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Abstract—Consider a target moving with a constant velocity on
a unit-circumference circle, starting from an arbitrary location.
To acquire the target, any region of the circle can be probed for
its presence, but the associated measurement noise increases with
the size of the probed region. We are interested in the expected
time required to find the target to within some given resolution
and error probability. For a known velocity, we characterize the
optimal tradeoff between time and resolution (i.e., maximal rate),
and show that in contrast to the case of constant measurement
noise, measurement dependent noise incurs a multiplicative gap
between adaptive search and non-adaptive search. Moreover, our
adaptive scheme attains the optimal rate-reliability tradeoff. We
further show that for optimal non-adaptive search, accounting
for an unknown velocity incurs a factor of two in rate.

I. INTRODUCTION

Suppose a point target is arbitrarily placed on the unit-
circumference circle. The target then proceeds to move at some
constant velocity v (either known or unknown). An agent is
interested to determine the target’s position and velocity to
within some resolution δ, with an error probability at most ε,
as quickly as possible. To that end, the agent can probe any
region of his choosing (contiguous or non-contiguous) on the
circle for the presence of the target, say once per second. He
then receives a binary measurement pertaining to the presence
of the target in the probed region, which is corrupted by
additive binary noise. While the noise sequence is assumed to
be independent over time, its magnitude will generally depend
on the size of the probed region. This postulate is practically
motivated if one imagines that the circle is densely covered
by many small sensors; probing a region then corresponds to
activating the relevant sensors and obtaining a measurement
that is a (Boolean) function of the sum of the noisy signals
from these sensors. We therefore further operate under the
assumption that the larger the probed region, the higher the
noise level. Our goal is to characterize the relation between ε,
δ, and the expected time E(τ) until the agent’s goal is met,
for both adaptive and non-adaptive search strategies.

The case of stationary target search with measurement inde-
pendent noise p is well known (see e.g. [1]) to be equivalent to
the problem of channel coding with noiseless feedback over a
Binary Symmetric Channel (BSC) with crossover probability
p, where the message corresponds to the target, the number
of messages pertains to inverse of the resolution, the channel
noise plays the role of measurement noise, and the existence
of noiseless feedback pertains to the fact that the agent may
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use past measurements to adapt his probing strategy. Based on
the results of [2] it can be readily shown that using adaptive
strategies one can achieve

E(τ) =
log (1/δ)

C(p)
+

log (1/ε)

C1(p)
+ O(log log

1

δε
)

where C(p) is the Shannon capacity of the BSC with crossover
probability p, and C1(p) = D(p‖1−p). This result is also the
best possible up to sub-logarithmic terms. For non-adaptive
strategies, standard channel coding results [3] indicate for any
fixed 0 < R < C(p) there exists a strategy such that

τ =
log (1/δ)

R
, log (1/ε) =

E(R, p)

R
· log (1/δ)

where E(R, p) is the reliability function of the BSC, for which
bounds are known [3]. Hence, the minimal expected search
time (with a vanishing error guarantee) is roughly the same
for adaptive and non-adaptive strategies in the limit of high
resolution δ → 0, and is given by E(τ) ≈ log (1/δ)

C(p) . This
directly corresponds to the fact that feedback does not increase
the capacity of a memoryless channel [4]. Adaptive search
strategies do however exhibit superior performance over non-
adaptive strategies for a fixed resolution, attaining the same
error probability with a lower expected search time. They are
also asymptotically better if a certain exponential decay of
the error probability is desired, which directly corresponds to
the fact that the Burnashev exponent [2] exceeds the sphere
packing bound [3] at all rates below capacity.

The contribution of this work is threefold: leftmargin=*
• In contrast to the case of measurement independent noise,

it is shown that for known velocity and measurement
dependent noise there exists a multiplicative gap between
the minimal expected search time for adaptive vs. non-
adaptive strategies, in the limit of high resolution. This
targeting rate gap generally depends on the variability
of the measurement noise with the size of the probed
region, and can be arbitrarily large. The source of the
difference lies mainly in the fact that from a channel
coding perspective, the channel associated with measure-
ment dependent noise is time-varying in quite an unusual
way; it depends on the choice of the entire codebook. The
maximal targeting rates achievable using adaptive and
non-adaptive strategies under known velocity are given.

• A rate-reliability tradeoff analysis is provided for the pro-
posed adaptive and non-adaptive schemes, under known
velocity. It is shown that the former attains the best
possible tradeoff.

• For unknown velocity, the maximal targeting rate achiev-
able using non-adaptive schemes is shown to be reduced
by a factor of two relative to the case of known velocity.
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II. PRELIMINARIES

A. Notations

The Shannon entropy of a random variable (r.v.) X is de-
noted by H(X). The mutual information between two jointly
distributed r.v.s X and Y is denoted I(X;Y ). A BSC(p) is
a BSC with crossover probability p. When X ∼ Bern(q) and
Y is the output of a BSC(p) with input X , we write I(q, p)
for I(X;Y ). We write C(p) for the Shannon capacity of a
BSC(p), and C1(p) for the relative entropy D(p‖1 − p). The
cardinality of a finite set S is denoted by |S|. The Lebesgue
measure of a set S ⊂ R is similarly denoted by |S|. We write
1(·) for the indicator function. The cyclic distance between
a, b ∈ [0, 1) is the associated angular distance on the unit-
circumference circle, i.e., |a− b|c

def
= min{|a− b|, 1−|a− b|}.

B. Setup

Let w0 ∈ [0, 1) be the initial position of the target, arbitrarily
placed on the unit interval1. The target moves at a fixed but
unknown velocity v ∈ [0, 1), i.e., at time n the position of the
target is given by

wn = w0 + v · n (mod 1)

At time n, the agent may seek the target by choosing
(possibly at random) any measurable query set Sn ⊂ [0, 1) to
probe. Without loss of generality, we will assume throughout
that |Sn| ≤ 1

2 almost surely. Let Xn = 1(wn ∈ Sn) denote
the clean binary signal indicating whether the target is in the
probed region. The agent obtains a corrupted version Yn of
Xn, with noise level that corresponds to the size of the region
Sn. Specifically,

Yn = Xn + Zn (mod 2),

where Zn ∼ Bern (p[|Sn|]), and where p : (0, 1/2] 7→ [0, 1/2)
is a continuous and monotonically non-decreasing function.

A search strategy is a causal protocol for determining the
sets Sn = Sn(Y

n−1), associated with a stopping time τ and
estimators Ŵτ = Ŵτ (Y

τ ), V̂ = V̂ (Y τ ) for the last position
and the velocity. A strategy is said to be non-adaptive if the
choice of the region Sn is independent of Y n−1, i.e., the
sets we probe do not depend on the observations. In such
a case, the stopping time is also fixed in advance. Otherwise,
the strategy is said to be adaptive, and may have a variable
stopping time. A strategy is said to have search resolution δ
and error probability ε if for any w0, v,

Pr(max{|Ŵτ − wτ |c, |V̂ − v|c} ≤ δ) ≥ 1− ε

We are interested in the expected search time E(τ) for such
strategies, and specifically in the maximal targeting rate,
which is the maximal ratio log 1/δ

E(τ) such that ε→ 0 is possible
as δ → 0. We say that a sequence of strategies indexed by

1For simplicity of notation, we will think of the target as moving on the
unit interval modulo 1, instead of on the circle.

k achieves a targeting rate R and an associated targeting
reliability E = E(R), if δk → 0 as k →∞ and

E(τk) ≤
log (1/δk)

R
, log (1/εk) ≥

E

R
· log (1/δk)

for all k large enough.

III. NON-ADAPTIVE STRATEGIES

We state our main result for the non-adaptive case. Both
known and unknown velocities are treated. In our proofs we
will assume the latter; the former simpler case follows easily.

Theorem 1. Let p[·] be a measurement noise function. For
non-adaptive search strategies, the maximal targeting rate is
given by

max
q∈(0, 12 )

κI(q, p[q]) (1)

where κ = 1
2 for an unknown velocity, and κ = 1 for a known

velocity. Moreover, for any R below the maximal targeting
rate, there exist non-adaptive search strategy such that

τ =
log ((1/δ))

R
, log (1/ε) =

Er(R, q
∗)

R
· log (1/δ)

where q∗ is the maximizer in (1), and

Er(R, q
∗) = max

ρ∈(0,1)
E0(ρ, q

∗)− ρR/κ

is the random coding exponent [3] for a BSC(p[q∗]) with input
distribution q∗, at rate R/κ.

A. Proof of Converse

Denote the fixed stopping time by τ = N . Let {Sn}Nn=1 be
any non-adaptive strategy achieving an error probability ε with
search resolution δ. We prove the converse holds even under
the less stringent requirement where the initial position and
velocity are uniformly distributed (W0, V ) ∼ Unif([0, 1)2).
Partition the unit interval into dβ/δe equi-sized intervals for
some constant β ∈ (0, 12 ), and let W ′N be the index of the
interval containing WN . Similarly, let V ′ be the index of the
interval containing V . It is easy to see that the scheme {Sn}
can be made to return W ′N with error probability at most
ε′

def
= ε + 4β(1 − β), where the latter addend stems from the

probability that (ŴN , V̂ ) is too close to a boundary point.
Note that Xn ∼ Bern(qn) where qn

def
= |Sn| and that Yn

is obtained from Xn through a memoryless binary symmetric
channel with a time-varying crossover probability p [qn]. Fol-
lowing the steps of the converse to the channel coding theorem,
we have

2 log

(
β

δ

)
= H(W ′N , V

′)

= I(W ′N , V
′;Y N ) +H(W ′N , V

′|Y N )
(a)
≤ I(W ′N , V

′;Y N ) +Nε′

=

N∑
n=1

I(W ′N , V
′;Yn|Y n−1) +Nε′



≤
N∑
n=1

I(W ′N , V
′, Y n−1;Yn) +Nε′

≤
N∑
n=1

I(W ′N , V
′,Wn, Y

n−1;Yn) +Nε′

(b)
=

N∑
n=1

I(Xn;Yn) +Nε′

(c)
=

N∑
n=1

I(qn, p[qn]) +Nε′, (2)

where (a) is by virtue of Fano’s inequality, (b) follows
since Xn is a function of Wn and the measurement noise is
independent across time, and (c) stems from the fact that the
crossover probability sequence p[qn] is a fixed (time-varying)
function of the codebook. Note that here, in contrast to the
standard memoryless channel coding setup where the channel
noise is strategy independent, (b) above does not generally
hold when an adaptive strategy (i.e., feedback) is employed;
this stems from the fact that in this case, the intensity of
the observation noise would generally depend on Y n−1, and
therefore Yn −Xn − Y n−1 would not form a Markov chain.
Dividing by N we obtain

R =
log(1/δ)

N
≤ 1

2N

(
N∑
n=1

I(qn, p[qn])− 2 log β

)
+
ε′

2

≤ 1

2

(
sup

q∈(0, 12 )
I(q, p[q])− 2 log β

N
+ ε+ 4β(1− β)

)
.

Noting that the inequality above holds for any β ∈ (0, 12 ), the
converse now follows by taking the limit N → ∞, and then
requiring ε→ 0.

B. Proof of Achievability

Achievability is obtained via random coding using an input
distribution q∗ that achieves the supremum in (1). A sketch of
the proof is now given. We partition the unit interval into M =
N
δ equi-sized subintervals {bm}. Each pair of initial position

and velocity (w0, v) naturally induces a trajectory m(w0, v)
w.r.t. this partition. We say that two trajectories m(w0, v) and
m(w′0, v

′) are (δ,N)-close if |w0−w′0|c ≤ δ and |v−v′|c ≤ δ
N .

Otherwise, we say the trajectories are (δ,N)-far.

Lemma 1. The number of different trajectories is upper
bounded by K = M2 · O(poly(N)). Moreover, if two tra-
jectories intersect more than once, then their corresponding
initial positions and velocities are (δ,N)-close.

We now draw a codebook with M rows, where each row
xm has N bits. The codebook is drawn i.i.d. Bern(q∗). We
define our random query set Sn according to the codebook’s
columns:

Sn
def
= A+Bn+

⋃
m:xm,n=1

bm

where (A,B) ∼ Unif([0, 1)2) serve as a random “dither”,
mutually independent of the measurement noise. This dithering

procedure renders our setting equivalent to the setup where the
initial position and velocity are uniform and independent, and
where the query sets are given by A = B = 0. We shall
proceed under this latter setup.

The next Lemma stems directly from Chernoff’s bound.

Lemma 2. Let A be the event where ||Sn| − q∗| ≤ ε for all
n. Then for any ε > 0, Pr(Ac) = 2−2

O(N)

.

Remark 1. Under the event A, we can safely assume that the
measurements are observed through a BSC(p[q∗ + ε]), since
we can always artificially add noise to the observations at any
time n for which |Sn| < q∗ + ε.

Our codebook induces a set of trajectory codewords
{xm(w0,v),n}n,w0,v . Note that each trajectory codeword corre-
sponds to a set of possible initial positions and velocities. With
a slight abuse of notations, we denote the trajectory codewords
by {xk}Kk=1. After N queries, we find the trajectory codeword
that has the highest likelihood under the assumption that the
measurements are observed through a BSC(p[q∗+ε]). We now
show that the likelihood of the correct trajectory codeword
is with high probability higher than that of all trajectory
codewords whose associated initial position or velocity are at
least (δ,N)-far. Hence, the initial position and velocity of the
decoded trajectory will be (δ,N)-close to the correct one, with
high probability. Note that if the target had been stationary, we
would have searched for the highest likelihood row just as in
channel coding.

We write the average probability of error as

P e = Pr(A) Pr(e|A) + Pr(Ac) Pr(e|Ac).

The second term vanishes double exponentially fast. For the
other term we have

Pr(e|A) =
∑
xk

Pr(xk|A)PA(y|xk) Pr(e|xk,y,A),

where y are the noisy observations and PA(y|xm) is the
BSC(q∗ + ε) induced by the event A (and possible random-
ization). Let Ek′ denote the event that the trajectory codeword
xk′ is chosen instead of xk. Let Tk be the set of all k′ for
which either the velocity or the initial position of each of the
trajectories associated with x′k, are more than δ-far from those
of xk.

Pr(e|xk,y,A) ≤
∑
k′∈Tk

Pr(Ek′ |A) (3)

and

Pr(Ek′ |A) =
∑

xk′ :PA(y|xk)≤PA(y|xk′ )

Pr(xk′ |xk,A) (4)

Note that unlike [3, eq. 5.6.8], we cannot assume the trajectory
codewords are independent under event A. Furthermore, for
k′ ∈ Tk the trajectories may intersect once. We therefore
have that Pr(xk,xk′ |A)) ≤ Pr(xk,xk′ )

1−Pr(Ac) ≤ Q(xk)Q(xk′ )
(1−Pr(Ac))qmin

and Pr(xk|A) ≥ Q(xk) − Pr(Ac), where Q(·) denotes the
random coding prior, and qmin denotes the probability of the



least probable binary symbol under Q. Using this and Bayes
rule, for N large enough we have:

P (xk′ |xk,A) ≤
Q(xk)Q(xk′)

(1− Pr(Ac))(Q(xk)− Pr(Ac))qmin

≤ Q(xm′)

(1− Pr(Ac)/qNmin)2qmin
=
Q(xm′)

qmin
(1 + 2−2

O(N)

) (5)

After substituting (5) in (4) and (3) and plugging in δ = 2−NR,
we can follow Gallager’s derivation of the random error expo-
nent [3] almost verbatim, with the following two distinctions:
1) By Lemma 1 the effective number of messages is now
|Tk| = K = M2 · O(poly(N)); and 2) for any finite N , the
exponent is multiplied by a constant pertaining to the double
exponential penalty and to qmin, but this constant converges
to unity as N grows. The exponent is positive as long as
R ≤ I(q∗, p[q∗ + ε])/2. As ε is arbitrary, this concludes the
proof of achievability.

IV. ADAPTIVE STRATEGIES

In this section, we consider the gain to be reaped by
allowing the search decisions to be made adaptively. For
simplicity, we assume here that the velocity is known in
advance, and hence without loss of generality can be assumed
to be zero. We will again use dithering to make the initial
position appear uniformly random. Here, the duration of search
τ will generally be a random stopping time dependent on the
measurements sample path. Moreover, the choice of probing
regions Sn, for n up to the horizon τ , can now depend on
past measurements. We characterize this gain in terms of
the maximal targeting rate, and the targeting rate-reliability
tradeoff. As we shall see, adaptivity allows us to achieve the
maximal possible rate and reliability, i.e., those associated with
the minimal observation noise p[0].

A. Non Adaptive Search with Validation

As a first attempt at an adaptive strategy, we continue with
the non-adaptive search from the previous section, but allow
the agent to validate the outcome of the search phase. We
will consider two validation schemes, due to Forney [5] and
Yamamoto-Itoh [6].

In [5], Forney considered a communication system in which
a decoder, at the end of the transmission can signal the encoder
to either repeat the message or continue to the next one.
Namely, it is assumed that a one bit “decision feedback” can
be sent back to the transmitter at the end of each message
block. This is achieved by adding an erasure option to the
decision regions, that allows the decoder/agent to request a
“retransmission” if uncertainty is too high, i.e., to restart
the exact same coding/search process from scratch. More
concretely, given Y N , a codeword k will be declared as the
output if P (yN |xk)∑

k′ 6=k P (yN |x′k)
≥ 2NT , where T > 0 governs the

tradeoff between the probability of error and the probability
erasure. Let E denote the event of erasure. The expected search
duration will be N

1−Pr(E) . While having negligible effect on the
rate (as long as Pr(E) vanishes as N grows), the results of [5]

immediately imply that such a scheme drastically improves the
error exponent compared to non-adaptive schemes (see Fig.1).

The second validation scheme we consider was proposed
by Yamamoto and Itoh in [6] in the context of channel
coding with clean feedback. Unlike Forney’s scheme which
requires only one bit of feedback, this scheme requires the
decoder to feed back its decision. While perfect feedback is
impractical in a communication system, in our model it is
inherent and can be readily harnessed. After completing the
search phase with resolution δ, the agent continues to probe the
estimated target location, namely an interval of size δ. If the
probed region contains the target, the output of the validation
phase should look like a sequence of ’1’s passing through a
BSC(p[δ]). Thus, if the validation output is typical w.r.t. to
a binary source with Pr(′1′) = 1 − p[δ], the agent outputs
that region as the final decision. Otherwise, the whole search
is repeated from scratch. Specifically, After the N queries of
the non-adaptive search, we probe the aforementioned region
λN more times, where 0 ≤ λ ≤ ∞ determines the tradeoff
between rate and reliability. Let E denote the event that the
search is repeated. This happens if the wrong region has
been chosen, or otherwise if the observations in the validation
step were not typical. Both these events will have vanishing
probabilities and therefore the rate will be negligibly affected;
the average search length is now E(τ) = N(1+λ)

1−Pr(E) . Following

the derivations of [6] with λ = I(q∗;p[q∗])
R − 1, and noting that

δ can be made arbitrarily small, we obtain:

Lemma 3. The targeting rate-reliability tradeoff for non-
adaptive scheme with a Yamamoto-Itoh validation is given by

E = C1(p[0]) ·
(
1− R

I(q∗; p[q∗])

)
Note that with this search strategy, we get better reliability

than the optimal one for the BSC(q∗) with feedback (given
by Burnashev [1]) since the validation is done over the least
noisy channel (see Fig.1).

B. Two-Phase Search with Validation

In this section, we show that a simple two-phase scheme
with validation achieves the best possible performance, im-
proving upon non-adaptive strategies (with and without vali-
dation) both in maximal targeting rate and in targeting rate-
reliability tradeoff.

Theorem 2. Let p[·] be a measurement noise function. For any
α ∈ (0, 12 ), there exists a search scheme with error probability
ε and resolution δ, satisfying

E[τ ] ≤
(
log(1/α)

C(p[q∗])
+

log(1/δ)

C(p[α])
+

log(1/ε)

C1(p[δ])

)
(1 + o(1)) .

Corollary 1. By letting α vanish much slower than δ, we
conclude that the maximal targeting rate for adaptive schemes
is given by

C(p[0])
def
= max

q∈(0, 12 )
I(q, p[0]) = I( 12 , p[0]),



which is the capacity of the least noisy BSC associated with
the measurements, which is the best possible. The associated
targeting rate-reliability tradeoff is

E(R) = C1(p[0])

(
1− R

C(p[0])

)
.

which is also the best possible.

Remark 2. Juxtaposing Theorem 1 and the Corollary above,
we conclude that (unlike the case of constant interval-
independent noise) adaptive search strategies outperform the
optimal non-adaptive strategy in both targeting rate and
reliability.

Proof: We prove the theorem for a fixed α and δ, ε→ 0.
In the first search phase, the agent employs the optimal non-
adaptive search strategy with τ = logN and resolution α, i.e.
with a vanishing rate R = log 1/α

logN . At the end of this phase,
the agent knows an interval of size α containing the target
with probability 1− o(N).

In the second phase, the agent “zooms-in” and performs
the search only within the interval obtained in the first phase.
To that end, the agent employs the optimal non-adaptive
search strategy with τ = λN − logN and resolution δ =
2−(λN−logN)R, i.e. with rate R = log 1/δ

λN−logN , with the query
sets properly shrunk by a factor of α. We note that in this
phase, all queried sets are of size smaller than α/2, hence
the associated noise is less that p[α]. Therefore, if the rate
R < C[p[α]], then at the end of this phase the agent knows
an interval of size δ containing the target with probability
1− o(N).

At this point, the agent perform the Yamamoto-Itoh valida-
tion step of length (1−λ)N , which queries a fixed interval of
size δ. If not successful, the agent repeats the whole two-
phase search from scratch. The expected stopping time of
this procedure is N

1−o(N) , and the error probability decays
exponentially with an exponent controlled by trading off
the search and validation as before, yielding the associated
Burnashev behavior for the channel p[δ].

V. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we considered the problem of acquiring a
target moving with known/unknown velocity on a circle start-
ing from an unknown position, under the physically motivated
observation model where the noise intensity increases with the
size of the queried region. For a known velocity, we showed
that unlike the constant noise model, there can be a large gap
in performance (both in targeting rate and reliability) between
adaptive and non-adaptive search strategies. The various rate-
reliability tradeoffs discussed herein are depicted in Fig. 1.
Furthermore, we demonstrated that the cost of accommodating
an unknown velocity in the non-adaptive setting, is a factor of
two in the targeting rate, as intuition may suggest.

One may also consider other search performance criteria,
e.g., where the agent is cumulatively penalized by the size of
either the queried region or its complement, according to the
one containing the target. The rate-optimal scheme presented
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Fig. 1. Error exponents (known velocity) for noise growing linearly with
size: p[0] = 0.1, p[ 1

2
] = 0.45 (a) Random coding (b) Decision feedback (c)

Burnashev’s upper bound for BSC(p[q∗]) (d) Yamamoto-Itoh validation for
the non-adaptive scheme (e) Yamamoto-Itoh validation for BSC(p[0]).

herein, which is based on a two-phase random search, may
be far from optimal in this setup. In such cases we expect
that sequential search strategies, e..g, ones based on posterior
matching [7], [8], would exhibit superior performance as they
naturally shrink the queried region with time.

Other research directions include more complex stochastic
motion models, as well as searching for multiple targets (a
“multi-user” setting). For the latter, preliminary results indicate
that the gain reaped by using adaptive strategies vs. non-
adaptive ones diminishes as the number of targets increases.
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