
Can we measure the difficulty

of an optimization problem?

Tansu Alpcan

Dept. of Electrical and Electronic Engineering

The University of Melbourne, Australia

Email: tansu.alpcan@unimelb.edu.au

Tom Everitt

Department of Mathematics

Stockholm University

Email: everitt@math.su.se

Marcus Hutter

Research School of Computer Science

Australian National University

Email: marcus.hutter@anu.edu.au

Abstract—Can we measure the difficulty of an optimization
problem? Although optimization plays a crucial role in modern
science and technology, a formal framework that puts problems
and solution algorithms into a broader context has not been
established. This paper presents a conceptual approach which
gives a positive answer to the question for a broad class of opti-
mization problems. Adopting an information and computational
perspective, the proposed framework builds upon Shannon and
algorithmic information theories. As a starting point, a concrete
model and definition of optimization problems is provided. Then,
a formal definition of optimization difficulty is introduced which
builds upon algorithmic information theory. Following an initial
analysis, lower and upper bounds on optimization difficulty
are established. One of the upper-bounds is closely related to
Shannon information theory and black-box optimization. Finally,
various computational issues and future research directions are
discussed.

I. INTRODUCTION

Considering the broad applicability of optimization as a

discipline, it is not surprising that the difficulty of optimization

problems has been investigated before, e.g. [1], [2]. Likewise,

the (No) Free Lunch Theorems which explore the connection

between effective optimization algorithms and the problems

they solve have generated a lot of interest in the research

community [3]–[5].

While the work [1] has presented an excellent overview of

various aspects which make an optimization problem “diffi-

cult”, it has not presented a unifying conceptual framework for

measuring “difficulty”. The complexity of optimization prob-

lems has been discussed in [6]. The discussion on (No) Free

Lunch Theorems [3]–[5], [7] is more focused on performance

of algorithms for various problems rather than analyzing

difficulty. Moreover, Free Lunch Theorems focus on black-

box optimization problems where the objective function is not

known to the optimizer unlike their counterpart “open-box”

problems considered in this paper where the objective function

is known and its properties are actively used to find the

solution. The paper [4] has partly discussed complexity-based

ranking of problems following an algorithmic information

approach similar to the one proposed here, however, does

not aim to create a broader framework. The paper [8] has

proposed the use of instance and Kolmogorov complexities as

an estimator of difficulty for black-box optimization problems.

The goal of this paper is to develop a framework for

measuring difficulty of optimization problems. The conceptual

framework introduced builds upon Shannon and Algorithmic

Information Theories [9], [10] and establishes a link between

probabilistic and algorithmic approaches to optimization. A

distinctive feature of the proposed framework is the explicit

focus on algorithmic information for measuring (open-box)

optimization difficulty.

The outline of the paper is as follows. The next section

presents the preliminary definitions and the adopted model.

Section III contains the main definitions and results, including

upper and lower bounds on the optimization difficulty measure

introduced. The paper concludes with a discussion on future

research directions in Section IV.

II. DEFINITIONS AND MODEL

This paper studies mathematical optimization problems [11]

that are commonly expressed as

max
x

f(x) subject to gi(x) ≤ 0, i = 1, . . . ,m, (1)

where the n-dimensional real-valued vector x ∈ R
n is the

decision variable, the function f is the objective function and

gi are the constraint functions. The list of constraints, denoted

by c, define the solution space A which is a assumed to be a

compact subset of the n-dimensional real space, A ⊂ R
n.

As a starting point for developing an algorithmic and

information-theoretic characterization of optimization diffi-

culty, it is assumed here that the function f is Lipschitz-

continuous on A and the optimization problem (1) admits a

feasible global solution x∗ = argmaxx∈A f(x).
For a given scalar ε > 0 and compact set A, let A(ε)

be an ε-discretization of A constructed using the following

procedure. Let C be a finite covering of A with hypercubes of

side length at most ε. For each cube C ∈ C, let xC ∈ C ∩A.

Finally, let A(ε) be the set of all xC , C ∈ C. Thus, A(ε) is

a finite subset of A, with the same cardinality as C. If the

cubes in C do not overlap, we call discretization based on C
non-overlapping.

To allow for a computational treatment of optimiza-

tion problems, an encoding of problems as (binary) strings

must be chosen. The “standard calculus symbols” we base

these descriptions on are: finite precision real numbers

0, 1.354, . . . ; variables x1, x2, . . . ; elementary functions

+, ·, exp, . . . ; parenthesis; relations ≤,=, A function

R
n → R is an expression formed by elementary functions, real

numbers and the variables x1, . . . , xn, and a constraint on R
n

is a formula on the form g(x1, . . . , xn) ≤ 0 with g : Rn → R.

Binary representations of functions and constraints may then

be reached in a straightforward manner by giving each symbol

a binary encoding (e.g. ASCII). Through concatenation of the

symbol encodings, functions and constraints receive natural

binary encodings as well. If e is an expression, let ℓ(e) denote

the length of its binary encoding.

Based on the model and assumptions introduced, a formal

definition of the optimization problem (1) is provided next.

Definition II.1 (Optimization problem). A (discretizable) opti-

mization problem on R
n is a tuple 〈f, c, ε〉 where f : Rn → R

is the objective function, c is a list of constraints on R
n

expressed using functional (in)equalities, and ε > 0 is a

discretization parameter.

The constraints delineate the solution or search space A,

over which f is to be optimized. For simplicity, assume that A
is non-empty and compact and that f is Lipschitz-continuous

over A. Let A(ε) be an ε-discretization of A.

An argmax of f on A is a point x∗ ∈ A satisfying ∀x ∈
A : f(x) ≤ f(x∗). A discrete argmax (or δε- argmax) is a

point x̂ satisfying ∀x ∈ A : f(x) ≤ f(x̂) + δε where δε =
max{|f(x) − f(x̂)| : ‖x− x̂‖ < ε} and ‖·‖ is the maximum

norm.

Discretized and Approximate Solutions

The definition above accepts δε- argmax (rather than true

argmax) as a solution to the constrained optimization problem.

The discretization parameter ε then effectively states how

close the discrete argmax needs to be to the true argmax.

The somewhat involved definition of δε- argmax also allows

points further than ε away from the correct answer, as long as

those points differ less in their target value than some point

within ε of the argmax. Under the adopted Lipschitz-continuity

assumption on objective functions, if the Lipschitz constant is

k, then the desired solution differs at most δ in target value

from the optimum, if one chooses ε = δ/k.

The following is a sufficient condition for a point x̂ in

the discrete search space A(ε) being a discrete argmax: If

it holds for all x ∈ A(ε) that f(x) ≤ f(x̂), then x̂ must be a

δε- argmax.

Next, a formal definition of non-trivial problems is provided.

Non-trivial problems will be the focus of this paper.

Definition II.2 (Non-trivial problems). A problem 〈f, c, ε〉 is

non-trivial if every ε-discretization A(ε) of A contains at least

one point that is not a δε- argmax.

As a remark on approximation and discretization of so-

lutions, it is worth noting that all numerical optimization

software packages yield only a discretized and approximate

solution.

Correctness of Solutions

To ensure correctness, any alleged δε- argmax solution is

paired with a polynomially verifiable certificate s of the the

correctness. In general, the trace (step-by-step reporting) of

a correct optimization algorithm forms one example of a

(linearly verifiable) certificate of the returned argmax. To

verify such a certificate, it suffices to check that each step

of the trace corresponds to the definition of the algorithm, and

that the final step of the trace outputs the proposed argmax.

A general type of certificates (not specific to a particular

class or optimization algorithm) may for example be based on

formal proofs in first-order logic or type-theory [12]. Indeed,

many automated theorem proving systems have developed

formalizations of analysis [13], which could potentially form

the basis of a suitable proof system.

Definition II.3 (Verifiable Solutions). Consider the optimiza-

tion problem in Definition II.1, and a suitable proof system

T offering polynomially verifiable certificates s of candidate

solutions. A solution of the optimization problem 〈f, c, ε〉 is

defined as a pair 〈x∗, s〉 where s is a certificate in T that x∗

is a δε- argmax for 〈f, c, ε〉.

It is beyond the scope of this paper to describe a suitable

proof system T in detail. The paper will instead rely on semi-

formal proof sketches in examples, and polynomial verifiabil-

ity in abstract arguments. For concreteness, we will assume

that certificates in T can be verified in time dnq . That is, we

assume the existence of a verifier for certificates in T with

runtime at most dnq for certificates of length n.

Illustrative Example

Consider the optimization problem

〈f(x) = 3x2 + x;x ≥ −1, x ≤ 1; ε = 0.001〉 . (2)

A solution is δε- argmax = 1. The following certificate

sketch establishes the correctness of the solution. Note that

the certificate below is not formal. However, a suitable formal

system should yield certificates of similar size.

1) df/dx = 6x+ 1 (derivative)

2) 6x+1 = 0 ⇐⇒ x = −1/6 (properties of real numbers)

3) roots(df/dx) = {−1/6} (from 1 and 2)

4) boundary = {−1, 1} (from c)
5) x 6∈ roots(df/dx)∧x 6∈ boundary(c) =⇒ ¬ argmax(x)

(calculus)

6) argmax = −1/6 ∨ argmax = −1 ∨ argmax = 1 (from

3–5)

7) f(−1) ≤ f(1) =⇒ argmax 6= −1
8) f(−1/6) ≤ f(1) =⇒ argmax 6= −1/6
9) argmax = 1 (from 6–8)

10) δε- argmax = 1 (from 9)

The relative shortness of the certificate indicates that the

solution to the problem is indeed quite simple. Proposition

III.4 makes this claim more formal.

III. OPTIMIZATION DIFFICULTY

The model introduced in the previous section helps formal-

izing the broad research question investigated in this paper,

which is “how to measure the difficulty of an optimization

problem?”

The proposed solution concept for measuring the difficulty

of an optimization problem is formulating it as a “knowledge

or “information” problem. Before solving 〈f, c, ε〉 it is only

known that the solution has to be in the search domain, A,

which itself may require considerable work to identify. Solving

the optimization problem yields knowledge about the location

of x∗ up to a certain precision. Hence, it is natural to establish

a link between “solving an optimization problem” and the

“knowledge obtained about the solution location”. In other

words, solving an optimization problem is equivalent to

obtaining knowledge about the location of the solution.

If the problem 〈f, c, ε〉 is “simple” then solving it corre-

sponds to discovering a small amount of knowledge. Likewise,

a difficult problem means a lot of knowledge is produced in

solving it. Thus, we will argue that the difficulty of an opti-

mization can be quantified using concepts from Shannon

and algorithmic information theories which provide a strong

mathematical foundation of information [9], [10].

Definition III.1 (Optimization Algorithm). An algorithm p
solves the optimization problem 〈f, c, ε〉 if p(〈f, c, ε〉) =
〈x∗, s〉 with s a certificate that x∗ is a δε- argmax of f on A.

That is, p should output a solution 〈x∗, s〉 when fed 〈f, c, ε〉
as input.

With U a universal Turing-machine (aka programming

language), let the description length ℓU (p) be the length of

the binary string-encoding of p on U , and let the runtime

tU (p(〈f, c, ε〉)) be the number of time steps it takes for p to

halt on input 〈f, c, ε〉 on U .

Deep invariance theorems [10, p. 578] show that the choice

of U is inessential. Subsequently, assume that some universal

Turing-machine U has been chosen as a reference machine,

and simply write ℓ(p) and t(p) to quantify description length

and runtime of the algorithm p, as is custom in Algorithmic

Information Theory.

Building upon this definition, a main contribution of the

paper is presented next.

Definition III.2 (Optimization difficulty). The optimization

difficulty of a given optimization problem 〈f, c, ε〉 character-

ized in Definition II.1, is defined as

Dopt(〈f, c, ε〉) := min
p

{ℓ(p) + log2(t(p)) : p solves 〈f, c, ε〉}

The optimization difficulty defined in III.2 refers to in-

stances of optimization problems rather than classes. Classes

is the standard object when analyzing difficulty in for example

computational complexity theory [14], but an instance version

has also been considered [15]. Considering the difficulty of

instances has several advantages. Firstly, instances are what

we ultimately need to solve in practice. Secondly, instance-

difficulty naturally generalizes to class-difficulty, through

average- or worst-case definitions. Thirdly, using instances al-

lows us to formalize the information-theoretic intuition that the

difficulty of optimization problems corresponds to how much

knowledge is gained by finding the maximum, which turns out

to be hard to formulate from a class-oriented perspective.

One challenge in considering the difficulty of instances

rather than classes is how to take into account special al-

gorithms that are well-tailored to problem instances. For

example, a correct argmax to the problem in Example 1 is

returned by the algorithm print 1. For this reason, it would

be misleading to identify the difficulty of a problem with the

length or runtime of the shortest algorithm returning a solution.

This issue is addressed by using verifiable solutions (Definition

II.3). In order to qualify as a proper solution algorithm, the

program should include enough information (a certificate) to

verify the correctness of its output.

The two terms ℓ(p) and log2(t(p(〈f, c, ε〉))) in Dopt de-

serve a remark. They represent a tension between generally

applicable solvers on the one hand, and highly specialized

ones on the other. A very general solver is exhaustive search;

a very specialized one is of the form print 〈x∗, s〉, with

〈x∗, s〉 being a verifiable solution. For most problems there

will also be a range of solvers of increasing specialization in

between the two extremes. From our perspective, optimization

difficulty is closely related to the knowledge required to

find the maximum. The general kind of solver starts with a

small amount of knowledge about the problem and typically

pays a price in longer runtime, whereas the specialized kind

already has information about the problem encoded in its

source code, and thus needs less computation time to find

the (verifiable) solution. Symmetries between the “runtime-

knowledge” and the “source code”-knowledge are discussed

in connection to the upper bounds below. These symmetries

justify the combination of description length and runtime used

in Dopt.
1

A. Bounds on Optimization Difficulty

Optimization is closely related to “search”. A given con-

strained optimization problem with a finite search space A(ε)
can always be solved as a “search problem” by ignoring the

properties of the objective function f . This coincidentally

reduces the problem to well-known black-box optimization

where the objective function is unknown.

Assuming lack of any a priori knowledge (i.e., a uniform

prior over argmax-locations in A(ε)), the argmax of the

function could be in any location A(ε) with equal probability.

Therefore, once x∗ is found, the amount of a posteriori

knowledge obtained is log2(|A(ε)|) bits from Shannon infor-

mation theory [9], where |·| denotes cardinality of a set. This

immediately follows from the definition of discrete entropy:

∑

x∈A

1

|A|
log2(|A|) = log2(|A|).

This information measure provides a quantitative way of

comparing such search problems, and provides a fundamental

upper bound on the optimization difficulty.

1Readers familiar with Algorithmic Information Theory may note that Dopt

is tightly related to Levin’s Kt-complexity. Indeed, Dopt may equivalently
be defined as Kt(solution|problem).

Proposition III.3 (Upper Bound 1). There is a computational

constant k ∈ N such that for any optimization problem 〈f, c, ε〉
with ε-discretization A(ε),

Dopt(〈f, c, ε〉) ≤ k + log2(|A(ε)|+ C) ,

where C is the runtime cost of obtaining the discretization

A(ε), and |·| denotes cardinality.

Proof: Let p be an optimization algorithm that starts

with obtaining A(ε) from c, and then searches A(ε) ex-

haustively (finding a δε- argmax x̂). Thereafter p prints

a proof starting with an establishment of A(ε), fol-

lowed by a proof of the exhaustive search. The proof

will be of the following form (with m = |A(ε)| and

x1, . . . , xm an enumeration of the elements of A(ε)):

1.
... Establish A(ε)

n. ε-discret
(

x1, . . . , xm,A
)

(from 1 to n− 1)

n+ 1. f(x1) ≤ f(x̂)
...

n+m. f(xm) ≤ f(x̂)
n+m+ 1. δε- argmax(x̂) (from n to n+m)

The contributions to p’s runtime are: (1) find (and prove)

A(ε) to a cost of C, (2) search A(ε) exhaustively to a

cost linear in |A(ε)|, (3) print the final part of the proof

of the exhaustive search. In total, this yields a running time

of k|A(ε)| + C ≤ k(A(ε) + C). By taking the logarithm

and including the description length of p in a new constant

k′ = ℓ(p)+ log2(k), the bound Dopt ≤ k′+log2(|A(ε)|+C)
is established.

Given a discretization A(ε), the δε- argmax x̂ ∈ A(ε) found

in the proof of Proposition III.3 could also have been directly

encoded into the source code of p. This way, p would not

have had to perform the exhaustive search, reducing its run-

time considerably. However, a standard result in algorithmic

information theory is that the typical description length of an

element x ∈ A(ε) is of order log2(|A(ε)|). Thus, the effect (on

the bound on) Dopt would have been the same for a “typical”

argmax. This symmetry between information encoded in the

algorithm, and information found searching, provides one deep

justification of the particular combination “description-length

plus the binary log of the runtime” used in the definition of

Dopt.

The difficulty of optimization is also bounded by the short-

est solution.

Proposition III.4 (Upper bound 2). There is a (small) com-

putational constant k such that if 〈f, c, ε〉 is an optimization

problem with shortest solution 〈x∗, s〉, then

Dopt(〈f, c, ε〉) ≤ k + ℓ(〈x∗, s〉)

Proof: The proof is immediate: Let p be the program

Print ‘〈x∗, s〉’.

Note that the program in the proof of Proposition III.4

is not as short as it initially looks. The program fits the

entire solution s in the source code. That this is possible may

appear like a weakness in the instance-oriented definition of

difficulty. However, a similar bound can be established through

exhaustive search of all solutions:

Let the algorithm p′ be constructed to through all strings 0,

1, 00, 01, . . . in order. For each string, p′ checks whether

it encodes a tuple 〈x∗, s〉, and, if it does, checks whether

〈x∗, s〉 is a valid solution to the present problem. If 〈x∗, s〉
is a solution, then p′ prints 〈x∗, s〉 and halts.

Assuming 〈f, c, ε〉 has a shortest solution 〈x̂, s〉 of length

m, the string representing 〈x̂, s〉 will be around the 2mth string

that p′ checks (somewhere between string 2m and 2m+1, to

be precise). The certificates s were assumed to be verifiable

in polynomial time (in the length of the certificate). The

algorithm p′ thus has to make less than 2m+1 checks, each

to a runtime-cost of at most dmq (the cost of verifying proofs

in T). The description-length of p is a constant independent of

the problem, and the runtime contributes log2(2
m+1 · dmq) =

m+1+ log(d) + q log(m) ≤ k+ ℓ(〈x̂, s〉) + q log2(ℓ(〈x̂, s〉))
to Dopt. Save for an extra logarithmic term, this gives a bound

on Dopt similar to Proposition III.4. This second symmetry –

on the level of verifiable solutions instead of the search space

– further justifies the choice of Dopt.

The difficulty of optimization may also be bounded from

below.

Proposition III.5 (Lower bound). Assume that d · nq bounds

the running time of the proof-verifier, and that 〈f, c, ε〉 is a

non-trivial problem. Then

Dopt(〈f, c, ε〉) ≥
1

q
log2(ℓ(〈f, c〉))− log2(d)/q

Proof: The proof builds upon two bounds on the verifica-

tion time of solutions for an optimal polynomial verifier v for

the proof system T . First, the runtime of v is bounded by dnq

for solutions of size n, which gives, t(v(〈x̂, s〉)) ≤ dℓ〈x̂, s〉q

for any 〈x̂, s〉. Second, ℓ(〈f, c〉) ≤ t(v(〈x̂, s〉)), since v
cannot correctly verify certificates without reading at least the

object function and the constraints (the last constraint always

threatens to remove the alleged argmax from the domain).

Combined, this gives ℓ(〈f, c〉) ≤ d · ℓ〈x̂, s〉q or

q
√

ℓ(〈f, c〉)/d ≤ ℓ〈x̂, s〉

for any solution 〈x̂, s〉 of 〈f, c, ε〉. Finally, observe that any

solver p of 〈f, c, ε〉 must print a solution 〈x̂, s〉, which yields

the bound

q
√

ℓ(〈f, c〉)/d ≤ min
p

{t(p(〈f, c, ε〉)) : p solves 〈f, c, ε〉} .

Taking the logarithm of both sides and adding ℓ(p) completes

the proof.

B. Problem Instances versus Classes

A common situation is that an algorithm p is available

that provably outputs the right argmax on all instances in

a class S of problems. This leads to a third bound on

Dopt (Proposition III.6). Note that this connects the instance-

difficulty introduced in this paper with the commonly-known

class-difficulty from computational complexity theory [14].

The latter is defined as the best (asymptotic) runtime of an

algorithm outputting the correct argmax on all instances. The

following proposition show that this class-difficulty essentially

bounds Dopt for all instances in the class. The proposition

assumes that the proof system T is powerful enough to allow

traces of provably correct algorithms as (part of) a certificate.

Proposition III.6 (Upper bound 3). There is a computational

constant k ∈ N allowing the following bound: Let p output the

correct argmax for all instances in a class S of optimization

problems, and let sp b a certificate for this. Let 〈f, c, ε〉 be a

problem in S. Then

Dopt(〈f, c, ε〉) ≤ 2ℓ(sp) + log2(t(p(〈f, c, ε〉))) + k + C

where C subsumes the cost of proving 〈f, c, ε〉 ∈ S.

Proof sketch: An optimizer p′ may be constructed that

(1) establishes that 〈f, c, ε〉 ∈ S, and then (2) uses p to find

the argmax. Finally, (3) a certificate of the argmax is produced

based on (1), sp and the trace of p.

Step (1) contributes C in combined runtime and description

length. Step (2) contributes t(p(〈f, c, ε〉)) to the runtime. Step

(3) contributes k1t(p) + ℓ(sp) to the runtime. Both Step (2)

and (3) may use sp in the code, yielding a total contribution

ℓ(sp)+ k2 to the description-length of p′ for Step (2) and (3).

Letting k = k1 + k2 + 1 and summing up the contributions

finishes the proof.

Note that for a fixed class S, the only terms depending on

the instance are log2(t(p(〈f, c, ε〉))) and C. The former will

typically dominate, which shows the connection between the

class-difficulty and instance-difficulty discussed above.

IV. CONCLUSION AND RESEARCH DIRECTIONS

The conceptual framework presented constitutes merely a

first step in developing a deeper understanding of optimization

problems from an information and algorithmic perspective.

Hence, several important issues have not been addressed

and left for future analysis. The first issue is the intricate

relationship between the description of the algorithm, its

runtime, and the computing resources it requires. While the

proposed definition of optimization difficulty captures the first

two to some extent, it does not model the computing resources

required. Considering the increasing importance of parallel

and distributed computing, it might be useful to incorporate

this third aspect to achieve a more elaborate definition of

optimization difficulty.

A second and related issue is the practical computability of

optimization difficulty. While certain theoretical computability

results can be obtained, developing practical methods for

approximating optimization difficulty using finite resources

and in finite runtime is of interest. The third open issue is the

availability of “information” about the optimization problem

itself. The presented framework has interesting implications

for gray and black-box optimization problems where learning

and pattern recognition methods and modeling play a natural

role [16] A fourth and final future research direction is related

to approximations and noise. A unique feature of optimization

difficulty compared to descriptive complexity is the fact that

it is not always necessary to use the full description of the

problem if the solver takes a certain amount of risk on the

precision of the solution, which may lead to a potentially

interesting line of research.

ACKNOWLEDGMENT

This research was supported in part by the Australian

Research Council Discovery Projects (DP140100819). The

first author thanks Iman Shames for helpful suggestions.

REFERENCES

[1] T. Weise, M. Zapf, R. Chiong, and A. Nebro, “Why Is Optimization
Difficult?” in Nature-Inspired Algorithms for Optimisation, ser.
Studies in Computational Intelligence, R. Chiong, Ed. Springer
Berlin Heidelberg, 2009, vol. 193, pp. 1–50. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-00267-0 1

[2] J. He, C. Reeves, C. Witt, and X. Yao, “A Note on Problem Difficulty
Measures in Black-Box Optimization: Classification, Realizations and
Predictability,” Evolutionary Computation, vol. 15, no. 4, pp. 435–443,
2007. [Online]. Available: http://dx.doi.org/10.1162/evco.2007.15.4.435

[3] D. Wolpert and W. Macready, “No free lunch theorems for optimization,”
Evolutionary Computation, IEEE Transactions on, vol. 1, no. 1, pp. 67–
82, April 1997.

[4] T. Lattimore and M. Hutter, “No Free Lunch versus Occam’s
Razor in Supervised Learning,” in Algorithmic Probability and

Friends. Bayesian Prediction and Artificial Intelligence, ser. Lecture
Notes in Computer Science, D. Dowe, Ed. Springer Berlin
Heidelberg, 2013, vol. 7070, pp. 223–235. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-44958-1 17

[5] A. Auger and O. Teytaud, “Continuous Lunches Are Free Plus
the Design of Optimal Optimization Algorithms,” Algorithmica,
vol. 57, no. 1, pp. 121–146, 2010. [Online]. Available: http:
//dx.doi.org/10.1007/s00453-008-9244-5

[6] M. W. Krentel, “The complexity of optimization problems,” Journal

of Computer and System Sciences, vol. 36, no. 3, pp. 490–509,
1988. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/0022000088900396

[7] T. Everitt, T. Lattimore, and M. Hutter, “Free Lunch for Optimisation
under the Universal Distribution,” in Proceeding of IEEE Congress on

Evolutionary Computation (CEC’14). IEEE, 2014, pp. 167–174.
[8] Y. Borenstein and R. Poli, “Kolmogorov complexity, optimization

and hardness,” in Proceedings of the IEEE Congress on Evolutionary

Computation CEC’06. IEEE, 2006, pp. 112–119. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs\ all.jsp?arnumber=1688297

[9] T. M. Cover and J. A. Thomas, Elements of information theory. New
York, NY, USA: Wiley-Interscience, 1991.

[10] M. Li and P. Vitanyi, Kolmogorov Complexity and its Applications,
3rd ed. Springer Verlag, 2008.

[11] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,
USA: Cambridge University Press, 2004.

[12] W. M. Farmer, “The Seven Virtues of Simple Type Theory,” Journal of

Applied Logic, no. December, pp. 1–37, 2007.
[13] S. Boldo, C. Lelay, and G. Melquiond, “Formalization of Real Analysis:

A Survey of Proof Assistants and Libraries,” INRIA, Tech. Rep., 2013.
[Online]. Available: http://hal.inria.fr/docs/00/94/89/11/PDF/article.pdf

[14] S. Arora and B. Barak, Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[15] P. Orponen, K.-I. Ko, U. Schöning, and O. Watanabe, “Instance
complexity,” Journal of the ACM (JACM), vol. 41, no. 1, pp. 96–121,
1994. [Online]. Available: http://dl.acm.org/citation.cfm?id=174648

[16] T. Alpcan, “A framework for optimization under limited information,”
Journal of Global Optimization, pp. 1–26, 2012.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Alpcan, T;Everitt, T;Hutter, M

Title:
Can we measure the difficulty of an optimization problem?

Date:
2014

Citation:
Alpcan, T., Everitt, T. & Hutter, M. (2014). Can we measure the difficulty of an optimization
problem?. 2014 IEEE INFORMATION THEORY WORKSHOP (ITW), pp.356-360. IEEE. https://
doi.org/10.1109/ITW.2014.6970853.

Persistent Link:
http://hdl.handle.net/11343/241549

http://hdl.handle.net/11343/241549

