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Abstract—This paper considers max-min fairness for wireless
energy transfer in a downlink multiuser communication system.
Our resource allocation design maximizes the minimum har-
vested energy among multiple multiple-antenna energy harvest-
ing receivers (potential eavesdroppers) while providing quality
of service (QoS) for secure communication to multiple single-
antenna information receivers. In particular, the algorithm design
is formulated as a non-convex optimization problem which takes
into account a minimum required signal-to-interference-plus-
noise ratio (SINR) constraint at the information receiversand a
constraint on the maximum tolerable channel capacity achieved
by the energy harvesting receivers for a given transmit power
budget. The proposed problem formulation exploits the dual
use of artificial noise generation for facilitating efficient wire-
less energy transfer and secure communication. A semidefinite
programming (SDP) relaxation approach is exploited to obtain
a global optimal solution of the considered problem. Simulation
results demonstrate the significant performance gain in harvested
energy that is achieved by the proposed optimal scheme compared
to two simple baseline schemes.

I. I NTRODUCTION

Ubiquitous, secure, and high data rate communication is a
basic requirement for the next generation wireless commu-
nication systems. The rapid growth of wireless data traffic
in the past decades has heightened the energy consumption
in both transmitters and receivers. As a result, multiuser
multiple-input multiple-output (MIMO) has been proposed in
the literature for facilitating energy efficient wireless commu-
nication. Although the energy dissipation of the transmitters
may be significantly reduced by multiuser MIMO technology,
mobile communication devices and sensor devices are still
often powered by batteries with limited energy storage ca-
pacity. Frequently replacing the device batteries can be costly
and inconvenient in difficult-to-access environments, or even
infeasible for medical sensors embedded inside the human
body. Hence, the limited lifetime of communication networks
constitutes a major bottleneck in providing quality of service
(QoS) to the end-users.

Recently, energy harvesting based mobile communica-
tion system design has drawn significant interest from both
academia and industry since it enables self-sustainability of
energy constrained wireless devices. Traditionally, wind, solar,
and biomass, etc. are the major sources for energy harvesting.
Although these renewable energy sources are perpetual, their
availability usually depends on location and climate which
may not be suitable for mobile devices. On the other hand,
wireless energy transfer technology, which allows receivers
to scavenge energy from the ambient radio frequency (RF)
signals, has attracted much attention lately although the con-
cept can be traced back to Nikola Tesla’s work in the early
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20th century [1]. There have been some preliminary applica-
tions of wireless energy transfer such as wireless body area
networks (WBAN) for biomedical implants, passive radio-
frequency identification (RFID) systems, and wireless sensor
networks. Indeed, the combination of RF energy harvesting
and communication provides the possibility of simultane-
ous wireless information and power transfer (SWIPT) which
imposes many new and interesting challenges for wireless
communication engineers [2]–[8]. In [2], the trade-off between
channel capacity and harvested energy was studied for near-
field communication over a frequency selective channel. In
[3], the authors investigated the performance limits of a
three-node wireless MIMO broadcast channel for SWIPT. In
particular, the tradeoffs between maximal information rate
versus energy transfer were characterized by the boundary
of a rate-energy (R-E) region. In [4], a power splitting
receiver and a separated receiver were proposed to realize
concurrent information decoding and energy harvesting for
narrow-band single-antenna communication systems. In [5]–
[7], different resource allocation algorithms were proposed
for improving the utilization of limited system resources.
Optimal beamforming and power allocation design was studied
for multiuser narrow-band systems with multiple transmit
antennas in [5], while the resource allocation algorithm design
for wide-band SWIPT systems was studied in [6]–[8]. In [6]
and [7], the energy efficiency of multi-carrier modulation with
SWIPT was investigated for single user and multiuser systems,
respectively. In particular, it was shown in [7] that the energy
efficiency of a communication system can be improved by
integrating an energy harvester into a conventional information
receiver which further motivates the deployment of SWIPT in
practice. Besides, a power allocation algorithm was designed
for the maximization of spectral efficiency of SWIPT systems
employing power splitting receivers in [8]. The results in [1]–
[8] reveal that the amount of harvested energy at the receivers
can be increased by increasing the transmit power of the
information signals. However, a high signal power may also
lead to substantial information leakage due to the broadcast
nature of the wireless communication channel and facilitate
eavesdropping.

The notion of physical (PHY) layer security in SWIPT
systems has recently been pursued in [9]–[11]. By exploiting
multiple antennas, transmit beamforming and artificial noise
generation can be utilized for providing communication se-
curity while guaranteeing QoS in wireless energy transfer to
energy harvesting receivers. However, the resource allocation
algorithms in [9]–[11] were designed for a single information
receiver and single-antenna eavesdroppers. The results in[9]–
[11] may not be applicable to the case of multiple-antenna
eavesdroppers. Besides, the works in [2]–[11] did not take
into account fairness issues in transferring energy to energy
harvesting receivers. Nevertheless, fairness is an essential QoS
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Fig. 1. Downlink SWIPT communication system model withK = 2 single-
antenna information receivers andJ = 2 multiple-antenna energy harvesting
receivers.

figure of merit for wireless energy transfer.
In this paper, we focus on the resource allocation algorithm

design for providing fairness to energy receivers in the wire-
less energy transfer process while guaranteing communication
secrecy to information receivers. The resource allocationalgo-
rithm design is formulated as a non-convex optimization prob-
lem. In particular, we promote the dual use of artificial noise
for secrecy communication and efficient wireless energy trans-
fer provisioning. The considered non-convex problem is solved
optimally by semidefinite programming (SDP) relaxation and
our simulation results unveil the potential performance gain
achieved by the proposed optimization framework.

II. SYSTEM MODEL

A. Notation

We use boldface capital and lower case letters to denote
matrices and vectors, respectively.AH , Tr(A), Rank(A),
and det(A) represent the Hermitian transpose, trace, rank,
and determinant of matrixA, respectively;λmax(A) denotes
the maximum eigenvalue of matrixA; A ≻ 0 andA � 0

indicate thatA is a positive definite and a positive semidefinite
matrix, respectively;IN is theN ×N identity matrix;CN×M

denotes the set of allN ×M matrices with complex entries;
HN denotes the set of allN × N Hermitian matrices. The
circularly symmetric complex Gaussian (CSCG) distribution
is denoted byCN (m,Σ) with mean vectorm and covariance
matrixΣ; ∼ indicates “distributed as”;E{·} denotes statistical
expectation;|·| represents the absolute value of a complex
scalar.[x]+ stands formax{0, x}.

B. Channel Model

We consider a multiuser downlink communication sys-
tem with SWIPT. In particular, a base station (/transmitter)
equipped withNT > 1 antennas servingK information
receivers andJ energy harvesting receivers is considered. The
K information receivers are low complexity single-antenna
devices while theJ energy harvesting receivers are equipped
with NR ≥ 1 antennas. We assume thatNT > NR. A possible
application of the considered system model is cognitive radio.
In particular, the energy harvesting receivers may be the
primary users which are temporally connecting to a secondary
transmitter with the intend to harvest energy from the received
signals for extending the lifetime of the primary network. In
turn, the primary network may grant the secondary network
spectrum usage rights for the energy supply services. In
each time slot,K independent signal streams are transmitted
simultaneously toK information receivers. To prevent the
J energy harvesting receivers (potential eavesdroppers) from

eavesdropping the information for theK intended information
receivers, artificial noise is transmitted concurrently with the
information signals for interfering the reception of the energy
harvesting receivers. As a result, the transmitted signal vector,
x ∈ CNT×1, consists of theK desired information signals and
artificial noise, and can be expressed as

x =

K∑

k=1

wksk

︸ ︷︷ ︸
desired signals

+ v︸︷︷︸
artifical noise

, (1)

where sk ∈ C and wk ∈ CNT×1 are the symbol and
the beamforming vector intended for information receiverk,
respectively. Variablev ∈ CNT×1 is the artificial noise vector
generated by the transmitter and is modelled asv ∼ CN (0,V)
with zero mean and covariance matrixV, V ∈ HNT ,V � 0.
Without loss of generality we assume thatE{|sk|2} = 1, ∀k ∈
{1, . . . ,K}.

In this paper, we focus on a frequency flat slow fading
channel. The received signals at the information receiversand
the energy harvesting receivers are given by

yk = hH
k x+ nk, ∀k ∈ {1, . . . ,K}, and (2)

yERj
= GH

j x+ nERj
, ∀j ∈ {1, . . . , J}, (3)

respectively. The channel vector between the transmitter and
desired receiverk is denoted byhk ∈ CNT×1. The channel
matrix between the transmitter and energy harvesting receiver
j is denoted byGj ∈ CNT×NR . The channel vectors and
matrices capture the joint effects of multipath fading and path
loss.nk ∼ CN (0, σ2

s ) andnERj
∼ CN (0, σ2

s INR
) are additive

white Gaussian noises (AWGN) caused by the thermal noises
in the antennas of the information receivers and the energy
harvesting receivers, respectively.σ2

s denotes the noise power
at the receiver.

III. R ESOURCEALLOCATION ALGORITHM DESIGN

A. Energy Harvesting

In the considered system, the energy harvesting receivers
scavenge power1 from the RF. The total amount of power
harvested by energy harvesting receiverj is given by

EERj
= ηj Tr

(
GH

j

( K∑

k=1

wkw
H
k +V

)
Gj

)
, (4)

where 0 ≤ ηj ≤ 1 is a constant which denotes the energy
conversion efficiency of energy harvesting receiverj.

B. Channel Capacity and Secrecy Capacity

Given perfect channel state information (CSI) at the re-
ceiver, the channel capacity (bit/s/Hz) between the transmitter
and information receiverk is given by

Ck = log2(1 + Γk), where (5)

Γk =
|hH

k wk|2

K∑
m 6=k

|hH
k wm|2 +Tr(HkV) + σ2

s

(6)

is the receive signal-to-interference-plus-noise ratio (SINR) at
information receiverk andHk = hkh

H
k .

1 In this paper, we study the algorithm design for a normalizedunit
energy, i.e., Joule-per-second. Thus, the terms “energy” and “power” are used
interchangeably.



On the other hand, we focus on an unfavourable scenario for
the decoding capability of the energy harvesting receiversfor
providing communication security to the information receivers.
Specifically, we assume that energy harvesting receiverj
performs interference cancellation to remove all multiuser
interference and eavesdrops the message intended for infor-
mation receiverk. Therefore, the channel capacity between
the transmitter and energy harvesting receiverj for decoding
the signal of information receiverk can be represented as

Ck
ERj

= log2 det(INR
+Q−1

j GH
j wkw

H
k Gj), (7)

Qj = GH
j VGj + σ2

s INR
≻0,

whereQj is the interference-plus-noise covariance matrix for
energy harvesting receiverj assuming the worst case for
communication secrecy. Thus, the achievable secrecy capacity
of information receiverk is given by

Cseck =
[
Ck −max

∀j
{Ck

ERj
}
]+
. (8)

C. Optimization Problem Formulation

The system objective is to maximize the minimum harvested
power among all energy harvesting receivers while providing
QoS for communication security. The resource allocation
algorithm design is formulated as an optimization problem
which is given by

maximize
V∈H

NT ,wk

min
j∈{1,...,J}

{
ηj Tr

(
GH

j

( K∑

k=1

wkw
H
k +V

)
Gj

)}

s.t. C1:Γk ≥ Γreqk
, ∀k,

C2: Ck
ERj

≤ RERj,k
, ∀k, ∀j,

C3: Tr(V) +

K∑

k=1

‖wk‖
2 ≤ Pmax, C4: V � 0 . (9)

Constraint C1 indicates that the receive SINR at information
receiverk is required to be larger than a given threshold,
Γreqk

> 0, for guaranteeing reliable communication. The
upper limitRERj,k

> 0 in C2 is imposed to restrict the channel
capacity of energy harvesting receiverj if it attempts to decode
the message of information receiverk, ∀k. ConstantPmax in
constraint C3 limits the radiated power from the transmitter
accounting for the power budget of the transmitter. Constraint
C4 andV ∈ HNT ensure that the covariance matrixV is a
positive semidefinite Hermitian matrix.

D. Optimization Solution

Problem (9) is a non-convex optimization problem. In
particular, the non-convexity arises from constraints C1 and
C2. To overcome the non-convexity, we first propose the
following proposition and then recast the considered problem
into a convex optimization problem using SDP relaxation.

Proposition 1: For RERj,k
> 0, ∀j, k, the following impli-

cation on constraint C2 holds:

C2⇒ C2: GH
j WkGj � αERj,k

Qj, ∀j, k, (10)

whereWk = wkw
H
k andαERj,k

= 2RERj,k −1 is an auxiliary
constant.C2 is a linear matrix inequality (LMI) constraint. We
note that constraintsC2 and C2 are equivalent ifRank(Wk) ≤
1, ∀k.

Proof: Please refer to the Appendix for the proof. �

Now, we apply Proposition 1 to (9) and replace con-
straint C2 with constraintC2. By settingWk ∈ HNT , ∀k,
Wk = wkw

H
k , andRank(Wk) ≤ 1, ∀k, we can rewrite the

optimization problem in its hypograph form:

maximize
Wk,V∈H

NT ,τ
τ (11)

s.t. C1:
Tr(HkWk)

Γreqk

− Tr
(
Hk

( K∑

m 6=k

Wm +V
))

≥ σ2
s , ∀k,

C2: GH
j WkGj � αERj,k

Qj , ∀j, k,

C3: Tr
(
V +

K∑

k=1

Wk

)
≤ Pmax,

C4: V � 0, C5: Wk � 0, ∀k, C6: Rank(Wk) ≤ 1, ∀k,

C7: ηj Tr
(
GH

j

( K∑

k=1

Wk +V
)
Gj

)
≥ τ, ∀j ∈ {1, . . . , J},

whereτ is an auxiliary optimization variable. Then, we adopt
SDP relaxation by removing constraint C6:Rank(Wk) ≤ 1
from the problem formulation which results in a convex SDP
problem. The relaxed SDP problem formulation of (11) is
given by

maximize
Wk,V∈H

NT ,τ
τ

s.t. C1, C2, C3, C4, C5, C7. (12)

We note that the relaxed problem in (12) can be solved
efficiently by numerical solvers such as CVX [12]. If the
obtained solution for (12),Wk, admits a rank-one matrix,
then the problems in (9), (11), and (12) share the same
optimal solution and the same optimal objective value. In the
following, we investigate ifRank(Wk) = 1 holds for the
solution of (12).

It can be shown that the problem in (11) satisfies Slater’s
constraint qualification. Thus, strong duality holds and solving
the dual problem is equivalent to solving the primal problem.
The Lagrangian of (12) is expressed as:

L
(
Wk,V, τ,Zk,Y,Xj,k, δk, λ, βj

)
(13)

= τ −
J∑

j=1

βj

[
τ − ηj Tr

(
GH

j

( K∑

k=1

Wk+V
)
Gj

)]

−
K∑

k=1

δk

[
−

Tr(HkWk)

Γreqk

+Tr
(
Hk

( K∑

m 6=k

Wm+V
))

+σ2
s

]

+ Tr(YV)+
K∑

k=1

Tr(ZkWk)−λ
[
Tr

(
V+

K∑

k=1

Wk

)
− Pmax

]

−
J∑

j=1

K∑

k=1

Tr
{
Xj,k

[
GH

j WkGj − αERj,k
Qj

]}
,

whereXj,k, Y, and Zk are the dual variable matrices for
constraintsC2, C4, and C5, respectively.δk, λ, and βj are
the scalar dual variables for constraints C1, C3, and C7
respectively. LetBk = λINT

+
∑J

j=1 Gj(βjINR
−Xj,k)G

H
j +∑

m 6=k Hmδm, and Rank(Bk) = rk. Besides, we denote
the orthonormal basis of the null space ofBk as Υk ∈
CNT×(NT−rk), andφνk ∈ CNT×1, where1 ≤ νk ≤ NT − rk,
denotes theνk-th column of Υk. Hence,BkΥk = 0 and
Rank(Υk) = NT−rk. Also, it can be shown thatHkΥk = 0

holds for the optimal solution.



TABLE I
SYSTEM PARAMETERS

Carrier center frequency 915 MHz

Small-scale fading distribution Rician fading with Rician
factor 3 dB

Total noise variance,σ2
s −23 dBm

Transmit power budget,Pmax 46 dBm
Number of receive antennas at each ER,NR 2

Receive antenna gain 6 dB
Max. tolerable channel capacity at ERs,
RERj,k

1 bit/s/Hz

RF energy to electrical energy conversion
efficiency for ERj, ηj

0.5

Now, we introduce the following theorem for revealing the
tightness of the SDP relaxation adopted in (12).

Theorem 1: Suppose the optimal solution of (12) is denoted
by {W∗

k,V
∗, τ∗}, Γreqk

> 0, andRERj,k
> 0. The optimal

solution,W∗
k, can be expressed as

W∗
k =

NT−rk∑

νk=1

ψνkφνkφ
H
νk + fkuku

H
k︸ ︷︷ ︸

rank-one

, (14)

where ψνk ≥ 0, ∀νk ∈ {1, . . . , NT − rk}, and fk > 0
are positive scalars anduk ∈ CNT×1, ‖uk‖ = 1, satisfies
uH
k Υk = 0. If ∃k : Rank(W∗

k) > 1, i.e., ψνk > 0,
then we can construct another solution of (12), denoted by
{W̃k, Ṽ, τ̃}, which not only achieves the same objective value
as {W∗

k,V
∗, τ∗}, but also admits a rank-one matrix, i.e.,

Rank(W̃k) = 1, ∀k. The new optimal solution is given as

W̃k = fkuku
H
k = W∗

k −
NT−rk∑

νk=1

ψνkφνk
φH

νk
, (15)

Ṽ = V∗ +

NT−rk∑

νk=1

ψνkφνkφ
H
νk , τ̃ = τ∗,

with Rank(W̃k) = 1, ∀k ∈ {1, . . . ,K}, wherefk andψνk
can be easily found by substituting the variables in (15) into
the relaxed version of (12) and solving the resulting convex
optimization problem forfk andψνk .

Proof: The proof of Theorem 1 is similar to the proof of
[10, Proposition 4.1] and omitted here for brevity. �

By combining the results of Proposition 1 and Theorem 1,
the global optimal solution of (9) can be obtained by solving
(12) even though SDP relaxation is applied.

IV. RESULTS

In this section, we study the system performance of the
proposed resource allocation scheme via simulation. Thereare
K = 3 information receivers andJ = 2 energy harvesting
receivers, which are uniformly distributed in the range between
a reference distance of2 meters and a maximum distance of
50 meters. The detailed simulation parameters can be found in
Table I. We assume that all information receivers require the
same minimum SINR, i.e.,Γreqk

= Γreq, ∀k ∈ {1, . . . ,K},
for illustration. Besides, we solve the optimization problem in
(9) and obtain the average system performance by averaging
over different channel realizations.

A. Average Total Harvested Power

In Figure 2, we study the average minimum harvested power
per energy harvesting receiver of the optimal scheme versus
the minimum required SINR,Γreq, for different numbers of
transmit antennas and different resource allocation schemes. It
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Fig. 2. Average minimum harvested power (dBm) per energy harvesting
receiver versus the minimum required SINR of the information receivers,
Γreq.

can be observed that the minimum harvested power decreases
with Γreq. Indeed, for satisfying a more stringent SINR
requirement, the transmitter is forced to allocate a higher
power to the information signal and to steer the direction of
transmission towards the information receivers. Besides,some
degrees of freedom have to be sacrificed for artificial noise
transmission for reducing the interference to the information
receivers. This leads to a smaller amount of RF energy for
energy harvesting. On the other hand, when the number of
antennas increase fromNT = 6 to NT = 8, a significant
energy harvesting gain can be achieved by the proposed
optimal scheme. In fact, the degrees of freedom for resource
allocation increase with the number of transmit antennas,
which enables a more power efficient energy transfer to the
energy harvesting receivers.

For comparison, we also show the performance of two
simple suboptimal baseline schemes forNT > K. For baseline
scheme 1, the artificial noise is transmitted into the null space
spanned by the channel of theK information receivers. In
other words, the artificial noise does not interfere with the
desired information receivers. Then, we maximize the mini-
mum harvested power at the energy receivers by optimizing
Wk and the power of artificial noise subject to the same
constraints as in (12). We note that the obtainedWk for
baseline scheme 1 may not be a rank-one matrix. As for
baseline scheme 2, it shares the same resource allocation
policy as baseline scheme 1 except that the direction of
beamforming matrix,Wk, is fixed. In particular, we calculate
the null space of̃h−kh̃

H
−k for desired information receiverk

where h̃−k = [h1 . . . hk−1 hk+1 . . . hK ]. Then, we project
the vectorhk onto the null space of̃h−kh̃

H
−k and use the

resulting vector as the direction of beamforming vectorwk.
We note thatWk in baseline scheme 2 is a rank-one matrix
by construction. It can be observed in Figure 2 that for the
proposed optimal scheme, the energy harvesting receivers are
able to harvest more energy compared to the two baseline
schemes, due to the joint optimization ofWk andV. Besides,
the performance gain of the optimal scheme over the two
baseline schemes is further enlarged for an increasing number
of transmit antennasNT. This can be explained by the fact
that the optimal scheme can fully utilize the degrees of
freedom offered by the system for resource allocation. In
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contrast, although multiuser and artificial noise interference are
eliminated at the information receivers for baseline scheme 1
and baseline scheme 2, respectively, the degrees of freedomfor
resource allocation in the baseline schemes are reduced which
results in a lower harvested energy at the energy harvesting
receivers.

B. Secrecy Capacity

Figure 3 illustrates the average secrecy capacity per infor-
mation receiver versus the minimum required SINRΓreq of
the information receivers for different numbers of transmit
antennas and different resource allocation schemes. It can
be observed that the average system secrecy capacity, i.e.,
Cseck , is a non-decreasing function with respect toΓreq.
In fact, the channel capacity of energy harvesting receiver
j for decoding information receiverk is constrained to be
less thanRERj,k

= 1 bit/s/Hz, cf. Table I. Besides, we
note that baseline scheme 1 is unable to meet the minimum
required of secrecy capacity as specified by constraints C1
and C2. In other words, there are time instants for baseline
1 such thatRank(Wk) > 1. Thereby, although baseline
scheme 1 satisfies constraintC2, unlike the optimal scheme,
it does not necessarily satisfy constraint C2. On the other
hand, both the proposed algorithm and baseline scheme 2 are
able to meet the minimum required secrecy capacity due to
the rank-one solution for beamforming matrixWk. However,
the exceedingly large secrecy capacity achieved by baseline
scheme 2 comes at the expense of a smaller harvested power
compared to the proposed optimal scheme, cf. Figure 2.

V. CONCLUSIONS

In this paper, we studied the resource allocation algorithm
design for SWIPT. The algorithm design was formulated as
a non-convex optimization problem to ensure the max-min
fairness in energy transfer to the energy harvesting receivers.
The proposed problem formulation enabled the dual use of
artificial noise for efficient energy transfer and secure com-
munication. SDP relaxation was adopted to obtain the optimal
solution of the considered non-convex optimization problem.
Simulation results unveiled the potential gain in harvested
energy of our proposed optimal resource allocation scheme
compared to baseline schemes.

APPENDIX-PROOF OFPROPOSITION1

We start the proof by rewriting constraint C2 as

C2: log2 det(INR
+Q−1

j GH
j WkGj)≤RERj,k

(16)

⇐⇒ det(INR
+Q

−1/2
j GH

j WkGjQ
−1/2
j )≤1 + αERj,k

. (17)

Then, we propose a lower bound on the left hand side of (17)
by introducing the following lemma.

Lemma 1: For any square matrixA � 0, we have the
following inequality [13]:

det(I+A) ≥ 1 + Tr(A), (18)

where the equality holds if and only ifRank(A) ≤ 1.
Exploiting Lemma 1, the left hand side of (17) is bounded

below by

det(INR
+Q

−1/2
j GH

j WkGjQ
−1/2
j )

≥ 1 + Tr(Q
−1/2
j GH

j WkGjQ
−1/2
j ). (19)

Subsequently, by combining equations (16), (17), and (19),
we have the following implications:

(16)⇐⇒ (17)

=⇒ Tr(Q
−1/2
j GH

j WkGjQ
−1/2
j ) ≤ αERj,k

(20a)

=⇒ λmax(Q
−1/2
j GH

j WkGjQ
−1/2
j ) ≤ αERj,k

(20b)

⇐⇒ Q
−1/2
j GH

j WkGjQ
−1/2
j � αERj,k

INR
(20c)

⇐⇒ GH
j WkGj � αERj,k

Qj . (20d)

We note that equations (16) and (20d) are equivalent, i.e.,
C2⇔ C2, whenRank(Wk) = 1, ∀k.
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