g THE UNIVERSITY
OF AUCKLAND

ResearchSpace@Auckland

Version
This is the Accepted Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Speidel, U. M., Gulliver, A., Makhdoumi, A., & Médard, M. (2014). Using T-Codes
as Locally Decodable Source Codes. In U. Mitra, & E. Viterbo (Eds.), 2014 IEEE
Information Theory Workshop (pp. 218-222). Hobart, Australia.
doi:10.1109/1TW.2014.6970824

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved, unless
otherwise indicated. Previously published items are made available in accordance
with the copyright policy of the publisher.

© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

http://www.ieee.org/publications standards/publications/rights/rights policies.ht
ml

https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1109/ITW.2014.6970824
http://www.ieee.org/publications_standards/publications/rights/rights_policies.html
http://www.ieee.org/publications_standards/publications/rights/rights_policies.html
https://researchspace.auckland.ac.nz/docs/uoa-docs/rights.htm
https://researchspace.auckland.ac.nz/

Using T-Codes as Locally Decodable Source Codes

Ulrich Speidel
Dept. of Computer Science
The University of Auckland
Email: ulrich@cs.auckland.ac.nz

Abstract—A locally decodable source code (LDSC) allows the
recovery of arbitrary parts of an unencoded message from its
encoded version, using only a part of the encoded message as
input, a challenge that arises when searching within compressed
data sets. Simple source codes such as Huffman codes or Lempel-
Ziv compression are not well suited to this task: A decoder
starting at an arbitrary point within the compressed sequence
generally cannot determine its position with respect to the
boundaries between encoded symbols, or requires information
found before the starting point in order to be able to decode. In
this paper, we propose the use of subsets of self-synchronising
variable-length T-codes as source codes and show that local
decoding is feasible and practical using subsets of T-codes with
bounded synchronisation delay (BSD).

I. INTRODUCTION

In source coding, one tries to compress data from a given
source S, i.e., to express it with the lowest possible number
of symbols from an alphabet A. Source codes are said to be
locally decodable if they let a decoder recover source symbols
encoded after an arbitrary position inside such a compressed
message, without requiring decoding from the start. However,
most source codes are not well suited to local decoding, e.g.,
because they rely on a dictionary conveyed before the local
starting position, or because codeword boundaries cannot be
determined locally.

Several authors [2], [3] have investigated causal source
codes, which allow decoding of each source symbol from
the compressed message without looking at subsequent code-
words. The counterpart of LDSCs in channel coding are update
efficient codes [4], where changing a source symbol requires
only a small number of symbols in the compressed message
to be updated.

The problem of efficiently reproducing symbols from a
compressed representation of a source has also been studied in
the data structure literature. For example, Bloom filters [5] are
data structures for storing a set in a compressed form that allow
membership queries to be answered in bounded time. The
dictionary problem [6] and succinct data representation [7], [8]
in the field of succinct data structures are further examples of
problems involving both compression and the ability to recover
a single symbol of the input message efficiently.

There are two main approaches to source coding: fixed-
length source coding and variable-length source coding. Ref-
erence [1] introduces fixed-length LDSCs. Our paper proposes
variable-length LDSCs in the form of subsets of Titchener’s
T-codes [11], [13] with BSD: We show that they can achieve

T. Aaron Gulliver
Dept. of Electrical and Computer Engineering
The University of Victoria
Email: agullive@ece.uvic.ca

Ali Makhdoumi, Muriel Médard
EECS
Massachusetts Institute of Technology
Email: {makhdoum, medard} @mit.edu

compression for a variety of sources and provide a new bound
on the expected synchronisation delay, and a modification to
the matching algorithm described in [18], [19] to find suitable
T-codes for local decoding.

In the case of variable-length source codes such as Huffman
codes [9], the compressed message consists of a sequence of
variable-length codewords which are in turn finite sequences
with symbols from A. The main challenge in local decoding of
such codes is to find a demonstrably valid codeword boundary
after the starting position inside the compressed sequence.
This requires the decoder to synchronise with the source
code. However, variable length codes are not necessarily
universally synchronisable, and this is generally also the case
for Huffman codes. Similarly, synchronisable codes are not
necessarily of interest in source coding: Comma-free codes
provide no compression potential, for example, and statisti-
cally synchronisable codes with unbounded synchronisation
delay cannot guarantee true local decodability. The latter also
applies to T-codes, which cannot synchronise in some semi-
infinite periodic sequences. However, these sequences consist
of repeating periodic codewords and do not occur if one
encodes with non-periodic T-code codewords only (see [10]
and Section IV below). This limits the synchronisation delay
while retaining most of the potential for compression.

In this paper, A denotes the empty sequence, S denotes
the set of source symbols and C' the set of encoded symbols
(codewords) over some alphabet A such that C C AT, where
At = {(a1,0a2,...,a4)lg € Nt a; € A1 < i < g}, and
A* = AT U {A\}. A variable length code (VLC) consists
of an encoder and a decoder implementing the mappings
f:8 — Cand g : CT — ST, respectively, where
Ct = {(z1,22,...,2m)lm € NT 2; € C,;1 <i < m} and
ST = {(wy,wa,...,w,)|p € Nt w; € S,1 < i < u}. For
example, a binary Huffman code encoding English letters A
to Z into binary codewords might use S = {4, B,C, ..., Z},
A = {0,1} and, for the appropriate probabilites of symbols in
S, we might obtain C' = {00,0100,...,1111}. Note further
that as C C AT, we also have CT C A™.

The next section gives a formal definition of variable-
length LDSCs, reviews T-codes and discusses the principles
of source coding with T-codes, followed in Section III by a
brief review of the basic matching algorithm that finds a T-
code for a given source probability distribution. We then move
to the decoding side in Section IV. It discusses how a T-code
decoder can synchronise in the compressed message, gives a

simple expected synchronisation delay (ESD), and discusses
how removing periodic codewords from the T-code results in
BSD codes with guaranteed local decodability. This codeword
removal necessitates changes to the basic matching algorithm,
which we propose in Section V, followed by examples in
Section VI and then our conclusion.

II. BACKGROUND
A. Locally decodable variable length source codes

Consider a sequence v = wjws ... w, with u codewords
w; from a VLC C over A. As C is a code over A, we may
also read = as a sequence over A, i.e., as T = T1To... Ty
with z; € A. Let the suffix xzyxyy1...2, of x with
Tty Tirg1,---,Tm € A be the input to a decoder g for C.
If there exists a d > 0 such that the decoder can identify
Ti'4+dTi'+d+1 - - - Ty, Unambigously as the concatenation of the
last j' codewords Wy—j' 1 Wy—j/ 42 - .. W, in , then g is said
to have synchronised before the i’ + d-th symbol. If i’ + d
is the smallest possible value for a given 4/, then d is the
synchronisation delay experienced by g.

If a finite d exists for any given finite 4" and arbitrary w; as
u — oo, C is said to be self-synchronising. If a finite bound
on d exists for a given C, then C' is said to be a bounded
synchronisation delay (BSD) code. If d is unbounded but finite
with probability 1 in a semi-infinite random sequence x;, then
C is said to be statistically self-synchronising.

A VLC with BSD is locally decodable as it can decode part
of a sequence from C after starting at an arbitrary position
1 inside the sequence. Note that zoxy ...z _1 must be in A*
but does not need to be in C'T, i.e., the start position does
not have to coincide with the start of a codeword from C.
Note that we regard g as unsynchronised until g can deduce
the correctness of its decoded output w,_ /4 1Wy—jr42 ... W,
from xyxi41...2,. This is a more stringent requirement
than mere (possibly coincidental) correctness of the output,
and can be met if C' is a T-code (see Section IV).

B. T-codes

T-codes are VLCs constructed from an alphabet A in i
steps via a recursive copy and append process called T-
augmentation. Starting with Al = A as a trivial T-code for
1 = 0, we define T-augmentation by the following recurrence
relation:

L+1

ki,k2,...,
U {pliasls € ALY BN\ (pia }}

(kK2 kit)
(p1,p25-- ,PL+1)

u{ o (1)

where AF1:F20w)) denotes the T-code (set) after i steps (said

(p1,p2,--
to be at T-augmentation level i), p; 11 € A(];i”;z’]; 2 is the T-

prefix and k; 1 € INT the T-expansion parameter or copy
factor for the T-augmentation from level ¢ to level ¢ + 1.
The sub- and superscript lists of T-prefixes and T-expansion
parameters, (p1, pa, - . - ,pz) and (ki, ko, ..., k;), are called the

T-prescription of A(]D1 P pt)”

Example: Let A={0, 1}. Select p; =0 and k; =2 to obtain

Agr") = {1,01,000,001}. Now select p»=01, ks =1 to obtain
2,1
Afprany={1,000,001,011,0101, 01000, 01001}, etc.

C. Source coding with T-codes

As variable-length codes, T-codes may be used as source
codes, following the well-known principle of assigning short
codewords to source symbols of high probability of occurrence
and long codewords to source symbols of low probability. Let
#A and #5S denote the cardinalities of A and S, P(s;) the
probability of occurrence of the j’th symbol s; € S, and let
f S — C be an encoding of the source symbols, such that
f(s;) € C. The aim of simple source codes such as Huffman
codes is to find a C' and f that minimise the redundancy 7:

#S
r=> P(s;) [|£(s;)] +1ogy Pls;)] - 2)
j=1

Note that C' and f are generally not unique as r does not de-
pend on C' itself, but merely on the code length distribution ¢
of C, which is generally shared by multiple VLCs. However,
f always satisfies the following condition:

P(sj) > P(sj) = |f(s5)] < [f(s5)]- 3)

If minimal r is the only requirement, we may simply construct
C' as a Huffman code. If C is also to meet other criteria,
e.g., to be a T-code, we must minimise r over the respective
set of codes meeting these criteria. While every T-code is a
potential outcome of Huffman’s algorithm for certain source
probability distributions, the converse does not apply: Most
Huffman codes are not T-codes and so do not have the
structural properties that give rise to self-synchronisation (see
Section IV).

T-augmentation, on the other hand, pays no attention to
coding efficiency: While the choice of the T-prefixes and
T-expansion parameters lets us construct a wide range of
sets with varying ¢, the construction does not lend itself
to minimising r [18]. However, as discussed in Section IV,
it guarantees good synchronisation performance. Using T-
codes thus implies a trade-off between self-synchronisation
and efficiency.

The aim is then to find a T-code with minimal r for a given
source probability distribution P(.S). Titchener [16] suggested
to look for a “small” rather than minimal 7 as source statistics
tend to be approximate. Higgie [15] presented a database of
“best T-codes” minimising r for T-codes where k; = 1 for all
i, i.e., a subset of possible 6 only.

The only known strategy for minimising = in the general
case remains an exhaustive search of all feasible dc. This was
first proposed by one of the authors in [14] and [18], with
improvements in [19]. The next section describes the basic
version of this algorithm.

III. THE BASIC MATCHING ALGORITHM

The algorithm from [18], [19] operates as a breadth-first-
search algorithm (BFS) using the well-known branch-and-
bound technique: Each node in the search tree represents

a T-code, with the tree root representing A. Each branch
originating from such a node represents a T-augmentation
of the node’s T-code with a particular feasible T-prefix and
T-expansion parameter. To find the minimal r, we need, in
principle, to visit each node as it appears at the front of the
BFS queue, and:

1) If the corresponding T-code is large enough, calculate
its redundancy r with respect to P(S). Given its dc,
assign codewords to source symbols in accordance with
3).

2) Create and enqueue any feasible child nodes according
to the feasibility criteria discussed below. They ensure
that the tree remains finite in size.

3) Dequeue each node once it has been processed.

4) Keep a record of the node with the lowest r that was
found in the process.

We simplify this search by exploiting a number of shortcuts.
These are described in part in [18] and, with the improvements
presented here, in [19]. They include:

o Using codeword length distributions d¢ rather than actual
T-codes as nodes in the tree: r is a function of o
only, and for C = Aglgilgj 7:;::), 0¢c depends only

on |p;1+1| but not on the spemﬁc choice of p;1; among

the codewords of length |p;11]| in AEIEI;;I;; Instead
of T-augmenting multiple T-codes with the same d¢ to
compute their respective r, we can instead obtain dc by
“virtual T-augmentation” (VTA) of the codeword length
distribution of A(kl’]€2 k; with T-prefix length |p;41].
A single VTA can thué account for all T-codes with the
same codeword length distribution and all candidate T-
prefixes of length |p;11].

e Using only T-prescriptions in anti-canonical form [12],
[17], [18], i.e., k; + 1 must always be prime.

o Using non-decreasing T-prefix lengths in subsequent
VTAs.

« Ignoring any codewords longer than [(#S—1)/(#A-1)]
(see [18], 10.4.7).

When we process a node with distribution d¢, a further VTA
with candidate T-prefix length |p| and candidate T-expansion
parameter k is only feasible under the following conditions:

o Let L be the length of the longest codeword presently
assigned. If §¢ is large enough to encode S, the VTA
must create at least fwo new codewords shorter than L
to obtain a redundancy gain from reassigning a source
symbol currently encoded with length L or less and
compensate for the loss of the T-prefix. We thus require
Elp| + €2 < L where {5 is the smallest length for which
d¢ contains at least two codewords not longer than /.

o klp|+ty < [(#S—1)/(#A—1)]. This condition ensures
that VTAs create codewords within a length range of
interest: Since the maximum depth Huffman code for S
s [(#S —1)/(#A — 1)] deep and simultaneously a T-
code, we cannot encode S more efficiently with longer
codewords. Feasible VTAs must create new codewords at

or below this length. Note that §¢o large enough to encode
the source implicitly meet this criterion via k|p|+¢2 < L.

e The residual redundancy (partial sum of (2) including
those terms with encodings shorter than |p|), must not
exceed the lowest redundancy found thus far. We may
also abort the investigation of any dc as soon as the
redundancy exceeds this value.

In combination, these criteria limit the search space.

IV. T-CODE SELF-SYNCHRONISATION AND EXPECTED
SYNCHRONISATION DELAY

Consider a compressed message z in the form of a
concatenation of codewords from Agi ’;EI;; The bound-
ary between two codewords in this concatenation is called
an i-boundary. A T-code decoder that has identified an -
boundary in z can henceforth identify the correct codewords

Eﬁigj;;, and we say that it is synchronised to level 1.

We may thus model the synchronisation process as
a Markov chain, whose states represent the highest T-
augmentation level ¢ for which the decoder has been able
to identify an ¢-boundary. Note that by (reffulltaug), every
i-boundary is also an (i — 1)-boundary. A decoder that iden-
tifies an (i — 1)-boundary as also being an i-boundary thus
synchronises from state (level) ¢ — 1 to state (level) ¢. An
unsynchronised decoder starts in state 0, meaning it knows
the location of a (trivially identified) O-boundary in z. As it
synchronises, the decoder progressively identifies 1-, 2-, and
eventually n-boundaries.

The transition criterion for the chain is based on the insight
that a decoder, upon reaching state ¢ — 1, can henceforth
correctly identify the codewords from A (k1,ka,.]I;’ 3 in the
remainder of x. These may include the Tpreﬁx7]73, By (1),
mere (i — 1)-boundaries inside a codeword from AE];];2;))
that are not also ¢-boundaries always follow a copy of p;. It
follows that any (i — 1)-boundary after a codeword 7; # p;
must therefore also be an ¢-boundary. Thus if a decoder
synchronised to level i—1 encounters such a codeword 7; # p;,
it transitions to state i.

Conversely, we observe that only p; can prevent a transition
from state ¢ — 1 to state ¢. To render a decoder permanently
unsynchronised, the compressed message x must thus end in
a run of p;. Since semi-infinite runs of p; are incompatible
with any notion of a random semi-infinite sequence, a T-code
decoder will transition from state ¢ — 1 to state ¢ in such
a sequence, and thus ultimately reach state n. T-codes are
thus statistically self—synchronlslng. Furthermore, removing
any periodic codewords from A(I;i 1;2 ’;:3 results in a BSD
code from which one cannot construct a sequence with a semi-
infinite run of of p;. We will refer to such codes as BSD-T-
codes below. However, note that each T-augmentation only
creates one periodic codeword, whereas the total number of
codewords nearly doubles at each step. Moreover, some of
the periodic codewords created may in turn become T-prefixes
in later T-augmentations and thus not be part of the final T-
code. The removal of the remaining periodic codewords thus

generally only represents a minor change to the code without
substantial effect on its compression potential.

An unsychronised T-code decoder will thus synchronise
after any sequence of the form:

=p' P52 Te . .0, (4)

(k1,k2,eo ki
where all r; finite and 7; € A pi p; o l; with 7; # p;. If

(k17k27 Kn

(T, 71,72, T2 - -+ Ty Tn)

we remove all periodic codewords from A) (i.e., we
convert the T-code into a BSD-T-code), any sufﬁc1ently long
string over A starts with some o (r1, 71,72, T2, . . ., Tn, Tn), and
there is a limit on the r; that we may encounter.

Abbreviating our notation to On =
o(r1, 71,72, T2, ..., Tn,Tn), the expected synchronisation
delay of a T-code (with periodic codewords) is thus given by
the expected length of o, which is

Ellon|] = >

T1,T1,72,T25.-5

P(oy)|onl, ®)

TnTn

where P(0,,) is the probability that a particular o,, occurs.

If the encoded T-code symbol stream is approximated as
an i.i.d. Bernoulli source with equiprobable symbols, we may
resolve this further as:

n

ZE piimll =Y Ellpi’
=1
= Z Elpj‘||E
=1

Z |pz|E TL
As we have 0 < r; < oo and P(p;) = #AIPil the probability
P(r; = j) of r; taking the value j is:
p1)(1 = P(p;)) = P(p:)’ (1 — P(pi))
— # APy g3l (7)

JE[|7:]]

Ellon|] =

Elln]. (6)

F

P(r; =j) = P(
=(
Thus

Elri] =Y jP(ri=
j=0

=(1- #A—Iml) Zj#A_j‘Pi‘

= Zj(l — # APl A= 0IPil
=0

j=1
(1 — #A-IPily4 APl # A~ Ipil
T (A #AD2 T T #AP ®)

where we have used the well known polylogarithm series sum.
Furthermore, writing P; = #A“pi‘, we may then recur-

sively derlve the expected length of a codeword 7; # p; in
(k1 k2,... k1) E[|7;|] from E[|7;_1]] as follows:

(p1,p2;-- 7p ~1)’
Elln|]=1

Bii1 1—i)

E|7i] = (1= Pi1) 3550 Py (Ellriall +dlpi-al)
K3 - 1 — PL
—(ki—1+1)
Pif ki— + 1 i—1| — P?, i
LB (ki—1 + 1)|pi—1] Ipl. ©

1-5

In the case of BSD-T-codes, the E[|o,,|] derived for the general
case represents an upper bound on the expected synchronisa-
tion delay. We can also put an upper bound on || itself in
this case, by considering the maximum possible value for an
T4, 1.., the longest possible run of p;. As we exclude periodic
codewords, this run can only occur inside the overlap wjws
of two non-periodic codewords w1, wy € A(iigz };n) and its

length may thus be determined by inspection of A (pl];z];“;.

As the boundary between w; and wsy is an n- and hence
an (i — 1)-boundary, p; cannot straddle it. The length of
the ﬁ)Otentlal run of p; at the beginning of wy is limited by

Iwz |Wnin, | h
— b where wWnin;

than p; in Agf)l’p; 7pjj)) , 1.e., the shortest word that could
have been T-prefixed by p; in the i-th T-augmentation. In wy,
the longest possible run is limited by L%j , where p,,
is the smallest T-prefix used at any T—augméntation between
the creation of p; and level ¢ — 1. Given only the T-prefix
lengths and the T-expansion parameters, we may still place a
(loose) upper bound on |0, | as 2n\wm(n\ where W, q, 1S the
length of the longest codewords in A(pi p;:-wp:;

Note that the synchronisation model presented here is a
simplified one, as a decoder may transition from state ¢ to state
7 immediately if it can exclude the possibility that 7; might
be the suffix of any of p;i1,p;y2,...p; for some j > i. A
detailed treatment of this extended model (see [18]) is beyond

the proof-of-concept scope of this paper.

is the shortest codeword other

V. ADAPTATION OF THE MATCHING ALGORITHM

If we require a bounded synchronisation delay, we cannot
use a full T-code but rather must remove any periodic code-
words from the final code to obtain a BSD-T-code. Each T-
augmentation creates one such codeword. Some of these may
however become T-prefixes in later T-augmentations and may
thus not be in the final code. However, their special status
necessitates a number of changes to the matching algorithm
and its associated feasibility criteria:

e No periodic codeword may be assigned to a source
symbol, i.e., we must now assign any source symbol
to a (potentially longer) different codeword if it would
have been assigned to a periodic codeword in a complete
T-code. As a consequence, we generally need a larger
code. In particular, it necessitates a change in the fixed
constraint on the maximal codeword length above to
klp| + la < [(#S + ¢ —1)/(#A — 1)], where ¢ is the
number of periodic codewords in the final code before
removal. As each T-augmentation creates one periodic
codeword, the value of ¢ depends on the number of T-
augmentations taken to arrive at the final set, which we
cannot know in advance. Alternatively, we may consider
the minimum total number of codewords required, and for
each set compute the number of source symbols assigned
to codewords shorter than the present T-prefix, n .
These assignments persist below the present node in the
search tree as our T-prefixes are in non-decreasing order.
Any remaining assignments must thus take place between

TABLE I
THE EFFICIENCY OF BSD-T-CODES AND HUFFMAN CODES

Source 32 symbols
H(S) 7 [bits] 7 g7 [bits] no. of 5 |or |[bits]
Exponential % 2 3.4.10710 | 1.10710 1,225 <66
Exponential 2 | 2.75 0.16 0.045 1,284 <46
Harmonic 4.15 0.14 0.019 1,304 <26
Linear 4.74 0.47 0.03 1,805 <26
Equiprobable 5 0.88 0 2,109 <26
64 symbols
H(S) o [bits] r g [bits] no. of 6 |on |[bits]
Harmonic 4.86 0.16 0.029 10,530 <54
Linear 5.73 0.57 0.029 11,934 <40
Equiprobable 6 0.98 0 16,891 <38
128 symbols
H(S) rp[bits] rg[bits] | no.of 6¢ | |on|lbits]
Harmonic 5.55 0.16 0.045 91,337 <66
Linear 6.73 0.66 0.029 119,557 <46
Equiprobable 7 1.16 0 181,290 <62

the length of the current T-prefix |p| and the maximum
codeword length of interest. Since we can assign at least
#A — 1 codewords of each length (with the possible
exception of length |p|), the maximum length of interest
becomes [|p|+n,/(#A—1)]. Note that this constraint
only applies to further VTA of small sets (see above).

o Every VTA needs to record the number of periodic code-
words for each length. Further VTA must use these code-
words as T-prefixes before any non-periodic codewords
(otherwise, we would ultimately lose two codewords of
this length rather than just one).

VI. EXAMPLES

How efficient are BSD-T-codes compared to Huffman
codes, i.e., how much redundancy does guaranteed local
decodability add? Using the algorithm above, we obtain the
source entropy H(S), the redundancies rr and rg for BSD-
T-codes and Huffman codes, and the bound for |o,| for a
suitable BSD-T-code for the following i.i.d. source types for
32, 64, and 128 symbols:

o Two sources whose symbol probabilities tail off expo-
nentially with a factor of % and %, respectively (for 32
symbols only).

o A source whose symbol probabilities tail off harmoni-
cally (i’th largest probability is + times the maximum
probability).

o A source with linear tail-off (¢’th smallest symbol prob-
ability is i/#5).

o A source with equiprobable symbols.

These results are given in Table I along with the number
of dc searched in each case. These results suggests that
low entropy sources yield compression comparable to that
of Huffman codes, whereas high entropy sources do not
compress. These latter sources are however of less interest
because of their limited general compressibility. Note that the
matching algorithm returns only the optimal T-prefix lengths.
This lets the code designer choose the actual T-prefixes to
optimise for the best compromise between maximum and
expected synchronisation delay.

VII. CONCLUSION

In this paper, we introduced variable-length locally decod-
able source codes and showed that T-codes are candidates for
this purpose. Overall, the trade-off in efficiency to provide
local decodability seems modest. Our results also show that
the search effort of the matching algorithm is lowest for
the most compressible sources, but increases rapidly with
source cardinality. While the search algorithm needs to search
a large number of sets to confirm the optimal BSD-T-code
for a given probability distribution in terms of redundancy,
in practice it discovers codes with low redundancies rather
quickly. For example, a harmonic source with 256 symbols
and an entropy of 6.22 bits/symbol can be encoded in this
way with a redundancy of less than a sixth of a bit. Also the
search algorithm is suited to parallelisation, an avenue we have
not yet investigated.

REFERENCES

[1] A. Makhdoumi, S. L. Huang, M. Médard, and Y. Polyanskiy, “On locally
decodable source coding,” arXiv:1308.5239 [cs.IT], 2013.

[2] Y. Kaspi and N. Merhav, “Zero-delay and causal single-user and
multi-user lossy source coding with decoder side information,”
arXiv:1301.0079 [cs.IT], 2013.

[3] D. L. Neuhoff and R. Gilbert, “Causal source codes,” IEEE Trans.
Inform. Theory, vol. 28, no. 5, pp. 701-713, Sep. 1982.

[4] A. Mazumdar, G. W. Wornell, and V. Chandar, “Update efficient codes
for error correction,” in Proc. Int. Symp. on Inform. Theory, Cambridge,
MA, pp. 1558-1662, Jul. 2012

[5] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422-426, Jul. 1970.

[6] R. Pagh, “Low redundancy in static dictionaries with constant query
time,” SIAM J. Comput., vol. 31, no. 2, pp. 353-363, 2001.

[71 M. Patrascu, “Succincter,” in Proc. IEEE Symp. on Foundations of
Computer Science, Philadelphia, PA, pp. 305-313, Oct. 2008.

[8] V. Chandar, D. Shah, and G. W. Wornell, “ A locally encodable
and decodable compressed data structure,” in Proc. Allerton Conf. on
Commun., Control, and Comput., Monticello, IL, pp. 613-619, Sep.-Oct.
2009.

[9] D. Huffman, “A method for the construction of minimum redundancy

codes,” Proc. IRE, vol. 40, no. 9, pp. 1098-1101, Sep. 1952.

U. Speidel, “A note on BSD codes constructed from T-codes,” in Proc.

IEEE Int. Symp. on Inform. Theory, Seoul, Korea, pp. 2418-2421, Jun.-

Jul. 2009.

M. R. Titchener, “Digital encoding by means of new T-codes to provide

improved data synchronisation and message integrity”, IEE Proc. —

Computers and Digital Tech., vol. 131, no. 4, pp. 151-153, Jul. 1984.

R. Nicolescu, Uniqueness Theorems for T-codes. Technical Report.

Tamaki Report Series no. 9, The University of Auckland, 1995.

M. R. Titchener, “Generalized T-Codes: An extended construction

algorithm for self-synchronizing variable-length codes,” IEE Proc. —

Computers and Digital Tech., vol. 143, no. 3, pp. 122-128, Jun. 1998.

U. Guenther, “Data compression and serial communication with gen-

eralized T-Codes,” J. Universal Computer Science, vol. 2, no. 11, pp.

769-795, 1996.

G. R. Higgie, “Database of best T-codes,” IEE Proc. — Computers and

Digital Tech., vol. 143, no. 4, pp. 213-218, Jul. 1996.

M. R. Titchener, verbal communication.

R. Nicolescu and M. R. Titchener, “Uniqueness theorems for T-codes,”

Romanian J. Inform. Science and Tech., vol. 1, no. 3, pp. 243-258, Mar.

1998.

U. Guenther, Robust Source Coding with Generalized T-codes. PhD

Thesis, The University of Auckland, 1998.

U. Guenther, “Matching T-codes to a source,” in Proc. Int. Conf. on

Inform., Commun., and Signal Process., Singapore, paper P0156, Oct.

2001.

[10]

[11]

[12]
[13]
[14]
[15]
[16]

[17]

[18]

[19]

