration matrices,
the weight adjacency matrices (WAMs), of a CC and its dual
[3]. A fundamental question thus arises: What information
in a WAM is missing in the corresponding free-distance
enumerator? Moreover, is there any relationship between the
two very different notions of weight enumeration functions?

In this paper, we provide positive answers to the above
questions. We adopt the concept of constraint codes of a CC
introduced by Forney in his normal factor graph duality theo-
rem [4]. We further define the dual of a CC from the constraint
codes. Within this framework, we obtain a straightforward
proof of the MacWilliams identity for the WAMs based on the
constraint codes of a CC and its dual. Using constraint codes
allows us to generalize the result obtained in Ref. [3] because
different generator matrices (or encoders) of a constraint code
generate the same code space of the constraint code. Thus
the MacWilliams identity for CCs derived from the constraint
codes is unique. In other words, the encoders need not be
minimal in our proof.

We next define a Hamming weight enumeration of all
codewords of a CC, WC(y,D), in equation (11). While no
MacWilliams identity exists for this weight enumeration, we
can establish relations between WC(y,D) and WC⊥(y,D)

through the WAMs of a CC and its dual. We also show
that this weight enumeration function is related to the free-
distance enumerator of the CC. Finally, we illustrate the
complete relations of various weight enumeration functions in
a diagram, which summarizes the MacWilliams theorem for
CCs.

II. PRELIMINARY

Definition 1. Let C be an (n, k,m) convolutional code over Fq

with a polynomial generator matrix G(D) ∈ Mk×n (Fq[D])
for some indeterminate D. Then C is a rank-k submodule of
M = (Fq[D])

n given by

C =
{
G>(D)m(D) : m(D) ∈ (Fq[D])

k
}
.

The dual code C⊥ of C is defined as

C⊥ :=
{
u(D) ∈M : u(D−1)>c(D) = 0, for all c(D) ∈ C

}
.

The constraint code C(j) for C is a [2m+n,m+k] linear block
code over Fq , consisting of images of the map (wj , `j) 7→
(wj , pj , wj+1), where wj ∈ Fm

q represents the state, `j ∈ Fk
q

is the input message vector, and p
j
∈ Fn

q is the output code

vector, all at time instant j. The constraint code Ĉ(j) for C⊥
is a [2m+ n,m+ n− k] linear code over Fq given by

Ĉ(j) =
{[
u>j v> u>j+1

]> ∈ F2m+n
q :

u>j wj + v>p
j
− u>j+1wj+1 = 0,

for all
[
w>j p>

j
w>j+1

]>
∈ C(j)

}
. (1)

Furthermore, the above defines the dual code C⊥(j) for C(j) in
the usual sense as

C⊥(j) =
{[
u>j v> − u>j+1

]>
:
[
u>j v> u>j+1

]> ∈ Ĉ(j)} .
Let V be a vector space over Fq and assume char(Fq) = p.

The group character χu ∈ Hom(V, U(1)) for some u ∈ V is
a group homomorphism from V to U(1), the unitary group in
C. Below we will focus on a specific kind of group character
χu : v 7→ ζ tr(u>v), where tr : Fq → Fp is the usual trace linear
map for fields, and ζ is a primitive p-th root of unity in C.



III. WEIGHT ENUMERATION OF THE CONSTRAINT CODE

Let V = F2m+n
q and f be any function defined on V . The

classical MacWilliams identity is simply∑
v∈C⊥

(j)

f (v) =
1∣∣C(j)∣∣

∑
u∈C(j)

F (u) , (2)

where F is the Fourier transform of f over V with respect to
kernel χu(v).

A. Enumerate in Multivariate Polynomial

For any (v1, v2, v3) ∈ Fm
q ×Fn

q×Fm
q
∼= V , in this subsection

we consider the following weight function

f (v1, v2, v3) =

 m∏
i=1

q∏
j=1

x
wtj(v1,i)
i,j

 ywt(v2)

 m∏
i=1

q∏
j=1

z
wtj(v3,i)
i,j


for some indeterminates xi,j , y, and zi,j , where v1, v3 ∈ Fm

q ,
v2 ∈ Fn

q , and wt : Fn
q → Z+ is the usual Hamming weight

metric. Say Fq = {ω1, . . . , ωq}, wtj is an indicator function
given by wtj(a) := 1(a = ωj).

The weight enumerator for C(j) based on weight function f
is

WC(j)
(x1,1, . . . , xm,q, y, z1,1, . . . , zm,q)

=
∑

[
w>j p>

j
w>j+1

]>
∈C(j)

f
(
wj , pj , wj+1

)
. (3)

The Fourier transform of f over V with respect to kernel χu(v)
with u = (u1, u2, u3) is given in (4).

Thus we obtain the following theorem.

Theorem 2. The weight enumerators for C⊥(j) and Ĉ(j) are
given by

WC⊥
(j)

(x1,1, . . . , xm,q, y, z1,1, . . . , zm,q)

=
(1 + (q − 1)y)n

qm+k
WC(j)

(x1,1, . . . , xm,q, y, z1,1, . . . , zm,q) ,

where

xi,` =

q∑
j=1

ζ−tr(ω`ωj)xi,j ,

y =
1− y

1 + (q − 1)y
,

zi,` =

q∑
j=1

ζ−tr(ω`ωj)zi,j ;

and

WĈ(j)
(x1,1, . . . , xm,q, y, z1,1, . . . , zm,q)

=
(1 + (q − 1)y)n

qm+k
WC(j)

(x1,1, . . . , xm,q, y, ẑ1,1, . . . , ẑm,q) ,

where ẑi,` =
∑q

j=1 ζ
+tr(ω`ωj)zi,j .

If C(j) is systematic, the above result can be extended to the

input-parity weight enumerator by further splitting the weights
for p

j
(or equivalently v2) as a two-split in yI and yP for

inputs and parities as in [5], [6]. In other words, say v2 =[
v>2,I v

>
2,P

]>
and redefine the weight function as

fIP
(
v1, v2,I , v2,P , v3

)
=

 m∏
i=1

q∏
j=1

x
wtj(v1,i)
i,j

 ywt(v2,I)
I y

wt(v2,P )
P

 m∏
i=1

q∏
j=1

z
wtj(v3,i)
i,j

 .
Then the following corollary is immediate.

Corollary 3. The input-parity weight enumerator for Ĉ(j) is

WĈ(j)
(x1,1, . . . , xm,q, yI , yP , z1,1, . . . , zm,q)

= K ×WC(j)
(x1,1, . . . , xm,q, yI , yP , z1,1, . . . , zm,q) ,

where yI = 1−yI

1+(q−1)yI
, yP = 1−yP

1+(q−1)yP
, and

K =
(1 + (q − 1)yI)k(1 + (q − 1)yP )n−k

qm+k
. (5)

B. Enumerate in Matrix: Weight Adjacency Matrix

We may also enumerate the codewords in C(j) in a matrix
form. To this end, we index the entries of a matrix A ∈
Mqm(Z[y]) by (v1, v3) ∈ Fm

q × Fm
q . Let ev ∈ {0, 1}q

m

be a

length-qm vector in Rqm such that
(
ev

)
i

= 1 if the index i

is associated with vector v ∈ Fm
q , and

(
ev

)
i

= 0, otherwise.
With the above, for any (v1, v2, v3) ∈ Fm

q × Fn
q × Fm

q , we
consider the following weight function

fmat (v1, v2, v3) = ywt(v2)ev1
e>v3

. (6)

Definition 4. The weight adjacency matrix for C(j) is the
weight enumerator for C(j) based on weight function fmat, i.e.,

ΛC(j)
(y) =

∑
[
w>j p>

j
w>j+1

]>
∈C(j)

fmat

(
wj , pj , wj+1

)
. (7)

The Fourier transform of fmat over V with respect to kernel
χu(v) is given by

Fmat(u1, u2, u3)

=
∑

(v1,v2,v3)∈V

ywt(v2)ev1
e>v3

ζ−
∑3

i=1 tr(u>i vi)

=

 ∑
v1∈Fm

q

ζ−tr(u>1 v1)ev1

 ∑
v2∈Fn

q

ywt(v2)ζ−tr(u>2 v2)


 ∑

v3∈Fm
q

ζ−tr(u>3 v3)e>v3

 . (8)

In particular, let Fqm be the standard qm-point FFT matrix
given by

Fqm :=
∑
u∈Fm

q

∑
v∈Fm

q

ζ−tr(u>v)eve
>
u ;



F (u1, u2, u3) (4)

=
∑

(v1,v2,v3)∈V

f (v1, v2, v3)
[
χu(v)

]∗

=
∑

(v1,v2,v3)∈V

 m∏
i=1

q∏
j=1

x
wtj(v1)
i,j

 ywt(v2)

 m∏
i=1

q∏
j=1

z
wtj(v3)
i,j

 ζ−∑3
i=1 tr(u>i vi)

=

 m∏
i=1

 q∑
j=1

ζ−tr(u1,iωj)xi,j

 (1 + (q − 1)y)n−wt(u2)(1− y)wt(u2)

 m∏
i=1

 q∑
j=1

ζ−tr(u3,iωj)zi,j


=

 m∏
i=1

q∏
`=1

 q∑
j=1

ζ−tr(ω`ωj)xi,j

wt`(u1,i)
 (1 + (q − 1)y)n−wt(u2)(1− y)wt(u2)

 m∏
i=1

q∏
`=1

 q∑
j=1

ζ−tr(ω`ωj)zi,j

wt`(u3,i)
 .

then (8) can be rewritten as

Fmat(u1, u2, u3)

= (1 + (q − 1)y)n−wt(u2)(1− y)wt(u2)Fqmeu1
e>u3

F>qm .

Substituting the above into (2) yields the following result.

Theorem 5. The weight adjacency matrices for C⊥(j) and Ĉ(j)
are given respectively by

ΛC⊥
(j)

(y) =
(1 + (q − 1)y)n

qm+k
FqmΛC(j)

(y)F>qm

ΛĈ(j)
(y) =

(1 + (q − 1)y)n

qm+k
FqmΛC(j)

(y)F†qm

where y = 1−y
1+(q−1)y .

Same as before, when C(j) is systematic, we can split the
weights of v2 to formulate the following weight function

fmat,IP
(
v1, v2,I , v2,P , v3

)
= y

wt(v2,I)
I y

wt(v2,P )
P ev1

e>v3
. (9)

This leads to the following duality for input-parity weight
enumerators.

Corollary 6.

ΛC⊥
(j)

(yI , yP ) = KFqmΛC(j)
(yI , yP )F>qm ,

ΛĈ(j)
(yI , yP ) = KFqmΛC(j)

(yI , yP )F†qm .

where yI = 1−yI

1+(q−1)yI
, yP = 1−yP

1+(q−1)yP
and K is given in

(5).

IV. WEIGHT ENUMERATION FOR CONVOLUTIONAL CODE
C

Let C be an (n, k,m) convolutional code over field Fq .
Recall that every codeword c ∈ C is of the following form

c =

d∑
i=0

ciD
i

for some 0 ≤ d < ∞, with ci ∈ Fn
q and cd 6= 0. We will

say that the degree of c is d, denoted by deg(c) = d. The
Hamming weight of c ∈ C is given by a linear extension of
the usual Hamming weight function to module M, i.e.

wt (c) =

deg(c)∑
i=0

wt (ci).

Similarly, the weight function of codewords c ∈ C is given by
the following in indeterminates y and D

fD(c) := ywt(c)Ddeg(c). (10)

Thus, the weight enumeration of all codewords c ∈ C is

WC(y,D) =
∑
c∈C

fD(c). (11)

The following lemma is almost trivial from the definition of
constraint code C(j) as well as the states wj .

Lemma 7.

WC(y,D) = e>0
(
I− ΛC(j)

(y)D
)−1

e0. (12)

Proof. Note that any codeword c ∈ C with deg(c) = d must
satisfy states w0 = 0 and wj = 0 for all j ≥ d+ 1. Hence

∑
c∈C

deg(c)≤d

fD(c) =

d∑
i=0

e>0
(
ΛC(j)

(y)
)i
Die0.

Take d→∞ and the result follows.

Applying Theorem 5 to the above lemma gives the following
corollary.

Corollary 8.

WC⊥(y,D)

=
1

qm
1>
[
I− (1 + (q − 1)y)n

qk
ΛC(j)

(y)D

]−1
1

where 1 denotes the all-one vector of length qm, and y =



1−y
1+(q−1)y .

Proof. It follows from definition of WC⊥(y,D) and Theorem
5 that

WC⊥(y,D)

= e>0

(
I− ΛĈ(j)

(y)D
)−1

e0

= e>0

[
I− (1 + (q − 1)y)n

qm+k
FqmΛC(j)

(y)F†qmD

]−1
e0

=
1

qm
e>0 Fqm

[
I− (1 + (q − 1)y)n

qk
ΛC(j)

(y)D

]−1
F†qme0.

While Corollary 8 does not show the duality between
WC(y,D) and WC⊥(y,D), we may reconsider enumerating
walks on the full trellis diagram1 of C in a matrix, i.e.,

ΛC(y,D) :=
(
I− ΛC(j)

(y)D
)−1

=
∑
d≥0

(
ΛC(j)

(y)
)d
Dd

whose (w,w′)th entry of matrix
(
ΛC(j)

(y)
)d

is the enumera-
tion of the Hamming weights of length-d walks that begin at
state w at time 0 and end at state w′ at time d on the full trellis
diagram of C. Clearly, we have WC(y,D) = e>0 ΛC(y,D)e0.
It then follows from the proof of Corollary 8 that

ΛC⊥(y,D) =
1

qm
FqmΛC

(
y,

(1 + (q − 1)y)n

qk
D

)
F†qm

and WC⊥(y,D) = e>0 ΛC⊥(y,D)e0.
Let C be a systematic convolutional code. For any codeword

c ∈ C, let the weight function of c be

fD,IP(c) = y
∑deg(c)

i=0 wt(ci,I)
I y

∑deg(c)
i=0 wt(ci,P )

P Ddeg(c)

where ci =
[
c>i,I c

>
i,P

]>
defined as before, and let

WC(yI , yP , D) (resp. ΛC(yI , yP , D) ) be the input-parity
weight enumerator (resp. input-parity weight adjacency ma-
trix) for codewords of C (resp. walks on the full trellis diagram
of C) defined with respect to the above weight function. Let C⊥
be the dual code of C. Finally, we state the duality result for
input-parity weight enumerator for a systematic convolutional
code C in the following theorem.

Theorem 9.

ΛC⊥(yI , yP , D) =
1

qm
FqmΛC (yI , yP ,K

′D)F†qm , (13)

where

K ′ =
(1 + (q − 1)yI)k(1 + (q − 1)yP )n−k

qk
.

Furthermore,

WC(yI , yP , D) = e>0 ΛC(yI , yP , D)e0

WC⊥(yI , yP , D) = e>0 ΛC⊥(yI , yP , D)e0.

1By the full trellis diagram of C we mean the trellis diagram of C with
arbitrary beginning and ending states.

V. SOME REMARKS ON THE FREE-DISTANCE
ENUMERATOR

Definition 10. Let C be an (n, k,m) convolutional code. The
set Cfree consists of codewords c whose state begins at w0 = 0
and merges back into 0 at some smallest time instant d. More
precisely,

Cfree =

∑
d≥0

d∑
j=0

p
j
Dj :

[
w>j p>

j
w>j+1

]>
∈ C(j), j = 0, . . . , d,

w0 = wd+1 = 0, wj 6= 0 for j = 1, . . . , d

}
. (14)

Clearly, as an Fq[D]-module, the code C is generated by Cfree
over Fq[D]. But it should be noted that Cfree is not necessarily
linear independent over Fq[D] nor a submodule of M.

Following the notation in the previous section, we can define
the free-distance enumerator that enumerates the codewords in
Cfree as

WCfree(y,D) =
∑

c∈Cfree

fD(c). (15)

It should be noted that the above enumerator differs from the
conventional transfer function for convolutional codes in the
sense that the zero element 0 ∈M is excluded in the latter.

The weight enumerator WCfree(y,D) can be easily deter-
mined by the weight adjacency matrix of the constraint code
C(j).

Proposition 11. Let ΛC(j)
(y) be the qm×qm weight adjacency

matrix for the constraint code C(j). Then

WCfree(y,D) = e>0

[
I−

(
ΛC(j)

(y)− e0e>0
)
D
]−1

e0. (16)

Proof. Straightforward.

Remark: The conventional transfer function of convolu-
tional codes is given by WCfree(y,D)−fD(0) = WCfree(y,D)−
1. Secondly, the minimal free-distance dfree of C can be
obtained by a power-series expansion of WCfree(y,D) in y,
that is,

WCfree(y,D) = 1 +
∑

i≥dfree

λi y
i

for some rational function λi ∈ Fq(D) with λdfree 6= 0.
Note that the weight enumerator for codewords c ∈ C is

given by WC(y,D) = e>0
(
I− ΛC(j)

(y)D
)−1

e0. Also, by
rewriting (16) as

WCfree(y,D) = e>0

[(
I− ΛC(j)

(y)D
)

+ e0e
>
0 D
]−1

e0

and applying the Woodbury identity to the middle matrix, we
can relate WCfree(y,D) to WC(y,D) as shown in the following
corollary.



Corollary 12.

WCfree(y,D) =
WC(y,D)

1 +WC(y,D)D

WC(y,D) =
WCfree(y,D)

1−WCfree(y,D)D

Proof. By Woodbury identity for matrix inverse we have[(
I− ΛC(j)

(y)D
)

+ e0e
>
0 D
]−1

=
(
I− ΛC(j)

(y)D
)−1 − D

1 + e>0
(
I− ΛC(j)

(y)D
)−1

e0D

×
(
I− ΛC(j)

(y)D
)−1

e0e
>
0

(
I− ΛC(j)

(y)D
)−1

,

which in turn gives

WCfree(y,D) = WC(y,D)− (WC(y,D))
2
D

1 +WC(y,D)D

=
WC(y,D)

1 +WC(y,D)D
.

The second expression is then immediate.

Remark: A much simpler way to prove Corollary 12 is to
show the second expression directly. Note that C is generated
by Cfree over Fq[D], hence the result follows from the standard
argument in enumerative combinatorics.

Let C⊥free be the set consisting of the zero-path diverging
codewords in C⊥ and let WC⊥free

(y,D) =
∑

c∈C⊥free
fD(c) be

the corresponding weight enumerator. Then by Corollary 12
we get

WC⊥free
(y,D) =

WC⊥(y,D)

1 +WC⊥(y,D)D
.

One implication of the above is the following. There is a
one-one correspondence, i.e. a duality, between ΛC(y,D)
and ΛC⊥(y,D) but not for WC(y,D) and W⊥C (y,D) since
WC(y,D) corresponds only to the entry of ΛC(y,D) associ-
ated with (0, 0) as shown in Lemma 7. Thus, there is no one-
one correspondence between WCfree(y,D) and WC⊥free

(y,D) as
observed by Shearer and McEliece more than 40 years ago.
On the other hand, let

ΛCfree(y,D) =
[(
I− ΛC(j)

(y)D
)

+ e0e
>
0 D
]−1

(17)

and

ΛC⊥free
(y,D) =

[(
I− ΛC⊥

(j)
(y)D

)
+ e0e

>
0 D
]−1

(18)

denote the enumerations of length-d walks from state w to w′

without immediate loops at state 0 in the full trellis diagrams
of C and C⊥, respectively. Clearly,

WCfree(y,D) = e>0 ΛCfree(y,D)e0

WC⊥free
(y,D) = e>0 ΛC⊥free

(y,D)e0.

Most importantly, there is indeed a one-one correspondence
between ΛCfree(y,D) and ΛC⊥free

(y,D) implied by (IV). We
summarize the above in the Figure 1. Potentially, we can
also obtaining an explicit formula connecting ΛCfree(y,D) and

ΛCfree
(y,D) //

..

ΛC(y,D)oo

��

// ΛC⊥ (y,D)oo

��

// Λ
C⊥free

(y,D)oo

pp

WC(y,D)

��

WC⊥ (y,D)

��
WCfree

(y,D)

OO

W
C⊥free

(y,D)

OO

Fig. 1. Relations diagram of various weight enumerations. A relation A → B
means that B can be derived given A.

ΛC⊥free
(y,D), however, it of less significance in combinatorial

mathematics.

VI. DISCUSSION AND CONCLUSION

The main achievement in this paper is the relationship
between various notions of weight functions studied in the
classical convolutional code literature, summarized in Fig. 1.
As opposed to the classical coding theory, there is a growing
interest in investigating these fundamental questions in quan-
tum coding theory [7], [8]. Indeed, the MacWilliams identities
have recently been established for quantum error-correcting
codes [9], [10] and quantum convolutional codes [11].

The next question to ask from here is whether the
MacWilliams identity can be established for turbo codes, and
if so, is there any benefit?

A complete version of this work is available in Ref. [12].
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