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Effects of Mobility on User Energy Consumption
and Total Throughput in a Massive MIMO System

Aris L. Moustakas?† , Luca Sanguinetti‡† and Mérouane Debbah†

Abstract—Macroscopic mobility of wireless users is important
to determine the performance and energy efficiency of a wireless
network, because of the temporal correlations it introduces in
the consumed power and throughput. In this work we introduce
a methodology that obtains the long time statistics of such
metrics in a network. After describing the general approach,
we present a specific example of the uplink channel of a mobile
user in the vicinity of a massive MIMO base-station antenna
array. To guarantee a fixed SINR and rate, the user inverts the
path-loss channel power, while moving around in the cell. To
calculate the long time distribution of the consumed energy of
the user, we assume his movement follows a Brownian motion,
and then map the problem to the solution of the minimum
eigenvalue of a partial differential equation, which can be solved
either analytically, or numerically very fast. We also treat the
throughput of a single user. We then discuss the results and how
they can be generalized if the mobility is assumed to be a Levy
random walk. We also provide a roadmap to use this technique
when one considers multiple users and base stations.

I. Introduction

Perhaps the most challenging property of the wireless
propagation channel is its temporal variability. Since the first
mobile telephones appeared at a massive scale, engineers had
to address the temporal fluctuations of the received signal
power to make sure that a call connection remained active.
Adverse effects that needed to be countered include (a) fading
holes of the channel due to multiple wave reflections, (b)
change in the link distance due to physical movement of
the wireless device away from the base, or (c) interference
fluctuations due to movement of interfering devices.

To understand the behavior of fading various models were
proposed with varying complexity, starting from the Jakes
model[1] to more involved correlated models in both frequency
and time [2]. The introduction of concise fading models has
made it possible to obtain, together with numerical simula-
tions, analytical expressions for the quantities of interest, such
as ergodic and outage capacities etc[3]. This in turn allowed
the introduction of ways to counter the adverse effects of
fading, through scheduling and space-time coding.

The effects of path-loss have also been studied more recently
in a large body of work using the theory of Poisson point
processes (PPP) [4], [5], [6]. This approach has provided a
good understanding of the effects of randomness in position
of mobile devices in a network and has allowed a thorough
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characterization of the statistics of interference in wireless
networks. However, most of the analysis deals with static
or near-static networks and does not take into account the
consequences of macroscopic mobility of users.

This shortcoming is important when one realizes that due
to not too rapid mobility there are temporal correlations in
the necessary power for any given user. For example an
untypically high density of users at the cell edge will result
to an increased energy consumption over an extended period
of time, which may drain the available energy resources of
a base-station. This in turn becomes important especially for
off-grid deployments, with finite energy resources. Therefore,
it is important to quantify not only how often such unlikely
events happen, but also how long they last, which depends on
the user mobility.

To analyze the effects of mobility, simple yet effective
models that describe the statistics of humans moving around
are necessary. Several models have been proposed[7], [8] and
their statistical properties have been studied [9] in detail and
have been implemented in numerical simulators. In particular,
three types of mobility models are more popular. The first
and simplest one is a random walk (RW). This model is a
continuous time Markov process on a lattice with a step size
distribution which has zero mean and finite variance. At long
times and distances this can be approximated by a Brownian
motion (BM). Another, more involved one, corresponds to
a Markov process (LRW) with infinite variance in the step
size distribution, due to the long tails in the step sizes,
corresponding to Levy processes. This has been proposed as
a more realistic model for human mobility[10], [11]. Finally,
the so-called random waypoint process (RWP) has also been
proposed, in which a mobile user picks a random destination
and travels with constant velocity to reach it, which is also a
Markov process. However, despite the well-understood proper-
ties of the mobility models above not much progress [12] has
been made towards providing analytical results for the long
term statistics of communications performance metrics, such
energy consumed or total throughput.

In this paper we take advantage of the Markovian property
of user mobility to analyze the long time statistics of these
performance measures in a network with mobility. We believe
that the approach is fairly general to encompass all Markovian
mobility models described above, at least in principle. The
methodology is based on a simple, but powerful theorem,
the so-called Feynman-Kac formula[13], [14], which maps the
average over all random walks to the minimum eigenvalue of
an partial differential equation, which is related to the random
walk.
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A. Outline

In the next section we will define the metrics of interest, in
terms of an integral over time. We will introduce the mobility
model and show how we can calculate the probability of
finding a user at a given location using the diffusion equation.
In Section III we state the main result of the paper, namely
Theorem 1 and outline its proof. In Section IV we calculate the
long time statistics of the uplink energy consumption, while in
Section V we do the same for the total throughput. Finally, in
Section VI we discuss how these methods can be generalized
to other situations.

II. Problem Statement and Setup

The purpose of this paper is to present a methodology to
analyze the long time T statistics of quantities of the form

ET =

∫ T

0
dt V(r(t)) (1)

where V(x) is a function of the position of one or more mobile
devices in a network and the devices move around the region
of interest over time. We will assume here that V(x) ≥ 0 and
that it is bounded from above.

A. Metrics of Interest

V(x) is a function that can represent a number of relevant
metrics of interest. In this paper, we will deal with two specific
functions.

1) Energy: In the first case V(x) is proportional to the
inverse of the pathloss function between a given user and the
nearest base-station. Hence we have

Vp(r) = P(r) = γrβ (2)

where β is the pathloss exponent and r is the distance between
the user and the base-station. Here the integral in (1) will
correspond to the total energy consumption of the mobile over
time T . For simplicity we treat only a single cell which we
take to be square with side R and the base-station located at
the center. This problem may be generalized straightforwardly
to a network of bases located e.g. at a square grid. In that
case, we would need to replace the distance r above by rmin =

minri |r − ri|
β where ri is the location of the ith base-station.

The above quantity is the power necessary for a user at
a distance rβ from a base-station to maintain signal to noise
ratio equal to γ in the presence of unit variance noise, no
other interference and no fading. Despite its simplicity it is
not difficult to show that this is asymptotically correct in the
massive MIMO setting, where a finite number of users K is
served with a very large antenna array of N antennas at the
base. Indeed, the N dimensional received signal vector y at
the base is

y =

K∑
k=1

hkg(rk)1/2xk + z (3)

where hk for k = 1, . . . ,K is the N-dimensional channel
vector for user k, with elements assumed for simplicity to be
∼ CN(0,N−1), g(r) = |r|−β is the corresponding pathloss func-
tion and xk the transmitted signal, with z the N-dimensional

noise vector with elements ∼ CN(0, 1). Then, in the limit
N � K the SINR for each user becomes [3] asymptotically

S INRk = g(rk)�
[
|xk |

2
]

(4)

Requiring this to be equal to γ results to (2) after we realize
that when the user switches base stations when it reaches the
edge of the cell. The pathloss function inversion can easily
be implemented through the periodic feedback of a channel
quality indication (CQI) to the mobile device, as is usually
done. Hence the above power control scheme corresponds to
situations where the user needs a constant rate.

2) Throughput: A dual uplink transmission strategy to the
above for a mobile user in a network corresponds to transmit
continuously at a constant power and take advantage of the
instances when the channel is good due to proximity to a
base-station. In this case the power transmitted is fixed, but
it is the communication rate that is fluctuating with distance.
This can be expressed as

Vc(r) = C(r) = αmin
(
log

[
1 +

p
rβ

]
,Rmax

)
(5)

where r is defined as above, Rmax = log(1 + p/rβ0) is the
maximum rate achieved at distance r0 and α, p are constants.
Here the integral of (1) will correspond to the total throughput
uploaded over time t in bits. The above expression has two
interpretations, depending on the context. In the case of a
single base antenna, single user case, it corresponds to the
outage capacity at location rmin. In this case, α = 1 − pout is
the probability of non-outage, while p = −P log(1 − pout) and∫

dtC(r(t)) will correspond to the total goodput. In a massive
MIMO multi-user setting, α = 1 and p is the signal to noise
ratio.

B. Mobility Model

We will now specify the dynamics of user mobility. In
particular, we assume that the user of interest moves accord-
ing to a continuous time Markov process. The infinitesimal
generator of the process is denoted by the operator M0 acting
on the space of square integrable functions `2(�2). Hence the
probability that a user is at location r at time t, given that he
was at location r0 at time t = 0 can be expressed in terms of
M0 as follows[13]

�(r, t; r0, 0) = e−M0t(r, r0) (6)

where the right hand side is the r, r0-matrix element of the
exponential operator. For concreteness, we will only assume
the user performs the simplest Markov process, namely a
Brownian motion. This is known to be a good approximation
for the long time, large distance properties of a Markov process
with finite step variance [15]. In this case, the infinitesimal
generator is simply

M0 = −
D
2
∇2 (7)

i.e. proportional to the Laplacian operator, with proportionality
constant D, the diffusion constant. In this case, the above
probability satisfies the diffusion equation

∂�(r, t; r0, 0)
∂t

=
D
2
∇2
�(r, t; r0, 0) (8)
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with initial condition �(r, 0; r0, 0) = δ(r − r0), where δ(x) is
the two dimensional Dirac δ-function.

We will also need to specify the boundary conditions of
the Brownian motion. Specifically, we will assume periodic
boundary conditions. This means that the mobile user, when
he moves through the boundary of the cell, re-appears from the
other side with the same direction. While it is not particularly
realistic to assume such a behavior from a user, it is not
hard to see that this is a good way to mimic the hand-over
to a neighboring cell region. This will be discussed further
elsewhere.

III. Mathematical Framework

In this section we will prove the main result of the paper,
which provides the long time behavior of the metrics intro-
duced above. Then we will obtain analytic limiting behavior
for small and large values of the energy and the throughput,
as well as the behavior close to the mean.

Theorem 1. Let V(r) ≥ 0 be a continuous, upper bounded
function of the distance r and ET be given by (1), in which
the time-dependence of the position r(t) is due to a Brownian
motion on a square � = (−R/2,R/2)2 with diffusion constant
D, periodic boundary conditions and initial condition r0 =

r(0). Then if A ⊂ � we have

lim
T→∞

1
T

log�(ET /T ∈ A) = − inf
x∈A

I(x) (9)

I(x) = − inf
λ∈�
{λx − ε0(λ)} (10)

where ε0(λ) is the minimum eigenvalue of the operator

Mλ = −
D
2
∇2 + λV(r) (11)

Proof: We now sketch the basic steps of the proof. We
start by applying Cramer’s theorem[16] to find that in the limit
of large T log�(ET ∈ A) obeys a large deviation principle with
rate function I(x) so that

lim
T→∞

1
T

log Prob(ET /T ∈ A) = − inf
x∈A

I(x) (12)

I(x) = − inf
λ∈�
{λx + Λ(λ)} (13)

Λ(λ) = lim
T→∞

1
T

log�r0

[
e−λET

]
(14)

In the above, the expectation is over Brownian paths (random
walks) with initial condition r(0) = r0. Also, note that the
second line has an inf rather than a sup as is customary, due to
the fact that we have Λ(λ) with a negative sign in the exponent.

Now, the main trick in this proof is to take advantage of
a famous result, namely the Feynman-Kac (FK) formula[14],
[13] which states that

e−MλT (r0, rT ) = �(rT ,T ; r0, 0)�r0,rT

[
e−λET

]
(15)

where the right hand side is an expectation over all Brownian
motions starting at r0 and ending at rT at time T . The
operator M0 is the infinitesimal generator of the semigroup
corresponding to the mobility process and in the case of the
simple Brownian motion M0 is given in (7). We can relate this
equation to the right-hand-side of (14), we need to integrate

the above over rT , of course with the appropriate probability
of the path, namely �(rT ,T ; r0, 0).

The left-hand side of the FK formula can be expressed very
simply using the spectral decomposition of Mλ. Let φn(r) be
the eigenfunctions of Mλ with corresponding eigenvalue εn(λ).
Then we have

e−MλT (r0, r) =

∞∑
n=0

φn(r0)φn(r) e−εn(λ)T (16)

The periodic boundary conditions imposed above mean that
the eigenfunctions φn(r) and their derivatives ∇φn(r) have to be
continuous on opposite boundaries, i.e. (x,−R/2) → (x,R/2)
and (−R/2, y) → (R/2, y). Integrating over the final position
rT , we obtain

�r0

[
e−λET

]
=

∞∑
n=0

θnφn(r0) e−εn(λ)T (17)

θn =

∫
r∈�

φn(r)dr

As a result, in the large T limit we have

�r0

[
e−λET

]
≈ θ0φ0(r0) e−ε0(λ)T (18)

Combining this equation together with (13)-(14) completes the
proof.
Remark. It should be pointed out that there are analogous (but
non-local) expressions for generators of stable processes as
well[17]. Also, discrete analogues of the Laplacian can also
be found, corresponding to discrete space (continuous time)
Markov processes. The FK formula essentially finds the right
way to weight the dynamics of the user for which all locations
in the cell are equal and the weighting of V , which is different
as a function of r.

We thus see that in the large T limit, we are left with the
technical task of finding the minimum eigenvalue ε0(λ) of the
operator Mλ for all λ. We then plug these into (13) and solve
for λ. Both steps can be done numerically with not too much
effort. However, as we shall see now, we can obtain limiting
results for the tails of the distribution analytically.

IV. Energy Statistics

In this section we will discuss the results for the energy
statistics. In this case the quantity of interest is

ET = γ

∫ T

0
r(t)βdt (19)

Plugging this into the methodology above we may obtain the
rate function Ie(x), which provides the leading (exponential)
term in the distribution of ET for large T . To do this we will
need to find the minimum eigenvalue of the operator in (11)
for V(r) = γrβ.

We will start by deriving limiting analytic results for large
and small values of ET . Starting slightly backwards, we will
derive limiting results for the case when λ is large and
positive. This will correspond for the occurrence probability of
unusually small values of the energy. In this case, the minimum
eigenvalue ε0(λ) will have an eigenfunction localized close
to the bottom of V(r), namely the center of the cell. As a
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Fig. 1. In Figure (a) we plot the rate function for the distribution of the energy of the mobile user. The rate function is plotted for both a one- and
two-dimensional square cell. To fit both curves in the same plot the x-axis indicates the energy value normalized to its maximal value. Although close to the
point where the rate function vanishes, which occurs at the mean value of the energy, the shape is quadratic, its distinctly non-Gaussian shape becomes evident
beyond that region. The diverging behavior at the two boundary values, as analyzed in Section IV are visible in the plot. In Figure (b) the rate function for
the throughput distribution is plotted. The values β = 4, p = 0.01, r0 = 0.1 and α = 1 are used. The very different behavior between one- and two-dimensional
rate values for large values of B are due to the lower density of points for r < r0 for two- versus one-dimensional cells.

first approximation, we can forget the boundary of the cell
and extend it to infinity. We can therefore rescale the distance
variable to r = rx, where r =

(
Dλ−1γ−1

)1/(β+2)
and eliminate

the dependence on λ. The resulting minimum eigenvalue
becomes approximately equal to

ε(λ) ≈ D
β
β+2 γ

2
β+2 λ

2
β+2 ε0 (20)

where ε0 is the minimum energy of Mλ in �2 with λ = D = 1.
After some algebra we obtain

Ie(x) ≈
D
R2

β2
(

2ε0

β + 2

)1+ 2
β


(

x
γRβ

)− 2
β

(21)

which is valid when ET � γRβT .
To obtain the more interesting tails for ET � PmeanT , we

need to analyze the case for large negative λ. We now see
that the minimum of λV(r) is at the corners of the cell. We
now need to do expand the term |r|β around the value rβmax,
rmax = R/

√
2. As a result and after a shift and 45o rotation of

axes, we have

Mλ ≈ λPmax + M0 − λγβrβ−1
max max(|x|, |y|) + O(|λ|rβ−2

max) (22)

where Pmax = γrβmax. In this case we get

Ie(x) ≈
D
R2

4ε3
m

27

(
1 −

x
Pmax

)−2

(23)

where εm is the minimum eigenvalue of the “inverted tetrahe-
dron” operator

Me f f = −
1
2
∇2 + max(|x|, |y|) (24)

in L2(�2).

Finally, we may obtain the behavior for ET ≈ T Pmean. With
some hindsight, we look in the region of small |λ|.In this case
we treat λV(r) as small and after performing second order
perturbation theory [18] we find that

ε0(λ) ≈ λPmean − λ
2
∑
n,0

V2
n0

εn
(25)

where Vn0 is the expectation of V(r) over the eigenfunction
φn0(r) of the Laplacian and εn0 the corresponding eigenvalue
in the square domain. It then turns out that I(x) takes the form

Ie(x) ≈
(x − Pmean)2

2σ2 (26)

where σ2 is twice the term multiplying λ2 above. This turns
out to be the expression for the variance obtained in [19].

In Fig. 1(a)(a) we plot the numerically generated rate
function of the energy Ie(x) by calculating numerically the
minimum eigenvalue ε0(λ) of (11) with V(r) = λγrβ in a
square of unit length for various values of λ. Then for any
given value of x, we use this function to find the minimum
of λx − ε0(λ). This minimum value is plotted in the figure.
We also did the same for a one-dimensional by finding the
minimum eigenvalue the same operator on unit length line.
We see that Ie(x) vanishes when x = Pmean = �r[P(r)] where
the expectation is over the cell.. The rate function plotted
there provides information about the distribution of the energy
ET , as was discussed in (10). Indeed for ET > PmeanT the
probability distribution of ET is, to logarithmic accuracy equal
to

�(ET > xT ) ∼ e−Ie(x)T (27)

A similar expression holds for ET < PmeanT .
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V. Throughput Statistics

In this section we will present results for the statistics
of user throughput in the uplink. As discussed earlier, the
appropriate functional here is the integrated rate given by
BT =

∫ T
0 C(r(t))dt. As in the previous section we can use

this to obtain the rate function Ib(x), which provides the
leading (exponential) term in the distribution of the total bits
transmitted BT for large T .

In Fig. 1(a)(b) we plot the numerically generated rate
function of the throughtput Ib(BT /T ) evaluated similarly as
in the previous section for the energy. The larger difference
between one- and two-dimensional values of the rate for larger
values of the throughput are due to the lower density close to
the center in two-versus one-dimensional geometries. As also
discussed above the rate function Ib(x) provides to logarithmic
accuracy the probability that BT < xT , thus providing a
metric for total throughput “outage” probability. Indeed when
BT < CmeanT , where Cmean = �r C(r)] is the value of x = BT /T
where Ib(x) = 0, the probability distribution of BT is, to
logarithmic accuracy equal to

�(BT > xT ) ∼ e−Ib(x)T (28)

VI. Discussion and Outlook

Summarizing the contributions of this paper, we have pro-
vided a technique to obtain the probability distribution of
performance metrics, such as the total throughput and the
consumed energy over time for wireless systems by exploiting
the statistics of mobility. This methodology can help improve
network design and dimensioning, by providing analytic re-
sults for low probability events of high energy consumption
and/or throughput irregularities. As specific examples, we
calculated the long time distribution of the consumed uplink
power and the corresponding total throughput of a single
user in a massive MIMO cell, assuming that the user moves
according to a Brownian motion.

It should be briefly mentioned that we can generalize the
above discussion for Levy random Markov processes that have
infinite variance of each step, corresponding to long tailed
distributions[10], [11]. The only difference in the above dis-
cussion is the choice of an appropriate infinitesimal generator
of the process, which will now be a symmetric stable law
of index α < 2 [20]. In this case M0 does not have a local
representation (as a derivative), but is still well defined [17],
[20], [21]. Using the same arguments as above, we can obtain
the long term statistics for this mobility model as well. While
we leave the more involved presentation of results for a longer
paper it is worth mentioning briefly how the above results
are expected to change. Focusing for brevity only on the
energy case, since M0 will have scale dimensions of R−α, we
can rescale the equations once again and find that for large
positive λ the minimum eigenvalue will be ε0(λ) ∼ λα/(α+β).
Conversely, for large negative λ the minimum eigenvalue will
be ε0(λ) − λrβmax ∼ λ

α/(1+α). Putting these together which then

correspond to a rate function

Ie,low(x, α) ∼ x−α/β (29)

Ie,high(x, α) ∼

(
1 −

x

rβmax

)−α
(30)

We can also generalize the above results to larger systems
with many base-stations. In such situations a user switches
between base-stations when crossing the cell boundary in
which case the energy consumption in the uplink continues
to increase, or in the downlink the power associated to that
user is switched off. Mathematically, this has the effect of
having a periodic power function, when the cells are assumed
to appear in an ordered fashion. Another obvious general-
ization has to do with taking into account orthogonal (such
as OFDMA) channels and treating the total downlink sum-
throughput and/or power comsumption. In this system, we end
up with an operator M describing multiple Brownian motions.
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