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Abstract

The principal inertia components of the joint distributionof two random variablesX and Y are inherently

connected to how an observation ofY is statistically related to a hidden variableX . In this paper, we explore

this connection within an information theoretic framework. We show that, under certain symmetry conditions, the

principal inertia components play an important role in estimating one-bit functions ofX , namelyf(X), given an

observation ofY . In particular, the principal inertia components bear an interpretation as filter coefficients in the

linear transformation ofpf(X)|X into pf(X)|Y . This interpretation naturally leads to the conjecture that the mutual

information betweenf(X) and Y is maximized when all the principal inertia components haveequal value. We

also study the role of the principal inertia components in the Markov chainB → X → Y → B̂, whereB and B̂

are binary random variables. We illustrate our results for the setting whereX andY are binary strings andY is

the result of sendingX through an additive noise binary channel.

I. INTRODUCTION

Let X andY be two discrete random variables with finite supportX andY, respectively.X andY are related

through a conditional distribution (channel), denoted bypY |X . For eachx ∈ X , pY |X(·|x) will be a vector on

the |Y|-dimensional simplex, and the position of these vectors on the simplex will determine the nature of the

relationship betweenX andY . If pY |X is fixed, what can be learned aboutX given an observation ofY , or the

degree of accuracy of what can be inferred aboutX a posteriori, will then depend on the marginal distribution

pX . The valuepX(x), in turn, ponderates the corresponding vectorpY |X(·|x) akin to a mass. As a simple example,

if |X | = |Y| and the vectorspY |X(·|x) are located on distinct corners of the simplex, thenX can be perfectly

learned fromY . As another example, assume that the vectorspY |X(·|x) can be grouped into two clusters located

near opposite corners of the simplex. If the sum of the massesinduced bypX for each cluster is approximately

1/2, then one may expect to reliably infer on the order of 1 unbiased bit ofX from an observation ofY .

The above discussion naturally leads to considering the useof techniques borrowed from classical mechanics.

For a given inertial frame of reference, the mechanical properties of a collection of distributed point masses can be

characterized by the moments of inertia of the system. The moments of inertia measure how the weight of the point

masses is distributed around the center of mass. An analogous metric exists for the distribution of the vectorspY |X

and massespX in the simplex, and it is the subject of study of a branch of applied statistics calledcorrespondence

analysis([1], [2]). In correspondence analysis, the joint distribution pX,Y is decomposed in terms of theprincipal

inertia components, which, in some sense, are analogous to the moments of inertia of a collection of point masses.

In mathematical probability, the study of principal inertia components dates back to Hirschfeld [3], Gebelein [4],
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Sarmanov [5] and Rényi [6], and similar analysis have also recurrently appeared in the information theory and

applied probability literature. We present the formal definition of principal inertia components and a short review

of the relevant literature in the next section1.

The distribution of the vectorspY |X in the simplex or, equivalently, the principal inertia components of the

joint distribution ofX andY , is inherently connected to how an observation ofY is statically related toX. In

this paper, we explore this connection within an information theoretic framework. We show that, under certain

assumptions, the principal inertia components play an important part in estimating a one-bit function ofX, namely

f(X) where f : X → {0, 1}, given an observation ofY : they can be understood as the filter coefficients in

the linear transformation ofpf(X)|X into pf(X)|Y . Alternatively, the principal inertia components can bearan

interpretation as noise, in particular whenX andY are binary strings. We also show that maximizing the principal

inertia components is equivalent to maximizing the first-order term of the Taylor series expansion of certain convex

measures of information betweenf(X) andY . We conjecture that, for symmetric distributions ofX andY and a

given upper bound on the value of the largest principal inertia component,I(f(X);Y ) is maximized when all the

principal inertia components have the same value as the largest principal inertia component. This is equivalent to

Y being the result of passingX through aq-ary symmetric channel. This conjecture, if proven, would imply that

the conjecture made by Kumar and Courtade in [7].

Finally, we study the Markov chainB → X → Y → B̂, whereB and B̂ are binary random variables, and

the role of the principal inertia components in characterizing the relation betweenB and B̂. We show that that

this relation is linked to solving a non-linear maximization problem, which, in turn, can be solved when̂B is an

unbiased estimate ofB, the joint distribution ofX andY is symmetric andPr{B = B̂ = 0} ≥ E [B]2. We illustrate

this result for the setting whereX is a binary string andY is the result of sendingX through a memoryless binary

symmetric channel. We note that this is a similar setting to the one considered by Anantharamet al. in [8].

The rest of the paper is organized as follows. Section II presents the notation and definitions used in this paper,

and discusses some of the related literature. Section III introduces the notion of conforming distributions and

ancillary results. Section IV presents results concerningthe role of the principal inertia components in inferring

one-bit functions ofX from an observation ofY , as well as the linear transformation ofpX into pY in certain

symmetric settings. We argue that, in such settings, the principal inertia components can be viewed as filter

coefficients in a linear transformation. In particular, results for binary channels with additive noise are derived

using techniques inspired by Fourier analysis of Boolean functions. Furthermore, Section IV also introduces a

conjecture that encompasses the one made by Kumar and Courtade in [7]. Finally, Section V provides further

evidence for this conjecture by investigating the Markov chain B → X → Y → B̂ whereB and B̂ are binary

random variables.

II. PRINCIPAL INERTIA COMPONENTS

A. Notation

We denote matrices by bold capitalized letters (e.g.A) and vectors by bold lower case letters (e.g.x). The i-th

component of a vectorx is denoted byxi. Random variables are denoted by upper-case letters (e.g.X andY ).

We define[n] , {1, . . . , n}.

Throughout the text we assume thatX andY are discrete random variables with finite support setsX andY.

Unless otherwise specified, we let, without loss of generality, X = [m] andY = [n]. The joint distribution matrix

of P is anm× n matrix with (i, j)-th entry equal topX,Y (i, j). We denote bypX (respectively,pY ) the vector

1We encourage the readers that are unfamiliar with the topic to skip ahead and read Section II and then return to this introduction.
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with i-th entry equal topX(i) (resp.pY (i)). DX = diag (pX) andDY = diag (pY ) are matrices with diagonal

entries equal topX andpY , respectively, and all other entries equal to 0. The matrixPY |X ∈ R
m×n denotes the

matrix with (i, j)-th entry equal topY |X(j|i). Note thatP = DXPY |X .

For a given joint distribution matrixP, the set of all vectors contained in the unit cube inRn that satisfy

‖Px‖1 = a is given by

Cn(a,P) , {x ∈ R
n|0 ≤ xi ≤ 1, ‖Px‖1 = a}. (1)

The set of allm× n probability distribution matrices is given byPm,n.

For xn ∈ {−1, 1}n andS ⊆ [n], χS(x
n) ,

∏
i∈S xi (we considerχ∅(x) = 1). Foryn ∈ {−1, 1}n, an = xn⊕yn

is the vector resulting from the entrywise product ofxn andyn, i.e. ai = xiyi, i ∈ [n].

Given two probability distributionspX and qX and f(t) a smooth convex function defined fort > 0 with

f(1) = 0, the f -divergence is defined as [9]

Df (pX ||qX) ,
∑

x

qX(x)f

(
pX(x)

qX(x)

)
. (2)

The f -information is given by

If (X;Y ) , Df (pX,Y ||pXpY ). (3)

When f(x) = x log(x), then If (X;Y ) = I(X;Y ). A study of information metrics related tof -information was

given in [10] in the context of channel coding converses.

B. Principal Inertia Components and Decomposing the Joint Distribution Matrix

We briefly define in this section theprincipal inertia decompositionof the joint distribution matrixP. The term

“principal inertia” is borrowed from the correspondence analysis literature [1]. The study of the principal inertia

components of the joint distribution of two random variables dates back to Hirshfield [3], Gebelein [4], Sarmanov

[5] and Rényi [6], having appeared in the work of Witsenhausen [11], Ahlswede and Gács [12] and, more recently,

Anantharamet al. [13], Polyanskiy [14] and Calmonet al. [15], among others. For an overview, we refer the reader

to [13], [15].

Definition 1. We call the singular value decompositionD−1/2
X PD

−1/2
Y = UΣVT the principal inertia decompo-

sition of X andY , whereΣ is a diagonal matrix withdiag (Σ) = (1, σ1, . . . , σd) andd = min(m,n) − 1. The

valuesσ2
i , i = 1, . . . , d, are called theprincipal inertia componentsof X andY . In particularρm(X;Y ) = σ1,

whereρm(X;Y ) denotes the maximal correlation coefficient ofX andY . The maximal correlation coefficient, in

turn, is given by

ρm(X;Y ) , sup
{
E [f(X)g(Y )] |E [f(X)] = E [g(Y )] = 0,E

[
f(X)2

]
= E

[
g(X)2

]
= 1
}
.

The valuesσ1, . . . , σd in the previous definition are the spectrum of the conditional expectation operator(Tf)(x) ,

E [f(Y )|X = x], wheref : Y → R [6]. Indeed, the spectrum ofT and the principal inertia components are entirely

equivalent whenX andY have finite support sets. Nevertheless, the reader should note that the analysis based on the

conditional expectation operator lends itself to more general settings, including random variables with continuous

support. We do not pursue this matter further here, since ourfocus is on discrete random variables with finite

support.

The principal inertia components satisfy the data processing inequality (see, for example, [14], [15], [16]): if

X → Y → Z andσi are the principal inertia components ofX andY and σ̃i are the principal inertia components
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of X andZ, then
∑k

i=1 σ̃i
2 ≤

∑k
i=1 σ

2
i for all k. Furthermore, for a fixed marginal distributionpX ,

∑k
i=1 σ

2
i is

convex inpY |X . Note the joint distribution matrixP as can be written as

P = D
1/2
X UΣVTD

1/2
Y . (4)

III. C ONFORMING DISTRIBUTIONS

In this paper we shall recurrently use probability distribution matrices that are symmetric and positive-semidefinite.

This motivates the following definition.

Definition 2. A joint distribution pX,Y is said to beconformingif the corresponding matrixP satisfiesP = PT

andP is positive-semidefinite.

Remark 1. If X and Y have a conforming joint distribution, then they have the same marginal distribution.

Consequently,D , DX = DY , andP = D1/2UΣUTD1/2.

Symmetric channels2 are closely related to conforming probability distributions. We shall illustrate this relation

in the next lemma and in Section IV.

Lemma 1. If P is conforming, then the corresponding conditional distribution matrix PY |X is positive semi-

definite. Furthermore, for any symmetric channelPY |X = PT
Y |X , there is an input distributionpX (namely, the

uniform distribution) such that the principal inertia components ofP = DXPY |X correspond to the square of the

eigenvalues ofPY |X . In this case, ifPY |X is also positive-semidefinite, thenP is conforming.

Proof: Let P be conforming andX = Y = [m]. Then PY |X = D−1/2UΣUTD1/2 = QΣQ−1, where

Q = D−1/2U. It follows that diag (Σ) are the eigenvalues ofPY |X , and, consequently,PY |X is positive semi-

definite.

Now let PY |X = PT
Y |X = UΛΛΛUT . The entries ofΛΛΛ here are the eigenvalues ofPY |X and not necessarily

positive. SincePY |X is symmetric, it is also doubly stochastic, and forX uniformly distributedY is also uniformly

distributed. Therefore,P is symmetric, andP = UΛΛΛUT /m. It follows directly that the principal inertia components

of P are exactly the diagonal entries ofΛΛΛ2, and if PY |X is positive-semidefinite thenP is conforming.

Theq-ary symmetric channel, defined below, is of particular interest to some of the results derived in the following

sections.

Definition 3. The q-ary symmetric channel with crossover probabilityǫ ≤ 1 − q−1, also denoted as(ǫ, q)-SC, is

defined as the channel with inputX and outputY whereX = Y = [q] and

pY |X(y|x) =




1− ǫ if x = y

ǫ
q−1 if x 6= y.

Let X andY have a conforming joint distribution matrix withX = Y = [q] and principal inertia components

σ2
1 , . . . , σ

2
d. The following lemma shows that conformingP can be transformed into the joint distribution of aq-ary

symmetric channel with input distributionpX by settingσ2
1 = σ2

2 = · · · = σ2
d, i.e. making all principal inertia

components equal to the largest one.

Lemma 2. Let P be a conforming joint distribution matrix ofX and Y , with X and Y uniformly distributed,

X = Y = [q], P = q−1UΣUT and Σ = diag (1, σ1, . . . , σd). For Σ̃ = diag (1, σ1, . . . , σ1), let X and Ỹ have

2We say that a channel is symmetric ifX = Y = [m] andpY |X(i|j) = pY |X(j|i) ∀i, j ∈ [m].
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joint distribution P̃ = q−1UΣ̃U
T

. Then,Ỹ is the result of passingX through a(ǫ, q)-SC, with

ǫ =
(q − 1)(1 − ρm(X;Y ))

q
. (5)

Proof: The first column ofU is p
1/2
X and, sinceX is uniformly distributed,p1/2

X = q−1/21. Therefore

P̃ = q−1UΣ̃U
T

= q−1σ1I+ q−2(1− σ1)11
T . (6)

Consequently,̃P has diagonal entries equal to(1 + (q − 1)σ1)/q
2 and all other entries equal to(1 − σ1)/q

2. The

result follows by noting thatσ1 = ρm(X;Y ).

Remark 2. ForX, Y andỸ given in the previous lemma, a natural question that arises is whetherY is a degraded

version of Ỹ , i.e. X → Ỹ → Y . Unfortunately, this isnot true in general, since the matrixUΣ̃−1ΣUT does

not necessarily contain only positive entries, although itis doubly-stochastic. However, since the principal inertia

components ofX and Ỹ upper bound the principal inertia components ofX andY , it is natural to expect that, at

least in some sense,̃Y is more informative aboutX thanY . This intuition is indeed correct for certain estimation

problems where a one-bit function ofX is to be inferred from a single observationY or Ỹ , and will be investigated

in the next section.

IV. ONE-BIT FUNCTIONS AND CHANNEL TRANSFORMATIONS

Let B → X → Y , whereB is a binary random variable. WhenX and Y have a conforming probability

distribution, the principal inertia components ofX andY have a particularly interesting interpretation: they can be

understood as the filter coefficients in the linear transformation of pB|X into pB|Y . In order to see why this is the

case, consider the joint distribution ofB andY , denoted here byQ, given by

Q = [f 1− f ]TP = [f 1− f ]TPX|Y DY = [g 1− g]TDY , (7)

wheref ∈ R
m andg ∈ R

n are column-vectors withfi = pB|X(0|i) andgj = pB|Y (0|j). In particular, ifB is a

deterministic function ofX, f ∈ {0, 1}m.

If P is conforming andX = Y = [m], thenP = D1/2UΣUTD1/2, whereD = DX = DY . AssumingD fixed,

the joint distributionQ is entirely specified by the linear transformation off into g. DenotingT , UTD1/2, this

transformation is done in three steps:

1) (Linear transform)̂f , Tf ,

2) (Filter) ĝ , Σf̂ , where the diagonal ofΣ2 are the principal inertia components ofX andY ,

3) (Inverse transform)g = T−1ĝ.

Note thatf̂1 = ĝ1 = 1 − E [B] and ĝ = Tg. Consequently, the principal inertia coefficients ofX andY bear an

interpretation as the filter coefficients in the linear transformation ofpB|X(0|·) into pB|Y (0|·).

A similar interpretation can be made for symmetric channels, wherePY |X = PT
Y |X = UΛΛΛUT andPY |X acts

as the matrix of the linear transformation ofpX into pY . Note thatpY = PY |XpX , and, consequently,pX is

transformed intopY in the same three steps as before:

1) (Linear transform)p̂X = UTpX ,

2) (Filter) p̂Y = ΛΛΛp̂X , where the diagonal ofΛΛΛ2 are the principal inertia components ofX and Y in the

particular case whenX is uniformly distributed (Lemma 1),

3) (Inverse transform)pY = Up̂Y .
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From this perspective, the vectorz = UΛΛΛ1m−1/2 can be understood as a proxy for the “noise effect” of the

channel. Note that
∑

i zi = 1. However, the entries ofz are not necessarily positive, andz might not be ade facto

probability distribution.

We now illustrate these ideas by investigating binary channels with additive noise in the next section, whereT

will correspond to the well-known Walsh-Hadamard transform matrix.

A. Example: Binary Additive Noise Channels

In this example, letX n,Yn ⊆ {−1, 1}n be the support sets ofXn andY n, respectively. We define two sets of

channels that transformXn into Y n. In each set definition, we assume the conditions forpY n|Xn to be a valid

probability distribution (i.e. non-negativity and unit sum).

Definition 4. The set ofparity-changing channelsof block-lengthn, denoted byAn, is defined as:

An ,
{
pY n|Xn | ∀S ⊆ [n], ∃cS ∈ [−1, 1] s.t.E [χS(Y

n)|Xn] = cSχS(X
n)
}
. (8)

The set of allbinary additive noise channelsis given by

Bn ,
{
pY n|Xn | ∃Zn s.t. Y n = Xn ⊕ Zn, supp(Zn) ⊆ {−1, 1}n, Zn ⊥⊥ Xn

}
.

The definition of parity-changing channels is inspired by results from the literature on Fourier analysis of Boolean

functions. For an overview of the topic, we refer the reader to the survey [17]. The set of binary additive noise

channels, in turn, is widely used in the information theory literature. The following theorem shows that both

characterizations are equivalent.

Theorem 1. An = Bn.

Proof: Let Y n = Xn ⊕ Zn for someZn distributed over{−1, 1}n and independent ofXn. Thus

E [χS(Y
n)|Xn] = E [χS(Z

n ⊕Xn) | Xn]

= E [χS(X
n)χS(Z

n) | Xn]

= χS(X
n)E [χS(Z

n)] ,

where the last equality follows from the assumption thatXn ⊥⊥ Zn. By letting cS = E [χS(Z
n)], it follows that

pY n|Xn ∈ An and, consequently,Bn ⊆ An.

Now let yn be fixed andδyn : {−1, 1}n → {0, 1} be given by

δyn(xn) =




1, xn = yn,

0, otherwise.

Since the functionδyn has Boolean inputs, it can be expressed in terms of its Fourier expansion [17, Prop. 1.1] as

δyn(xn) =
∑

S⊆[n]

d̂SχS(x
n).
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Now let pY n|Xn ∈ An. Observe thatpY n|Xn(yn|xn) = E [δyn(Y n) | Xn = xn] and, forzn ∈ {−1, 1}n,

pY n|Xn(yn ⊕ zn|xn ⊕ zn) = E [δyn⊕zn(Y n) | Xn = xn ⊕ zn]

= E [δyn(Y n ⊕ zn) | Xn = xn ⊕ zn]

= E


∑

S⊆[n]

d̂SχS(Y
n ⊕ zn) | Xn = xn ⊕ zn




= E


∑

S⊆[n]

d̂SχS(Y
n)χS(z

n) | Xn = xn ⊕ zn




(a)
=
∑

S⊆[n]

cS d̂SχS(x
n ⊕ zn)χS(z

n)

=
∑

S⊆[n]

cS d̂SχS(x
n)

(b)
= E


∑

S⊆[n]

d̂SχS(Y
n)|Xn = xn




= E [δyn(Y n) | Xn = xn]

= pY n|Xn(yn|xn).

Equalities (a) and (b) follow from the definition ofAn. By defining the distribution ofZn as pZn(zn) ,

pY n|Xn(zn|1n), where1n is the vector with all entries equal to 1, it follows thatZn = Xn ⊕ Y n, Zn ⊥⊥ Xn

andpY n|Xn ⊆ Bn.

The previous theorem suggests that there is a correspondence between the coefficientscS in (8) and the distribution

of the additive noiseZn in the definition ofBn. The next result shows that this is indeed the case and, whenXn

is uniformly distributed, the coefficientsc2S correspond to the principal inertia components betweenXn andY n.

Theorem 2. Let pY n|Xn ∈ Bn, andXn ∼ pXn . ThenPXn,Y n = DXnH2nΛΛΛH2n , whereHl is the l× l normalized

Hadamard matrix (i.e.H2
l = I). Furthermore, forZn ∼ pZn, diag (ΛΛΛ) = 2n/2H2npZn , and the diagonal entries

of ΛΛΛ are equal tocS in (8). Finally, if X is uniformly distributed, thenc2S are the principal inertia components of

Xn and Y n.

Proof: Let pY n|Xn ∈ An be given. From Theorem 1 and the definition ofAn, it follows that χS(Y
n) is a

right eigenvector ofpY n|Xn with corresponding eigenvaluecS . SinceχS(Y
n)2−n/2 corresponds to a row ofH2n

for eachS (due to the Kronecker product construction of the Hadamard matrix) andH2
2n = I, thenPXn,Y n =

DXnH2nΛΛΛH2n . Finally, note thatpT
Z = 2−n/21TΛΛΛH2n . From Lemma 1, it follows thatc2S are the principal inertia

components ofXn andY n if Xn is uniformly distributed.

Remark 3. Theorem 2 indicates that one possible method for estimatingthe distribution of the additive binary

noiseZn is to estimate its effect on the parity bits ofXn andY n. In this case, we are estimating the coefficients

cS of the Walsh-Hadamard transform ofpZn . This approach was studied by Raginskyet al. in [18].

Theorem 2 illustrates the filtering role of the principal inertia components, discussed in the beginning of this

section. IfXn is uniform, and using the same notation as in (7), then the vector of conditional probabilitiesf is

transformed into the vector ofa posterioriprobabilitiesg by: (i) taking the Hadamard transform off , (ii) filtering
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the transformed vector according to the coefficientscS , whereS ∈ [n], and (iii) taking the inverse Hadamard

transform. The same rationale applies to the transformation of pX into pY in binary additive channels.

B. Quantifying the Information of a Boolean Function of the Input of a Noisy Channel

We now investigate the connection between the principal inertia components andf -information in the context

of one-bit functions ofX. Recall from the discussion in the beginning of this sectionand, in particular, equation

(7), that for a binaryB andB → X → Y , the distribution ofB andY is entirely specified by the transformation

of f into g, wheref andg are vectors with entries equal topB|X(0|·) andpB|Y (0|·), respectively.

For E [B] = 1− a, the f -information betweenB andY is given by3

If (B;Y ) = E

[
af
(gY

a

)
+ (1− a)f

(
1− gY

1− a

)]
.

For 0 ≤ r, s ≤ 1, we can expandf
(
r
s

)
around 1 as

f
(r
s

)
=

∞∑

k=1

f (k)(1)

k!

(
r − s

r

)k

.

Denoting

ck(α) ,
1

ak−1
+

(−1)k

(1− a)k−1
,

the f -information can then be expressed as

If (B;Y ) =

∞∑

k=2

f (k)(1)ck(a)

k!
E

[
(gY − a)k

]
. (9)

Similarly to [9, Chapter 4], for a fixedE [B] = 1− a, maximizing the principal inertia components betweenX

andY will always maximize the first term in the expansion (9). To see why this is the case, observe that

E

[
(gY − a)k

]
= (g − a)TDY (g − a)

= gTDY g − a2

= fTD
1/2
X UΣ2UTD1/2

x f − a2. (10)

For a fixeda and anyf such thatfT1 = a, (10) is non-decreasing in the diagonal entries ofΣ2 which, in turn,

are exactly the principal inertia components ofX andY . Equivalently, (10) is non-decreasing in theχ2-divergence

betweenpX,Y andpXpY .

However, we do note that increasing the principal inertia componentsdoes notincrease thef -information between

B and Y in general. Indeed, for a fixedU, V and marginal distributions ofX and Y , increasing the principal

inertia components might not even lead to a valid probability distribution matrixP.

Nevertheless, ifP is conforming andX and Y are uniformly distributed over[q], as shown in Lemma (2),

by increasing the principal inertia components we can definea new random variablẽY that results from sending

X through a(ǫ, q)-SC, whereǫ is given in (5). In this case, thef -information betweenB and Y has a simple

expression whenB is a function ofX.

3Note that here we assume thatY = [n], so there is no ambiguity in indexingpB|Y (0|Y ) by gY .
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Lemma 3. Let B → X → Ỹ , whereB = h(X) for someh : [q] → {0, 1}, E [B] = 1− a whereaq is an integer,

X is uniformly distributed in[q] and Ỹ is the result of passingX through a(ǫ, q)-SC withǫ ≤ (q − 1)/q. Then

If (B; Ỹ ) = a2f (1 + σ1c) + 2a(1 − a)f (1− σ1) + (1− a)2f
(
1 + σ1c

−1
)

(11)

whereσ1 = ρm(X; Ỹ ) = 1− ǫq(q − 1)−1 and c , (1− a)a−1. In particular, for f(x) = x log x, thenIf (X; Ỹ ) =

I(X; Ỹ ), and forσ1 = 1− 2δ

I(B; Ỹ ) = hb(a)− αHb (2δ(1 − a))− (1− a)Hb(2δa) (12)

≤ 1−Hb(δ), (13)

whereHb(x) , −x log(x)− (1− x) log(1− x) is the binary entropy function.

Proof: SinceB is a deterministic function ofX andaq is an integer,f is a vector withaq entries equal to 1

and (1− a)q entries equal to 0. It follows from (6) that

If (B; Ỹ ) =
1

q

q∑

i=1

af

(
(1− σ1)a+ fiσ1

a

)
+ (1− a)f

(
1− (1− σ1)a− fiσi

1− a

)

=a2f

(
1 + σ1

1− a

a

)
+ 2a(1 − a)f (1− σ1) + (1− a)2f

(
1 + σ1

a

1− a

)
.

Letting f(x) = x log x, (12) follows immediately. Since (12) is concave ina and symmetric arounda = 1/2, it is

maximized ata = 1/2, resulting in (13).

C. On the “Most Informative Bit” Conjecture

We now return to channels with additive binary noise, analyzed is Section IV-A. LetXn be a uniformly distributed

binary string of lengthn (X = {−1, 1}), andY n the result of passingXn through a memoryless binary symmetric

channel with crossover probabilityδ ≤ 1/2. Kumar and Courtade conjectured [7] that for all binaryB andB →

Xn → Y n we have

I(B;Y n) ≤ 1−Hb(δ). (conjecture) (14)

It is sufficient to considerB a function ofXn, denoted byB = h(Xn), h : {−1, 1}n → {0, 1}, and we make this

assumption henceforth.

From the discussion in Section IV-A, for the memoryless binary symmetric channelY n = Xn ⊕Zn, whereZn

is an i.i.d. string withPr{Zi = 1} = 1− δ, and anyS ∈ [n],

E [χS(Y
n)|Xn] = χS(X

n) (Pr {χS(Z
n) = 1} − Pr {χS(Z

n) = −1})

= χS(X
n) (2Pr {χS(Z

n) = 1} − 1)

= χS(X
n)(1− 2δ)|S|.

It follows directly that cS = (1 − 2δ)|S| for all S ⊆ [n]. Consequently, from Theorem 2, the principal inertia

components ofXn and Y n are of the form(1 − 2δ)2|S| for someS ⊆ [n]. Observe that the principal inertia

components act as a low pass filter on the vector of conditional probabilitiesf given in (7).

Can the noise distribution be modified so that the principal inertia components act as an all-pass filter? More

specifically, what happens wheñY n = Xn⊕W n, whereW n is such that the principal inertia components between

Xn and Ỹ n satisfyσi = 1− 2δ? Then, from Lemma 2,̃Y n is the result of sendingXn through a(ǫ, 2n)-SC with
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ǫ = 2δ(1 − 2−n). Therefore, from (13),

I(B; Ỹ n) ≤ 1−Hb(δ).

For any functionh : {−1, 1}n → {0, 1} such thatB = h(Xn), from standard results in Fourier analysis of

Boolean functions [17, Prop. 1.1],h(Xn) can be expanded as

h(Xn) =
∑

S⊆[n]

ĥSχS(X
n).

The value ofB is uniquely determined by the action ofh on χS(X
n). Consequently, for a fixed functionh,

one could expect that̃Y n should be more informative aboutB thanY n, since the parity bitsχS(X
n) are more

reliably estimated from̃Y n than fromY n. Indeed, the memoryless binary symmetric channel attenuatesχS(X
n)

exponentially in|S|, acting (as argued previously) as a low-pass filter. In addition, if one could prove that for any

fixed h the inequalityI(B;Y n) ≤ I(B; Ỹ n) holds, then (14) would be proven true. This motivates the following

conjecture.

Conjecture 1. For all h : {−1, 1}n → {0, 1} andB = h(Xn)

I(B;Y n) ≤ I(B; Ỹ n).

We note that Conjecture 1 is not true in general ifB is not a deterministic function ofXn. In the next section,

we provide further evidence for this conjecture by investigating information metrics betweenB and an estimatêB

derived fromY n.

V. ONE-BIT ESTIMATORS

Let B → X → Y → B̂, whereB and B̂ are binary random variables withE [B] = 1 − a andE[B̂] = 1 − b.

We denote byx ∈ R
m andy ∈ R

n the column vectors with entriesxi = pB|X(0|i) andyj = pB̂|Y (0|j). The joint

distribution matrix ofB and B̂ is given by

PB,B̂ =

(
z a− z

b− z 1− a− b+ z

)
, (15)

wherez = xTPy = Pr{B = B̂ = 0}. For fixed values ofa andb, the joint distribution ofB andB̂ only depends

on z.

Let f : P2×2 → R, and, with a slight abuse of notation, we also denotef as a function of the entries of the2×2

matrix asf(a, b, z). If f is convex inz for a fixeda andb, thenf is maximized at one of the extreme values ofz.

Examples of such functionsf include mutual information and expected error probability. Therefore, characterizing

the maximum and minimum values ofz is equivalent to characterizing the maximum value off over all possible

mappingsX → B andY → B̂. This leads to the following definition.

Definition 5. For a fixedP, the minimum and maximum values ofz over all possible mappingsX → B and

Y → B̂ whereE [B] = 1− a andE[B̂] = 1− b is defined as

z∗l (a, b,P) , min
x∈Cm(a,PT )
y∈Cn(b,P)

xTPy and z∗u(a, b,P) , max
x∈Cm(a,PT )
y∈Cn(b,P)

xTPy,

respectively, andCn(a,P) is defined in (1).

The next lemma provides a simple upper-bound forz∗u(a, b,P) in terms of the largest principal inertia components

or, equivalently, the maximal correlation betweenX andY .
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Lemma 4. z∗u(a, b,P) ≤ ab+ ρm(X;Y )
√

a(1− a)b(1− b).

Remark 4. An analogous result was derived by Witsenhausen [11, Thm. 2]for bounding the probability of

agreement of a common bit derived from two correlated sources.

Proof: Letx ∈ Cm(a,PT ) andy ∈ Cn(b,P). Then, forP decomposed as in (4) andΣ− = diag (0, σ1, . . . , σd),

xTPy = ab+ xTD
1/2
X UΣ−VTD

1/2
Y y

= ab+ x̂TΣ−ŷ, (16)

wherex̂ , UTD
1/2
X x and ŷ , VTD

1/2
Y y. Sincex̂1 = ‖x̂‖2 = a and ŷ1 = ‖ŷ‖2 = b, then

x̂TΣ−ŷ =

d+1∑

i=2

σi−1x̂iŷi

≤ σ1

√(
‖x̂‖22 − x̂2

1

) (
‖ŷ‖22 − ŷ2

1

)

= σ1
√

(a− a2)(b− b2).

The result follows by noting thatσ1 = ρm(X;Y ).

We will focus in the rest of this section on functions and corresponding estimators that are (i) unbiased (a = b)

and (ii) satisfyz = Pr{B̂ = B = 0} ≥ a2. The set of all such mappings is given by

H(a,P) ,
{
(x,y) | x ∈ Cm(a,PT ),y ∈ Cn(a,P),xTPy ≥ a2

}
.

The next results provide upper and lower bounds forz for the mappings inH(a,P).

Lemma 5. Let 0 ≤ a ≤ 1/2 andP be fixed. For any(x,y) ∈ H(a,P)

a2 ≤ z ≤ a2 + ρm(X;Y )a(1− a), (17)

wherez = xTPy.

Proof: The lower bound forz follows directly from the definition ofH(a,P), and the upper bound follows

from Lemma 4.

The previous lemma allows us to provide an upper bound over the mappings inH(a,P) for the f -information

betweenB and B̂ whenIf is non-negative.

Theorem 3. For any non-negativeIf and fixeda andP,

sup
(x,y)∈H(a,P)

If (B; B̂) ≤ a2f (1 + σ1c) + 2a(1 − a)f (1− σ1) + (1− a)2f
(
1 + σ1c

−1
)

(18)

where hereσ1 = ρm(X; Ỹ ) and c , (1− a)a−1. In particular, for a = 1/2,

sup
(x,y)∈H(1/2,P)

If (B; B̂) ≤
1

2
(f(1− σ1) + f(1 + σ1)) . (19)

Proof: Using the matrix form of the joint distribution betweenB and B̂ given in (15), forE [B] = E

[
B̂
]
=

1− a, the f information is given by

If (B; B̂) = a2f
( z

a2

)
+ 2a(1− a)f

(
a− z

a(1− a)

)
+ (1− a)2f

(
1− 2a+ z

(1− a)2

)
. (20)

Consequently, (20) is convex inz. For (x,y) ∈ H(a,P), it follows from Lemma 5 thatz is restricted to the interval
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in (17). SinceIf (B; B̂) is non-negative by assumption,If (B; B̂) = 0 for z = a2 and (20) is convex inz, then

If (B; B̂) is non-decreasing inz for z in (17). Substitutingz = a2 + ρm(X;Y )a(1 − a) in (20), inequality (18)

follows.

Remark 5. Note that the right-hand side of (18) matches the right-handside of (11), and provides further evidence

for Conjecture 1. This result indicates that, for conforming probability distributions, the information between a

binary function and its corresponding unbiased estimate ismaximized when all the principal inertia components

have the same value.

Following the same approach from Lemma 3, we find the next bound for the mutual information betweenB and

B̂.

Corollary 1. For a fixed andρm(X;Y ) = 1− 2δ

sup
(x,y)∈H(a,P)

I(B; B̂) ≤ 1−Hb(δ).

We now provide a few application examples for the results derived in this section.

A. Lower Bounding the Estimation Error Probability

For z given in (15), the average estimation error probability is given by Pr{B 6= B̂} = a+ b− 2z, which is a

convex (linear) function ofz. If a and b are fixed, then the error probability is minimized whenz is maximized.

Therefore

Pr{B 6= B̂} ≥ a+ b− 2z∗u(a, b).

Using the bound from Lemma 4, it follows that

Pr{B 6= B̂} ≥ a+ b− 2ab− 2ρm(X;Y )
√

a(1− a)b(1− b). (21)

The bound (21) is exactly the bound derived by Witsenhausen in [11, Thm 2.]. Furthermore, minimizing the

right-hand side of (21) over0 ≤ b ≤ 1/2, we arrive at

Pr{B 6= B̂} ≥
1

2

(
1−

√
1− 4a(1 − a)(1− ρm(X;Y )2)

)
, (22)

which is a particular form of the bound derived by Calmonet al. [15, Thm. 3].

B. Memoryless Binary Symmetric Channels with Uniform Inputs

We now turn our attention back to the setting considered in Section IV-A. Let Y n be the result of passing

Xn through a memoryless binary symmetric channel with crossover probabilityδ, Xn uniformly distributed, and

B → Xn → Y n → B̂. Thenρm(Xn;Y n) = 1− 2δ and, from (22), whenE [B] = 1/2,

Pr{B 6= B̂} ≥ δ.

Consequently, inferring any unbiased one-bit function of the input of a binary symmetric channel is at least as hard

(in terms of error probability) as inferring a single outputfrom a single input.

Using the result from Corollary 1, it follows that whenE [B] = E

[
B̂
]
= a andPr{B = B̂ = 0} ≥ a2, then

I(B; B̂) ≤ 1−Hb(δ). (23)
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Remark 6. Anantharamet al. presented in [8] a computer aided proof that the upper bound (23) holds for any

B → Xn → Y n → B̂. However, we highlight that the methods introduced here allowed an analytical derivation of

the inequality (23), which, in turn, is a particular case of the more general setting studied by Anantharamet al.
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